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Abstract

This paper presents a fast and efficient method to de-

termine intervertebral disk orientation in a magnetic reso-

nance (MR) image of the spine. The algorithm originates

from active contour theory and enforces a shape constraint

to avoid leaks through weak or non-existent boundaries.

The method represents a vertebra as a rectangle, modeled

as a semi-affine transformation applied to the unit square.

A regional flow integrated along the rectangle’s perimeter

updates the rectangle’s transformation to achieve the seg-

mentation. Further constraints are added so that adjacent

rectangles have similar orientation and scale. The orienta-

tion of a disk is then inferred from its adjacent vertebrae.

Experiments show that the method is fast and effective in

detecting the correct intervertebral disk orientation, which

is used for transverse image planning.

1 Introduction

MR spine imaging has been widely used for noninva-

sive detection of different abnormalities and diseases in the

spinal column, vertebrae, and intervertebral disks. This pa-

per focuses on setting up transverse image acquisition for

diagnosis of intervertebral disk pathologies. In typical MR

spine imaging cases, a patient is initially scanned to obtain a

set of T2-weighted sagittal images or coronal localizer im-

ages. If an abnormality of an intervertebral disk is found,

a transverse scan is then performed. The orientation of the

transverse images is planned parallel to the major axis of

the disk and the center of the transverse images is located

on where the disk joins the spinal cord. A saturation band is

placed to suppress strong MR signals from abdominal ves-

sels and should not overlap with the spinal column (see Fig-

ure 1). Currently transverse imaging planning is done man-

ually. The process, however, is time-consuming and sub-

ject to intra- or inter-operator variation. Therefore there is a

salient need for automation in transverse imaging planning.

Figure 1. Sagittal view of the vertebral col-
umn. The orientation of the intervertebral
disk is used to set up the slice stack.

This requires accurate and consistent detection of interver-

tebral disk orientation and an approximate segmentation of

vertebrae. This paper presents a semi-automatic computer-

based technique to detect intervertebral disk orientation ac-

curately and to approximate vertebrae by rectangles.

Ideally, the first step in detecting the orientation of an

intervertebral disk is to detect the boundaries, or segmen-

tation, of the disk itself. However, this is difficult if there

is an abnormality or there are weak or missing boundaries.

However, the boundary of the intervertebral disk is closely

aligned with the boundaries of the rigid vertebrae it sepa-

rates. Therefore, we can infer the intervertebral disk ori-

entation by finding the bounding edges of its adjacent ver-

tebrae. Since each vertebrae can be geometrically approx-

imated by a rectangle, we incorporate this a priori shape

constraint into our approach to increase the robustness of

the solution.

1.1 Related work

Perhaps the most related class of methods are those

that perform vertebrae segmentation. A popular imaging

modality for vertebrae segmentation and analysis is low-

dose X-ray; for example, dual energy X-ray absoptiometry

(DXA) [6] and digital videofluoroscopic (DVF) [8] images

have been considered. Magnetic resonance images can ac-



quire relatively clear images of the spine without the radia-

tion risk, and is the modality of choice for studying interver-

tebral disk pathologies. Several authors [1, 2] present seg-

mentation approaches with experiments using this modality.

Given the difficulty of vertebrae segmentation problem,

it is desirable to further constrain the solution space. Rather

than represent each vertebra as an arbitrary contour, re-

searchers have employed shape templates [3, 5], Fourier de-

scriptors [8], as well as active shape models for individual

vertebrae [1] or the entire spinal column [6] built from train-

ing data. In this paper, we approximate each vertebra as a

rectangle, computed as a semi-affine transformation applied

to the unit square. Indeed, for the estimation of interver-

tebral disk orientation, exact vertebrae segmentation is not

necessary since we are interested in the direction of the ver-

tebral edges that are aligned with the disk. Unlike standard

active contour methods, the speed function of the contour is

integrated along the perimeter of the rectangle, resulting in

a rectangle evolution that is more robust to local variations

in the speed function and initial placement. This enhances

consistency in the results, an important feature for clinical

use.

1.2 Our contribution

The method presented in this paper is motivated by the

work of Yezzi et al. in [7], which performs simultaneous

registration and segmentation of the same object in multiple

images that may be acquired by different imaging modali-

ties. However, in this work, we impose the shape constraint

of a rectangle by mapping the unit square into the image

using a semi-affine transformation. Rectangles are used to

segment adjacent vertebrae on the same image rather than

using arbitrary contours to segment the same object in dif-

ferent images. In addition, we present interaction forces

designed to penalize larger variations in scale and rotation,

under the assumption that adjacent vertebrae have a similar

size and orientation. Finally, unlike standard level set im-

plementations, our resulting mathematical model is based

on ordinary differential equations (ODEs) instead of partial

differential equations (PDEs). This allows us to take larger

time steps in our numerical implementation.

2 Method

2.1 Active rectangle representation

Let I : Ω ⊂ R2 → R denote the image of the

unit square, formed as a closed polyline with an outward-

oriented normal N, as depicted on the left of Figure 2, and

let Î : Ω̂ ⊂ R2 → R be the target MR image. The unit

square C is mapped from I to Î as Ĉ using a transformation

g : R2 → R2, i.e., Ĉ = g(C). The mapping g consists

Figure 2. Our atlas shape in image I is the
unit square (left), transformed as a rectangle
into the image Î (right) by a semi-affine trans-
formation g(x).

of registration parameters, g1 · · · gn, which in this paper are

a set of n = 5 parameters from a finite-dimensional group

represented by a rotation angle θ, non-uniform scale param-

eters Mx, My , and displacement parameters Dx, and Dy .

These are used in a semi-affine transformation given as

x̂ = g(x) = RMx + D, (1)

with rotation matrix R =

[

cos θ sin θ

− sin θ cos θ

]

, scaling ma-

trix M =

[

Mx 0
0 My

]

, and translation vector D =

[Dx, Dy]T , and x is a point on the unit square. Figure 2

depicts the transformation of the unit square into the MR

image.

2.2 Energy function and curve evolution

Segmentation can be achieved by following a gradient

descent procedure to minimize a region-based energy func-

tional of the form:

E(g) =

∫

Ĉin

f̂in(x̂)dx̂ +

∫

Ĉout

f̂out(x̂)dx̂ (2)

where f̂ is a function that best represents a certain char-

acteristic of the image such as the mean or variance. We

chose the piecewise constant segmentation model of Chan

and Vese [4], for which f̂in = (Î−û)2 and f̂out = (Î− v̂)2,

where û and v̂ are the mean values inside and outside the

segmenting curve respectively. We re-express this func-

tional on the domain Ω as

E(g) =

∫

Cin

(|g′| f̂in ◦ g)(x)dx+

∫

Cout

(|g′| f̂out ◦ g)(x)dx

(3)

where |g′| is the determinant of the Jacobian of g and ◦ de-

notes functional composition.



Taking the derivative of Equation 3 with respect to the

registration parameter gi gives the following gradient de-

scent minimization,

dgi

dt
=

∂E

∂gi

=

∫

C

f̂(g(x))

〈

∂g(x)

∂gi

,mRM−1N

〉

ds, (4)

where gi indicates one element of g, m = MxMy , f̂ =

(f̂in − f̂out), and 〈〉 indicates an inner product. Details of

this flow can be found in [7]. Intuitively, equation (4) is an

ODE whose solution requires us to traverse the contour of

the unit square, shown in Figure 2, find its new transformed

pose in the image, then update the pose function g until con-

vergence. That is, the segmentation occurs by updating the

registration parameters gi · · · gn. Unlike [7], there is no con-

tour update ∂C
∂t

since our contour in domain Ω is fixed as the

unit square.

To avoid misalignment due to salient features away from

the disk, we apply a weighting (empirically set to 4.0) to

the edges of the transformed square that are closest to the

intervertebral disk. These edges have a similar orientation

as the disk itself. For initialization, the algorithm sets the

translation to the starting point x̂ in the MR image, the ro-

tation angle to 0 and the scale parameters to 1. An example

evolution for a single rectangle appears in Figure 3.

Figure 3. Evolution of a single rectangle.
From left to right: 0, 25, and 100 iterations,
using time step ∆t = 0.5.

2.3 Interaction forces

While it is possible to independently evolve rectangles in

each vertebra adjacent to an intervertebral disk, we can take

advantage of the similarity of adjacent vertebrae to further

constrain the problem. Under the assumption that adjacent

vertebrae have a similar size and orientation, we propose an

interaction energy between adjacent rectangles. This energy

penalizes large orientation and scale differences, and takes

the form E(g) = f(∇gi), where f(z) is a differentiable

function that penalizes the variation of the registration pa-

rameters of different active rectangles. Differentiation of

E(g) with respect to gi yields the interaction force

dgi

dt
=

∂E

∂gi

=
∂f

∂z

∂z

∂gi

(5)

We have investigated several forms of the penalty function;

however, due to space constraints we only present one func-

tion here, namely f(z) = 1

2
z2, which provides sufficient

regularization on the registration parameters. We evolve in

the negative gradient direction, yielding the update

dgi

dt
= −α∆gi, (6)

where ∆ is the Laplacian operator and α is a constant used

to weight the influence of the interaction force. In all our

experiments, we set α = 0.25, which has provided suffi-

cient coupling for our data between adjacent active rectan-

gles to jointly perform the segmentation. However, using a

lower value of α would decrease the coupling, which could

be desirable if the adjacent vertebrae had larger differences

in size/orientation.

An example comparing independent vs. coupled seg-

mentation is presented in Figure 4. For the left and mid-

dle of the figure, we performed independent evolutions of

the two rectangles starting from different initial conditions

(seed points), resulting in the active rectangles being at-

tracted to undesirable local minima. On the right we show

the coupled segmentation (both sets of initial conditions

produced the same result), which achieves a more robust

segmentation.

Figure 4. Effect of the interaction force. Left
and middle: uncoupled segmentation. Right:
coupled segmentation.

3 Results

In this section, we report disk orientation detection re-

sults from different parts of the spine. In each case, the user

will click on the disk of interest. There is some automatic

preprocessing done to get two seed points, one inside each

of the upper and lower vertebrae. This is the initialization

of the algorithm. Figure 5 shows the initialization and the

final detection of a disk in the lumbar region of the spine. In

the middle, copies of the unit square are placed at each seed

point. Then the segmentation is performed to get the result

on the right. Notice how the rectangles align to the edges

that are adjacent to the disk. From these results, we compute

the orientation of the disk, also shown in the figure. The ori-

entation is found by determining the line equally bisecting



the bounding box connecting the detected vertebrae (clini-

cally, manual determination of the orientation is done in a

similar fashion). The upper part of Figure 6 shows the result

for a sagittal C-Spine image, and the lower part of the figure

shows an example for a coronal image. Computing the disk

orientation in both the sagittal and coronal views defines a

plane that is used for setting up the transverse slice stack.

All segmentations complete within a few seconds.

Figure 5. Segmentation approach. Origi-
nal image (a), seeds overlaid (b), and final
segmentation result (c) with disk orientation
drawn as a line between vertebrae.

(a) (b) (c)

(d) (e) (f)

Figure 6. More examples. Saggital C-spine re-
sult (a) - (c), and coronal result (d) - (f).

For validation of the proposed method, we used it to de-

termine the orientation of 51 intervertebral disks, coming

from 9 different patients. Since ground truth is not avail-

able, we compared these orientation results to those esti-

mated by hand, achieved by a user drawing a line over the

disk indicating its orientation. The results of these exper-

iments were that on average, the algorithm computed the

disk orientation to less than 2.25 degrees of that detected by

a human operator.

4 Conclusion and future work

In this paper we presented a simple and efficient method

to detect the orientation of intervertebral disks. The method

fits a rectangle to each adjacent vertebrae by minimizing an

energy functional based on a shape constraint, image data,

and coupling between adjacent rectangles. While more

comprehensive validation of the algorithm is required, from

our experimental results we conclude that the shape con-

straint combined with the coupled segmentation results in

good vertebrae segmentation from which the intervertebral

disk orientation can be computed.

Since our method uses gradient descent to minimize an

energy functional, it achieves a local minimum of the en-

ergy, and can produce different results for different initial-

izations, which is typical for this class of methods. When

the vertebrae are imaged so that they have a consistent in-

tensity and their borders have sufficient contrast, our seg-

mentation method typically converges to a reasonable solu-

tion. However, for robustness it is certainly possible to in-

clude other image statistics (beyond the Chan-Vese model

we employ) in our framework. This is left for future work.

The framework presented in this paper is quite gen-

eral in that any shape representable by a closed polyline

is supported. For future work, we are interested consid-

ering other segmentation problems with different problem-

specific shape constraints, as well as extending the method

to polyhedra in 3D space.
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