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Abstr
bstract Table 1. Notation used in this paper.

We present a 3D photography method that generates

texture-mapped three-dimensional model of a scene com} !ndices _

puted from multi-view calibrated two-dimensional pho- ! Irr_1age mdexg {1 T n}
tographs. Our approach first performs probabilistic space Y Pixel c_:o-ordlna_te index
carving, which results in a 3D grid of voxel probabilities k,l,m Voxel index (n is depth)

that describe the likelihood of a voxel existing in the model. | 'Mmagedata :

We then employ a three-dimensional geodesic active sur z ImageZ* ,

face to extract a most likely conformally-weighted minimal Ly, Pixelz, y ofimageZ* ,
surface from the voxel probabilities. This surface is then R An image region within image

Rt Region ofZ® projected bykim

polygonalized and texture-mapped, yielding in a 3D model i i
Geometric variables

easily rendered with standard graphics hardware.

P! Projection matrix for imagé&*
Hi, Homography from plane: to Z°
. Statistical variables
1. Introduction D All available data{ {Z'}, {P'}}
The objective of this work is to reconstruct a three- Trim Fkim € {0 = empty, 1 = exists}
dimensional shape from a set of two-dimensional images in Viim The model for a voxel atlm
a formal statistical manner through the use of a geometric Wiim The missing voxel model for image
active surface model which allows us to easily incorporate| Gaussian parameters
geometric smoothness constraints. i=@Wr ic pp) Gaussian mean in RGB space
We begin with an array of voxels where each voxel is as- 0%, 0%,0% Gaussian variance in RGB space

signed a probability of existing in the reconstructed shape.
In addition, each voxel is assigned a spherical Gaussian

color distribution. Thus when a voxel is projected onto an mal area but where the local area element on the surface is
image, the color of each resulting pixel is a sample point weighted in inverse proportion to the probabilities assigned
drawn from that voxel’s color distribution. This is a useful to the nearby voxels. In this manner, the surface will be
model because a voxel will often project to several pixels attracted to more photo-consistent locations within the 3D
per image and this assumption does not require all of thesegrid (since smaller weighted areas arise at such locations)
image pixels to have identical RGB values. while remaining smooth as well.

This approach differs from Space Carving [7] because  Note that only the voxel probabilities, which define the
each voxel is assigned a probability for it existing in the local area weighting factors, are “voxelized” in this frame-
model. This probability may be regarded as a continuouswork. The surface itself is never represented as a set of
measure of photo-consistency. Since this measurement isliscrete voxels, but is free to position itself continuously in
non-negative, it is naturally used as a weighting factor in between voxel locations. The reconstructed surface may be
the framework of geometric active surface models. Specifi- interpreted geometrically as a minimal surface with respect
cally, our goal will be to seek a closed 3D surface of mini- to a conformally Euclidean metric defined by this proba-



well suited to rendering with standard graphics hardware.

2. Computing Voxel Probabilities I feon / \
Riim ‘
Consider pixelZ;, which is located at co-ordinates 0
(z,y) in thei-th image. The probability that’,, is drawn

from the spherical Gaussian distributi¢fi, o} is denoted
P(Z;, | ii,0) and can be estimated using (1).

bilistic measure of photo-consistency. This surface canther] 3 _ Vim ={i1.0} o
be polygonalized and texture-mapped, producing a mode| ... m 3, -0 Wyim ={i1.0}
No match m m m

Figure 1. The models for the projection of a

P(Ti, | i,0) = 1 sk, -l ) voxel (left) and for a missing voxel (right).

(ov27)’

Now consider the image regigR’ which is the set of
pixels{I?,} from imageZ’. The probability that these pix-
els are drawn from the distributidii, o } can be calculated
using (2). This probability is denote®(R’ | ji,s) and

reconstruction. The combined probability for observing all
of the images can be calculated by assuming that each of
the images is independent.

assumes that the image pixels are independent. P(D|Fkim=1, Viim) = HP(IiHM 1, Vam) (@)
Izh, - i
il . i R . e 202
P(R |“7")—H VP(Iw | “’”)—H T (ovam)’ @ Unfortunately, the parameters of the voxel motig},,
TzyeR? TzYyeER?

are not known, so they have to be marginalizeg inte-

. . rating over all possible values for the distribution.
The next problem that needs to be discussed is theg g P

method used to decide whether or not a voxel should be
part of the reconstruction. Each voxédin projects to a re-
gion R, inimageZ’. The image data in this region is ) i o )
described by one of two models. Either the data observed The prior termP(V,,,) is a distribution that describes the
atRi, is the result of the projection of a voxel, or it is Model parameters fy.,, (see [2, 1] for details).

described by some other feature in the reconstruction as the

voxel is empty. The latter case is referred to as the case for2-2. The statistical model for an empty voxel

the empty voxel. Bayes’ theorem is then used to determine

which of the two cases is more likely, and is discussed in  The second possibility is that the voxgin does not ex-

P Brim=1) = [ P(D|3Ixim=1, Viim)PVeim)dVkim (5)

Viim

Section 2.3. ist. This case is denotet),;,,, = 0 and is shown in Figure
1. In this case, the non-voxel is projected into each of the
2.1. The statistical model for voxel projection images, and the image samples that are obtained are pro-

jections ofdifferentvoxels. Unfortunately, it is not known
The first possibility is that the voxélm is presentinthe  which voxels these are until the entire scene has been recon-
reconstruction. This case is denotgg,, = 1 and is shown  structed. To get around this difficulty, the voxel projections
diagrammatically in Figure 1. In this case, the image datain R, are assumed to be locally independent. This means
regionR},,,, is described by the statistical color distribution - that a missing voxel can be represented by a set of indepen-
Viim Of voxel kim, provided that the voxel is not occluded  yent statistical model§Vi, 1, one for each image. Again,

in this viewpoint. Remember, each voxel is represented by 85y of these models is represented by a spherical Gaussian

{ir, pa, g, o2} distribution.

The probability that the observed data in im&ges de-
scribed by the voxel modéV;,, . is obtained by consider-
ing the pixels in regiorR},,...

spherical Gaussian distribution in RGB space. This means
that Vi, has four degrees of freedom that need to be es-
timated, which are{ug, i, 1,0} (see Table 1). The
probability that the observed data in imafjeis described

by the voxel model’y,, is obtained by considering the pix-

1 1 1 i 7 —
els in regionR},,,. and is denote®(Z* | Jxim=1, Viim,)- P(IZ|EIklm:07WIilm):P(R}Lclm|lelm):H P, | o)
P(T' | 3kim=1, Viim) = P(Rium | i, o) =] [ P(Z2y | i, ) (3) syeRy,, ©
zyERY

klm

. . . 1To marginalize a parameter using Bayes’ rule, integrate over all pos-
. Equatlon €)) gives the probablllty for the data'ObS_erved sible values for the parameter, multiplied by the prior at that value, and
in one particular image, given that the voxel exists in the divide by the total probability.



‘ to non-uniformly weight the standard Euclidean metric of
Since the specific value ofVy;, . is not known, it is  the volume space by a conformal fact®dr and then seek
necessary to marginalize this parameter by integrating overa minimal surface (surface of least area) where its area is
all possible values oV, multiplied by the prior term  easured according to this conformally weighted metric.
P(Wjy,,,)- This prior term describes the distribution of the  Faygeras and Keriven did not employ such a probabilistic

model parameters oV}, (see [2, 1] for detalils). measure but used normalized cross correlation measures as
. , A A _ their weighting factor instead.
P(T'|3km=0) = | P(T"|3r1m=0, Wiim) PWiim ) dWiim In particular, the surfac8 will be chosen to minimize
W;éhn
(7) 1

E(S) = / ®dA where ¢ = (10)

Js 1+P(3klm:1‘D)

by starting with an initial guess fo§ and then deforming
it via the following gradient flow

Equation (7) calculates the probability of the data in a
particular image given that it is the result of an independent
voxel. This probability can be calculated for each of the
images independently and the combined result is given by: S

5= ®HN — (VO - N)N (1)
P(D | 3pim =0) = [[ P(T* | Frim = 0) . _ _
; where H denotes mean curvature abdthe inward unit

. . . . ®) normal toS. Intuitively, regions that locally are low prob-

= H » P(Z" | 3kim =0, Wiim) PWiim) dWikim ability will have ® ~ 1 andV® ~ 0. In such a region,

klm

the first term in equation 11 dominates, and the surface

Visibility can be addressed by analyzing the existence of © SMOOths via evolution by its mean curvature. For re-

voxels along a ray between voxeln andZ’, as described gions that locally are high probability, the second term in
in [2, 1]. equation 11 dominates, and the surfadlows towards

Two probabilities have now been calculated. The first is @nd locks onto local maxima of the computed probability
the probability of the image data given that it is described £ (3xim=1| D). For other values of probability, there is a
by a single voxel (5). The second is the probability of the P&lance between these two terms. _
image data given that it is described by the projection of e use level set methods of Osher and Sethian [8] to
independent voxels (8). The final step is to calculate which ImPlement this flow since they allow easy handling of topo-

of these two cases is more likely. logical changes, since the surfaSemight need to break
apart into multiple nearby pieces during evolution. When
2.3. How to make a decision about a voxel the flow is complete, the surface can be extracted from

the level set function using the Marching Cubes [6] algo-

The probability of a voxel existing®(3um=1 | D) is rithm, resulting in a pplygonal _rgpresentation that is eas-
determined using Bayes’ Theorem from the probabilities of 1l texture-mapped using the original photographs and ren-
the two possible voxel models. These are the model for adered in graphics hardware.
voxel existingP (D | 3xim = 1), and the model for a voxel
being emptyP(D | 3pm = 0). The prior probabilities 4, Experiments
for a voxel existing, or not existing, are denoteB{3 =
1) + P(3=0) = 1. These probabilities can be combined

using Bayes’ Theorem: The steps of this algorithm are illustrated in Figure 2.

Two images of the Lord Tennyson statue are shown in Fig-

PGim =1|D) = ure 2a (after segmenting away the background). The com-
P(D | Fum = 1)P(E3 = 1) puted voxel probabilities are then examined with some sim-
L 9) ple heuristics to derive an initial estimate of the surface.

P(D|3kim=1)P(3=1) + P(D|3kin=0)P(3=0 - - .
(D13u )P )+ P(D]3u IP( ) Two views of the initial surface are shown in Figure 2b. This

gives a rather poor reconstruction since no notion of geo-
metric smoothness has been incorporated into the Bayesian
3. Computing the 3D Surface probability estimates. Next, in Figure 2c we see the final re-
constructed surface obtained by evolving the initial surface
The result from the previous section of this paper is a in Figure 2b via the flow of equation 11. Finally, in the bot-
volume of probabilities. Now we want to use these proba- tom row of the figure we see six different views of the final
bilities to find a most likely reconstructed surfae Fol- reconstruction after texture mapping the original image data
lowing the same intuition as Faugeras and Keriven [5] us- onto the result in Figure 2c.
ing the 3D extension of geodesic active contours [3, 11], In practice, we found that the gradient fisld® had a
we will use our probabilistic measure of photo-consistency limited domain of influence. Consequently, if the initial



(a) Two of the input images (b) Two views of the initial surface (c) Two views of the final surface

Figure 2. Reconstruction of Lord Tennyson statue. The top row shows two of the input images
followed by views of the initial and final surface. The bottom row shows many more views of the final
reconstruction with texture mapping of the original image data.
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