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Automatic Tracing of Blood Flow Velocity in Pulsed Doppler Images

Zhe Wang, Student Member IEEE, Greg Slabaugh, Member IEEE Mengchu Zhou, Fellow, IEEE

and Tong Fang, Member IEEE

Abstract— Assessment of blood flow velocity in Doppler
images is of great importance in clinical studies and research.
From the Doppler waveform envelope, numerous indices can
be obtained, such as the pulsatility index, resistance index,
and systolic/diastolic ratio, as well as acceleration of the blood
through valves. The evaluation for the Doppler images is usually
conducted off-line and manually by the physicians. Fully-
automatic detection of the envelope has the advantages of being
convenient, time and labor saving. The main objective of this
paper is to propose an automated technique based on image
processing and computer vision algorithms for real-time tracing
of the waveform envelope in a sequence of pulsed Doppler
images. To this end, first we establish an information-theoretic
image model and a statistical shape-driven dynamical model,
which are used to address the large degree of noise and poor
contrast common in this application. Relying upon these two
models, we construct a discrete Kalman filter for the recursive
estimation of the blood velocity envelope, while taking into
account the measurement noise from these two sources. The
models and Kalman filter form an adaptive weighting, closed-
loop envelope tracing framework. We present the theory and
implementation of our methodology, and demonstrate its ability
to accurately trace the blood flow velocity in pulse wave Doppler
images as well as its robustness to noise and computational
efficiency.

I. INTRODUCTION

In recent decades, the feasibility of measuring blood

flow in the heart and vessels using the Doppler effect in

ultrasonic waves has become well known [3]. Since pulse

wave Doppler, also known as pulsed Doppler, allows users to

obtain the flow information at any depth on the sound beam

axis simultaneously with B-mode and M-mode images, it is

widely used at present.

The velocity of blood in intact blood vessels can be

tracked non-invasively by identifying the Doppler shifts from

a backscattered ultrasound signal. And the envelope of pulsed

Doppler signal has been the important feature that character-

izes blood flow. From the envelope, various clinical indices

can be computed, such as the pulsatility index, resistance

index, and systolic/diastolic ratio, as well as acceleration of

the blood through valves. Currently, only manual methods are

used clinically in order to extract these indices. Well-trained

physicians trace the flow images by hand. Therefore, the
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manual extraction method is both time and labor consuming.

Moreover, it has limited reproducibility and is subject to

observer variability. An automated method to analyze the

Doppler signal can improve its accuracy and can result in

a powerful tool for clinical noninvasive evaluation of the

blood flow. The real-time tracing of blood flow velocity

for pulsed Doppler image sequences, especially the slope of

envelope, considered as the acceleration of the blood through

valves, is of great importance to physicians for diagnostic

use. There have been many tracing algorithms proposed

recently. However, few of them are designed specifically for

ultrasound pulsed Doppler image sequences.

Moreover, the envelope of the signal may be smeared due

to low SNR of the acquisition apparatus or a small percentage

of fast moving blood. Under such conditions, without a prior

model to assist the tracing, most classical image processing

algorithms may fail to produce a valid result.

This work is inspired by a number of model-based image

segmentation algorithms in the literature. Having some ex-

pectation of the shape can greatly assist in the tracing from

image sequences. A statistical model provides a means of

automatically deriving more complex information directly

from a training set, once the important relationships have

been identified. Leventon et al. [2] proposed a shape-based

segmenter. They incorporated shape information as a prior

model to restrict the flow of an active contour. Staib and

Duncan [4] used an elliptic Fourier decomposition of the

boundary and placed a Gaussian prior to incorporate shape

information into the segmentation. Tsai et al. [5] calculated

the parameters of an implicit representation of the curve to

minimize the energy functions for image segmentation.

This paper proposes a model-based approach for ultrasonic

pulsed wave Doppler tracing. Using a noise model, our

method applies an information-theoretic edge detector to

robustly identify changes in intensity distributions that appear

at the envelope. The edge detector results form the image

model. Our method also applies a statistical shape model

to help guide the tracing when the edge detector results are

ambiguous. We incorporate these components into an overall

system using a Kalman filter for Bayesian tracking. The use

of a Kalman filter algorithm is advantageous for the dynamic

measurement of the envelope of blood velocity in Doppler

image sequences for the following reasons. First, Kalman

filter is a recursive procedure, it requires minimum amount

of storage for the past samples. Second, it provides an

efficient mechanism for modelling slowly time-varying noisy

systems. Third, the accuracy of estimation can be assessed

by monitoring the error covariance. The Kalman filter is well



known for its capability of supporting estimations of past,

present, and even future states, and it can do so even when

the precise nature of the modeled system is unknown [1]. Our

resulting approach is robust to noise and computationally

efficient, allowing tracing to occur in real-time as data is

input to the system.

The rest of this paper is organized as follows. Section II

describes our shape models, first the information-theoretic

image model, and then the PCA (Principal Component

Analysis)-based shape-driven dynamic model. Section III

introduces the system framework in detail and Section IV

provides experimental results that demonstrate the ability

of our proposed algorithm to trace the envelope in pulsed

Doppler image sequences, even for low signal to noise ratio

images.

II. MULTI-MODAL SHAPE MODELS

This work proposes a model-based, closed-loop algorith-

mic framework for Pulsed Doppler tracing. The system

diagram is depicted in Fig. 1. In our algorithm, both a

information-theoretic image model and a statistical shape-

driven dynamical model are developed for assisting the

tracing process. In order to constrain or direct the model

advancing and evolving, the Kalman filter is employed.

Fig. 1. System Diagram

A. Information-theoretic Image Model

Due to speckle and electronic noise, Pulsed Doppler

images typically have a noisy appearance that makes edge

detection rather difficult. This issue is compounded by the

fact that the blood moving through the region of interest has

varying speed, and much of the blood can be moving with the

velocity slower than the peak velocity that we are interested

in tracing. For these reasons, standard edge localization

operations (gradient, Sobel, Canny edge detectors) applied

to the Pulsed Doppler data failed to produce useful outputs

for our image model, particularly when the signal to noise

ratio was low.

Therefore, we developed a new edge detection technique

that compares, using information theory, the intensities of

a known noise region to that of the image. The objective

is to find regions in the image that differ, statistically,

from the background noise. Let a region of the the known

background be denoted as B(x,y). Using non-parametric

density estimation, we form a probability distribution pb(I)
from the histogram of B(x,y). This probability distribution

describes the probability of a pixel of intensity I occurring

in B(x,y) and serves as an intensity model of the image

background. Similarly, we select a sub-window of the image

I(x,y) around pixel (x,y) and form a probability distribution

pi(I), to form a model of the intensities around the pixel.

Using information theoretic concepts, we then compute the

symmetric Kullback-Liebler divergence (also known as the J-

divergence) as

J =
1

2

[∫
pb(I)log

pb(I)

pi(I)
dI +

∫
pi(I)log

pi(I)

pb(I)
dI

]
(1)

Intuitively, J provides a measure that describes how “dif-

ferent” the intensity distributions are. Regions of the image

that match the background model will have a small J, while

regions that differ significantly from the background model

will have a large J. Since the computation of J includes the

background noise model, this method works effectively even

when the noise in the image is strong. Eq. (1) is evaluated

at each pixel in the image, forming a statistical comparison

map M(x,y). Next, we apply a standard edge localization

algorithm to M(x,y), such as the difference of Gaussian

(DOG) filter, to produce a feature map F(x,y), which is then

used in our image model.

B. Statistical Shape Model

The Pulsed Doppler data may contain an incomplete and

ambiguous envelope of blood velocity. In particular, the

problem of determining what is and what is not an edge

is confounded by the fact that edges are often partially

hidden or distorted by various effects such as electronic

noise, ultrasound speckle noise and so on. Due to the above

reasons, an envelope tracing approach that uses solely edge

detector outputs will not be robust. Therefore, we introduce

PCA-based statistical shape model [6] into our algorithmic

framework. The justification of this choice is that the shapes

of pulse waves in the specific dataset share some common

shape pattern as observed in Fig. 2. The statistical shape

model is learned in an offline process using manually traced

envelopes for different applications.

Since the size or structure of the shape model in the

training dataset may be quite different, we separate them

into several categories based on the valve being studied.

Within each application, n separate shapes in the database

are aligned to one coherent coordinate frame.

In particular, the position in y axis of each of the n aligned

shapes is formed as n separate d dimension vectors {s1 , s2,

..., sn}. We compute µ , the mean shape of the shape database

as follows,

µ =
1

n

n

∑
i=1

si (2)

The mean value is then subtracted from each vector to

create n centroid-aligned shape models,{s̃1, s̃2, ..., s̃n}. These

mean-offset shapes are then formed into the training matrix

to capture the variabilities of the training shapes. Specifically,

we define the training matrix M as



M = [s̃1 s̃2 · · · s̃n] (3)

Singular Value Decomposition is employed to the matrix

Ω,

Ω =
1

n
MMT (4)

1

n
MMT = UΛUT (5)

where Λ is a diagonal matrix of eigenvalues and columns

of U are the corresponding eigenvectors, representing the n

orthogonal modes of variation in the shape.

Since the dimension of Ω can be extremely large in

most cases, to obtain the eigenvalues and eigenvectors of Ω

is computationally expensive. Instead, the eigenvalues and

eigenvectors of Ω can be easily computed from those of a

much smaller matrix, Ψ, as defined by

Ψ =
1

n
MT M (6)

Let η be an eigenvector of Ψ with non-zero correspond-

ing eigenvalue λ . It is straightforward to show Mη is an

eigenvector of Ω with eigenvalue λ .

The eigenvectors represent the principal axes of varia-

tions in the training set, with the corresponding eigenvalues

indicating the amount of influence its eigenvector has in

determining the shape.

The matrix U , consisting of eigenvectors, can be used to

project an input signal into the eigenspace. Let k ≤ n be

the number of modes to consider, or the dimension of the

reduced-rank eigenspace. Since there is no universal k that

can be set, we chose k empirically for our experiments. Using

these k principal modes, we calculate the weight for the input

signal z on each eigenshape.

ωi = νT
i · z (7)

where i = 1,2, · · · ,k, and νi = Mηi, representing the eigen-

shape.

z̃ = µ +
k

∑
j=1

ωi(z−µ) (8)

We now obtain a PCA-based shape model as well as image

model for the tracing process.

Fig. 2. Examples of the envelope shape.

III. SHAPE MODELS INTO ENVELOPE TRACING

Given a frame of pulsed Doppler video, the prior shape

information can be embedded into the tracing process. In this

section, we describe the framework for envelope tracing.

A. Kalman Filtering

The problem at hand is to track the envelope of blood flow

velocity from a sequence of Doppler images. We choose the

vertical position of the envelope as an appropriate tracing

parameter. A variety of tracking methods can be used to

solve it. Among these, the Kalman filtering method has

many advantages. First, it is a computationally efficient

recursive procedure requiring minimum amount of storage

for the past samples. The results of the previous step is

used to predict the current states. Furthermore, the accuracy

of the estimation can be assessed by monitoring the error

covariance. Finally, a priori knowledge about the system can

be readily incorporated into the Kalman filter.

The Doppler tracing problem using the Kalman filter can

be formulated as follows. Let the state vector be xk =

[
yk

ẏk

]
,

where k is the current step, yk denotes the vertical position

of blood flow velocity envelope, and ẏk is the derivative of

yk.

The system equation can be modeled as

xk = Axk−1 +wk−1 (9)

where wk is assumed to be Gaussian white noise with zero

mean, i.e., wk ∼N(0,Q) and A =

[
1 1

0 1

]
denotes the state

transition matrix.

With the observation zk =

[
zi,k

zp,k

]
, the observation equa-

tion is

zk = Hxk +vk (10)

where zi,k and zp,k are from the image model and PCA-based

model, respectively, H =

[
1 0

1 0

]
is the observation matrix

and vk is assumed to be Gaussian noise, i.e., vk ∼ N(0,R)

and R =

[
ri 0

0 rp

]

The Kalman filter enables one to realize a motion model

taking into account system noise and observation noise. The

information from the image model and PCA-based model

are incorporated into the system via observation vector and

observation noise covariance. The usual task of the Kalman

filter is the estimation of the state vector xk given only the

observation zk. The filter operation consists of two parts, time

update (prediction) and measurement update (correction).

A new value of the state vector xk is estimated during the

prediction step based on a posteriori state estimate at step

k−1 given measurement zk−1. Further on, the estimate error

covariance matrix P is arranged according to Eq. (12).

x̂ −
k = Ax̂k−1 (11)

P −
k = APk−1AT +Q (12)

where x̂ −
k (note the superscript minus) is our a priori state

estimate at step k given knowledge of the process prior to

step k and x̂k is a posteriori state estimation at step k given

measurement zk. P −
k is the a priori estimate error covariance



matrix at step k and Pk−1 is the a posteriori estimate error

covariance matrix at step k−1.

Every time a new observation zk is available, this value is

used to update the estimation x̂k. In addition, the covariance

matrix P and the Kalman gain matrix K are recalculated as

follows.

Kk = P −
k HT (HP −

k HT +R)−1 (13)

x̂k = x̂ −
k +Kk(Zk −Hx̂ −

k ) (14)

Pk = (I −KkH)P −
k (15)

B. Feedback Information and Adaptive Weighting

Observation zi comes from the image model, referring to

the top point of the detected edge for each time point. The

other observation zp denotes the reconstructed signal from

the decomposed input signal in the eigenspace. The input

signal is actually the output of the Kalman filter so that the

prediction information from the Kalman filter can be fed back

to help direct the PCA-based shape model. However, since

the dimension of the input signal into eigenspace can not

be too small, the Kalman filter needs to accumulate enough

output for PCA model. During this period, the image model

takes over the responsibility of providing inputs for the PCA

model.

Since the impact of these two models on the tracing

process can be varying with time, we use the observation

noise matrix R =

[
ri 0

0 rp

]
to indicate our “trust index”

for each step such that the system can weight the two

models adaptively. The “trust index” is determined by the

performance of edge detection. Specifically, the value of J-

divergence, as shown in Eq. (1), at the detected edge are used

to define the “trust index” for both image and PCA models.

In (16) and (17), α and β are constant and chosen at the

beginning of the process empirically. If Jk is large enough,

it will be considered as a sign that the image model is more

reliable at the current step and thus should be trusted more

than PCA model, and vice versa.

rp = α ×⌊Jk/max(J)×10⌋/10 (16)

ri = β − rp (17)

IV. EXPERIMENTAL RESULTS

The experiments for the proposed algorithm are performed

on a real, Doppler images of heart valves, depicted in Fig. 3

and 4. In particular, we tested our envelope detection algo-

rithm on images from an aortic insufficiency (AI) dataset.

The training data for building a pulse shape space consists

of 10 pulses that have the envelopes drawn manually.

The tracing occurs causally as the data becomes available;

therefore in the figures we show the tracing output as a

function of time as data comes into the system. The result in

Fig. 3 shows a successful tracing using the automatic tracing

approach. Even in locations where the maximal blood flow

velocity is not well defined, our method produces a good

result due to the use of our statistical shape model. Fig. 4

shows a more challenging example where the background

noise is strong, and the resulting signal to noise ratio is

low. Despite these challenges, our algorithm produces a good

result that is suitable for automatic computation of indices

and diagnostic measurements.

V. CONCLUSION

The problem of envelope tracing in Pulsed Doppler images

has been addressed in this paper. This is of great importance

to physicians for diagnostic use. We propose a novel model-

based, feedback and adaptive weighting tracing algorithm

using the Kalman filter. It incorporates a non-parametric

statistical comparison of image intensities in order to es-

timate edges in noisy Pulsed Doppler data, as well as a

statistical shape model learned from manual tracings for

different applications. The experimental results demonstrate

that the proposed approach can be successfully applied to

blood flow velocity envelope tracing for Doppler images as

it is robust to noise and computationally efficient, suitable

for real-time applications as the algorithm can be executed

fast enough to meet real-time requirements.

REFERENCES

[1] S. M. Bozic, Digital and Kalman Filtering. Arnold, 1994.
[2] M. Leventon, E. Grimson, and O. Faugeras, “Statistical shape influence

in geodesic active contours,” in Proc. IEEE Conf. Computer Vision and

Pattern Recognition, vol. 1, Hilton Head Island, USA, 2000, pp. 316–
323.

[3] H. F. Routh, “Doppler ultrasound : The ability to measure and image
blood flow,” IEEE Engineering in Medicine and Biology Magazine, vol.
15(6), pp. 31 – 40, Nov. 1996.

[4] L. Staib and J. Duncan, “Boundary finding with parametrically de-
formable contour models,” IEEE Trans. Patt. Analysis and Mach. Intell.,
vol. 14(11), pp. 1061–1075, 1992.

[5] A. Tsai, J. Yezzi, A., W. Wells, C. Tempany, D. Tucker, A. Fan,
W. Grimson, and A. Willsky, “A shape-based approach to the segmenta-
tion of medical imagery using level sets,” IEEE Trans. Medical Imaging,
vol. 22(2), pp. 137–154, 2003.

[6] G. Unal, S. Bucher, G. Slabaugh, T. Fang, and K. Tanaka, “Shape-driven
segmentation of intravascular ultrasound images,” in Proc. MICCAI:

The 1st Int. Workshop Comput. Vis. Intravasc. Intracardiac Imag.

(CVII),, 2006, pp. 51–58.



(a)

(b)

(c)

(d)

(e)

Fig. 3. Illustration of tracing blood flow velocity in Doppler images. (a)
Original complete display (b)-(e) 30%, 60%, 75%, 100% tracing completed

(a)
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(c)
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(e)

Fig. 4. Illustration of tracing blood flow velocity in Doppler images. (a)
Original complete display (b)-(e) 30%, 60%, 75%, 100% tracing completed


