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Abstract

We present a 3D photography method that generates a
texture-mapped three-dimensional model of a scene com-
puted from multi-view calibrated two-dimensional pho-
tographs. Our approach first performs probabilistic space
carving, which results in a 3D grid of voxel probabilities
that describe the likelihood of a voxel existing in the model.
We then employ a three-dimensional geodesic active sur-
face to extract a most likely conformally-weighted minimal
surface from the voxel probabilities. This surface is then
polygonalized and texture-mapped, yielding in a 3D model
easily rendered with standard graphics hardware.

1. Introduction
The objective of this work is to reconstruct a three-

dimensional shape from a set of two-dimensional images in
a formal statistical manner through the use of a geometric
active surface model which allows us to easily incorporate
geometric smoothness constraints.

We begin with an array of voxels where each voxel is as-
signed a probability of existing in the reconstructed shape.
In addition, each voxel is assigned a spherical Gaussian
color distribution. Thus when a voxel is projected onto an
image, the color of each resulting pixel is a sample point
drawn from that voxel’s color distribution. This is a useful
model because a voxel will often project to several pixels
per image and this assumption does not require all of these
image pixels to have identical RGB values.

This approach differs from Space Carving [7] because
each voxel is assigned a probability for it existing in the
model. This probability may be regarded as a continuous
measure of photo-consistency. Since this measurement is
non-negative, it is naturally used as a weighting factor in
the framework of geometric active surface models. Specifi-
cally, our goal will be to seek a closed 3D surface of mini-

Table 1. Notation used in this paper.

Indices
i Image index∈ {1 . . . n}

x, y Pixel co-ordinate index
k, l,m Voxel index (m is depth)

Image data
Ii ImageIi

Ii
xy Pixelx, y of imageIi

Ri An image region within imagei
Ri

klm Region ofIi projected byklm

Geometric variables
P

i Projection matrix for imageIi

H
i
m Homography from planem to Ii

Statistical variables
D All available data{{Ii}, {Pi}}

∃klm ∃klm ∈ {0 = empty, 1 = exists}
Vklm The model for a voxel atklm

Wi
klm The missing voxel model for imagei

Gaussian parameters
�µ=(µR µG µB) Gaussian mean in RGB space

σ2

R, σ2

G, σ2

B Gaussian variance in RGB space

mal area but where the local area element on the surface is
weighted in inverse proportion to the probabilities assigned
to the nearby voxels. In this manner, the surface will be
attracted to more photo-consistent locations within the 3D
grid (since smaller weighted areas arise at such locations)
while remaining smooth as well.

Note that only the voxel probabilities, which define the
local area weighting factors, are “voxelized” in this frame-
work. The surface itself is never represented as a set of
discrete voxels, but is free to position itself continuously in
between voxel locations. The reconstructed surface may be
interpreted geometrically as a minimal surface with respect
to a conformally Euclidean metric defined by this proba-



bilistic measure of photo-consistency. This surface can then
be polygonalized and texture-mapped, producing a model
well suited to rendering with standard graphics hardware.

2. Computing Voxel Probabilities

Consider pixelIi
xy which is located at co-ordinates

(x, y) in the i-th image. The probability thatIi
xy is drawn

from the spherical Gaussian distribution{�µ, σ} is denoted
P (Ii

xy | �µ, σ) and can be estimated using (1).

P (Ii
xy | �µ, σ) =

1
(

σ
√

2π
)3

e
− 1

2σ2
‖Ii

xy−�µ‖2

(1)

Now consider the image regionRi which is the set of
pixels{Ii

xy} from imageIi. The probability that these pix-
els are drawn from the distribution{�µ, σ} can be calculated
using (2). This probability is denotedP (Ri | �µ, σ) and
assumes that the image pixels are independent.

P (Ri |�µ, σ)=
∏

xy∈Ri

P (Ii
xy | �µ, σ)=

∏

xy∈Ri

e
−

‖Ii
xy−�µ‖2

2σ2

(

σ
√

2π
)

3
(2)

The next problem that needs to be discussed is the
method used to decide whether or not a voxel should be
part of the reconstruction. Each voxelklm projects to a re-
gion Ri

klm in imageIi. The image data in this region is
described by one of two models. Either the data observed
at Ri

klm is the result of the projection of a voxel, or it is
described by some other feature in the reconstruction as the
voxel is empty. The latter case is referred to as the case for
the empty voxel. Bayes’ theorem is then used to determine
which of the two cases is more likely, and is discussed in
Section 2.3.

2.1. The statistical model for voxel projection

The first possibility is that the voxelklm is present in the
reconstruction. This case is denoted∃klm = 1 and is shown
diagrammatically in Figure 1. In this case, the image data in
regionRi

klm is described by the statistical color distribution
Vklm of voxelklm, provided that the voxel is not occluded
in this viewpoint. Remember, each voxel is represented by a
spherical Gaussian distribution in RGB space. This means
thatVklm has four degrees of freedom that need to be es-
timated, which are{µR, µG, µB , σ2} (see Table 1). The
probability that the observed data in imageIi is described
by the voxel modelVklm is obtained by considering the pix-
els in regionRi

klm and is denotedP (Ii | ∃klm=1,Vklm).

P (Ii |∃klm=1,Vklm)=P (Ri
klm |�µ, σ)=

∏

xy∈Ri
klm

P (Ii
xy |�µ, σ) (3)

Equation (3) gives the probability for the data observed
in one particular image, given that the voxel exists in the

I
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Figure 1. The models for the projection of a
voxel (left) and for a missing voxel (right).

reconstruction. The combined probability for observing all
of the images can be calculated by assuming that each of
the images is independent.

P (D |∃klm=1,Vklm) =
∏

i

P (Ii |∃klm=1,Vklm) (4)

Unfortunately, the parameters of the voxel modelVklm

are not known, so they have to be marginalized1 by inte-
grating over all possible values for the distribution.

P (D |∃klm=1) =

∫

Vklm

P (D |∃klm=1,Vklm)P (Vklm)dVklm (5)

The prior termP (Vklm) is a distribution that describes the
model parameters ofVklm (see [2, 1] for details).

2.2. The statistical model for an empty voxel

The second possibility is that the voxelklm does not ex-
ist. This case is denoted∃klm = 0 and is shown in Figure
1. In this case, the non-voxel is projected into each of the
images, and the image samples that are obtained are pro-
jections ofdifferentvoxels. Unfortunately, it is not known
which voxels these are until the entire scene has been recon-
structed. To get around this difficulty, the voxel projections
Ri

klm are assumed to be locally independent. This means
that a missing voxel can be represented by a set of indepen-
dent statistical models{Wi

klm}, one for each image. Again,
each of these models is represented by a spherical Gaussian
{µR, µG, µB , σ2} distribution.

The probability that the observed data in imageIi is de-
scribed by the voxel modelWi

klm is obtained by consider-
ing the pixels in regionRi

klm.

P (Ii |∃klm=0,Wi
klm)=P (Ri

klm |Wi
klm)=

∏

xy∈Ri
klm

P (Ii
xy | �µ, σ)

(6)

1To marginalize a parameter using Bayes’ rule, integrate over all pos-
sible values for the parameter, multiplied by the prior at that value, and
divide by the total probability.
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Since the specific value ofWi
klm is not known, it is

necessary to marginalize this parameter by integrating over
all possible values ofWi

klm multiplied by the prior term
P (Wi

klm). This prior term describes the distribution of the
model parameters ofWi

klm (see [2, 1] for details).

P (Ii |∃klm=0) =

∫

Wi
klm

P (Ii |∃klm=0,Wi
klm)P (Wi

klm)dWi
klm

(7)

Equation (7) calculates the probability of the data in a
particular image given that it is the result of an independent
voxel. This probability can be calculated for each of the
images independently and the combined result is given by:

P (D | ∃klm = 0) =
∏

i

P (Ii | ∃klm = 0)

=
∏

i

∫

Wi
klm

P (Ii |∃klm =0,Wi
klm)P (Wi

klm)dWi
klm

(8)

Visibility can be addressed by analyzing the existence of
voxels along a ray between voxelklm andIi, as described
in [2, 1].

Two probabilities have now been calculated. The first is
the probability of the image data given that it is described
by a single voxel (5). The second is the probability of the
image data given that it is described by the projection of
independent voxels (8). The final step is to calculate which
of these two cases is more likely.

2.3. How to make a decision about a voxel

The probability of a voxel existingP (∃klm= 1 | D) is
determined using Bayes’ Theorem from the probabilities of
the two possible voxel models. These are the model for a
voxel existingP (D | ∃klm = 1), and the model for a voxel
being emptyP (D | ∃klm = 0). The prior probabilities
for a voxel existing, or not existing, are denoted:P (∃=
1) + P (∃= 0) = 1. These probabilities can be combined
using Bayes’ Theorem:

P (∃klm = 1 | D) =

P (D | ∃klm = 1)P (∃ = 1)

P (D |∃klm=1)P (∃=1) + P (D |∃klm=0)P (∃=0)
(9)

3. Computing the 3D Surface

The result from the previous section of this paper is a
volume of probabilities. Now we want to use these proba-
bilities to find a most likely reconstructed surfaceS. Fol-
lowing the same intuition as Faugeras and Keriven [5] us-
ing the 3D extension of geodesic active contours [3, 11],
we will use our probabilistic measure of photo-consistency

to non-uniformly weight the standard Euclidean metric of
the volume space by a conformal factorΦ, and then seek
a minimal surface (surface of least area) where its area is
measured according to this conformally weighted metric.
Faugeras and Keriven did not employ such a probabilistic
measure but used normalized cross correlation measures as
their weighting factor instead.

In particular, the surfaceS will be chosen to minimize

E(S) =

∫

S

Φ dA where Φ =
1

1 + P (∃klm=1 | D)
(10)

by starting with an initial guess forS and then deforming
it via the following gradient flow

∂S

∂t
= ΦH �N − (∇Φ · �N)�N (11)

whereH denotes mean curvature and�N the inward unit
normal toS. Intuitively, regions that locally are low prob-
ability will have Φ ≈ 1 and∇Φ ≈ 0. In such a region,
the first term in equation 11 dominates, and the surface
S smooths via evolution by its mean curvature. For re-
gions that locally are high probability, the second term in
equation 11 dominates, and the surfaceS flows towards
and locks onto local maxima of the computed probability
P (∃klm=1 | D). For other values of probability, there is a
balance between these two terms.

We use level set methods of Osher and Sethian [8] to
implement this flow since they allow easy handling of topo-
logical changes, since the surfaceS might need to break
apart into multiple nearby pieces during evolution. When
the flow is complete, the surfaceS can be extracted from
the level set function using the Marching Cubes [6] algo-
rithm, resulting in a polygonal representation that is eas-
ily texture-mapped using the original photographs and ren-
dered in graphics hardware.

4. Experiments

The steps of this algorithm are illustrated in Figure 2.
Two images of the Lord Tennyson statue are shown in Fig-
ure 2a (after segmenting away the background). The com-
puted voxel probabilities are then examined with some sim-
ple heuristics to derive an initial estimate of the surface.
Two views of the initial surface are shown in Figure 2b. This
gives a rather poor reconstruction since no notion of geo-
metric smoothness has been incorporated into the Bayesian
probability estimates. Next, in Figure 2c we see the final re-
constructed surface obtained by evolving the initial surface
in Figure 2b via the flow of equation 11. Finally, in the bot-
tom row of the figure we see six different views of the final
reconstruction after texture mapping the original image data
onto the result in Figure 2c.

In practice, we found that the gradient field∇Φ had a
limited domain of influence. Consequently, if the initial

3



(a) Two of the input images (b) Two views of the initial surface (c) Two views of the final surface

Figure 2. Reconstruction of Lord Tennyson statue. The top row shows two of the input images
followed by views of the initial and final surface. The bottom row shows many more views of the final
reconstruction with texture mapping of the original image data.

guess forS was not near a maxima, the gradient term would
have little influence on the surface evolution, and the sur-
faceS would not move towards the maxima. To address
this issue, we implemented a diffusion of the gradient field
using the technique of Xu and Prince [10]. We compute this
gradient field diffusion by solving a set of decoupled partial
differential equations. This is performed before the surface
evolution of equation 11.

5 Conclusion

We have presented a method for computing a 3D model
of a scene using multiple 2D photographs. Our technique
employs a probabilistic framework for space carving and a
geodesic active surface model for extracting a smooth, most
likely surface.
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