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ABSTRACT 

Automatic segmentation of medical images is a challenging problem due to the complexity and variability of human 

anatomy, poor contrast of the object being segmented, and noise resulting from the image acquisition process. This paper 

presents a novel non-parametric feature analysis method for the segmentation of 3D medical lesions. The proposed 

algorithm combines 1) a volumetric shape feature (shape index) based on high-order partial derivatives; 2) mean shift 

clustering in a joint spatial-intensity-shape (JSIS) feature space; and 3) a modified expectation-maximization (MEM) 

algorithm on the mean shift mode map to merge the neighboring regions (modes). In such a scenario, the volumetric 

shape feature is integrated into the process of the segmentation algorithm. The joint spatial–intensity-shape features 

provide rich information for the segmentation of the anatomic structures or lesions (tumors). The proposed method has 

been evaluated on a clinical dataset of thoracic CT scans that contains 68 nodules. A volume overlap ratio between each 

segmented nodule and the ground truth annotation is calculated. Using the proposed method, the mean overlap ratio over 

all the nodules is 0.80. On visual inspection and using a quantitative evaluation, the experimental results demonstrate the 

potential of the proposed method. It can properly segment a variety of nodules including juxta-vascular and juxta-pleural 

nodules, which are challenging for conventional methods due to the high similarity of intensities between the nodules 

and their adjacent tissues. This approach could also be applied to lesion segmentation in other anatomies, such as polyps 

in the colon. 

Keywords: Mean shift, Modified expectation-maximization (MEM), Pulmonary nodules, Shape index, Segmentation 

 

1. DESCRIPTION OF PURPOSE 

Accurate and automatic segmentation of medical images is often an essential component of a computer-aided diagnosis 

(CAD) system. However, medical image segmentation is typically a difficult task due to noise resulting from the image 

acquisition process, as well as the characteristics of the object itself and its neighborhood, particularly when the object 

has low contrast, a small size, or is located within an area of complicated anatomy. These issues bring critical challenges 

to automatic segmentation methods.  For example, the intensities of lesions (e.g. juxta-vascular nodules, juxta-pleural 

nodules) are usually very similar to their adjacent tissues (e.g. blood vessel or pleural wall). In this case, traditional 

intensity-based or model-based segmentation methods may fail to properly segment the object [1-2].  

    To address this challenge, we have developed a novel segmentation method that combines mean shift clustering and 

volumetric shape index to automatically segment lesions. The proposed algorithm has following steps: (1) calculating 

volumetric shape index (SI) at each voxel; (2) combining the SI with the intensity and the spatial position (x, y, z) to 

form a 5-dimentional feature vector; (3) grouping the 5-dimentional feature vectors into clusters using the mean shift 

framework; (4) employing modified expectation-maximization algorithm (MEM) to merge the neighbouring regions 

using the intensity mode map from the mean shift clustering. The joint spatial–intensity-shape (JSIS) feature provides 

rich information for the segmentation of the anatomic structures of interest, such as lesions (tumors). The experimental 

results on a CT lung nodule dataset demonstrate the high performance of the proposed method. Most of the nodules are 

properly separated from the lung parenchyma or other attached tissues (e.g. vessel or lung wall).  An accurate 

segmentation provides a solid base for detection, feature calculation, classification in a CAD system. 

2. METHODOLOGY 

The mean shift framework provides a very effective methodology for feature space analysis.  Initially developed by 

Fukunaga and Hosterler [3], mean shift has recently been exploited in low level computer vision tasks by Comaniciu and 



 

 

Meer ([4]). It is a non-parametric estimator of the density gradient and does not require prior knowledge of the number 

of clusters, nor does it constrain the shape of the clusters. In this paper, a volumetric shape index feature is calculated at 

each voxel and combined with the intensity and the spatial position.  This JSIS feature is clustered using the mean shift 

framework. A modified expectation-maximization algorithm (MEM) that considers a spatial constraint on the mean shift 

mode map is then used to merge the neighbouring regions (modes).  Unlike prior methods that compute features from an 

existing segmentation, our method integrates the features (e.g. intensity and shape) into the process of segmentation 

algorithm itself.  We demonstrate that by using this feature-guided segmentation, accurate object boundary delineation 

can be obtained. 

     
2.1 Volumetric shape index: a 3D geometric feature 

Volumetric shape index (SI) is a very useful geometric feature. Theoretically, it represents the local shape feature at each 

voxel while being independent of the image intensity. Every distinct shape, except for the plane, corresponds to a unique 

shape index. For example, a shape index value of 1.00 indicates a spherical shape (e.g. lung nodule), and 0.75 indicates a 

cylindrical shape (e.g. vessel). 

    The volumetric shape index at voxel ),,( zyxp can be defined as: 
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where ( )pk1  and ( )pk 2  are the principal curvatures [5-6] at voxel p, which are defined as: 
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where ( )pK  and ( )pH  are the Gaussian and mean curvatures. 

    The calculation of the Gaussian and mean curvatures are based on the first and second fundamental forms of 

differential geometry. A practical approach for computing the first and second fundamental forms at each voxel p is to 

use the smoothed first and second partial derivatives of the image with respect to x, y, z, as described in [7].  

    Based on the definition, volumetric shape index directly characterizes the topological shape of an iso-surface in the 

vicinity of each voxel without explicitly calculating the iso-surface. This feature provides rich information for automated 

segmentation of anatomical structures or tumors (lesions) in medical images, where the region of interest is within an 

area of complicated anatomy and image intensities of different shapes are very similar to each other (such as the 

adjoining lung nodule). 

 

2.2 Combination of shape index feature into mean shift framework 

For each voxel, 3D spatial location, intensity and volumetric shape index features are concatenated in the joint spatial-

intensity-SI domain of dimension d=5.  Given n data points ix , i=1,…,n on a 5-dimensional space 5R , (where n is the 

total number of voxels in the image), the multivariate kernel is defined as the product of three radially symmetric 

kernels:  
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where 5,kc is a normalization constant which assures K(x) integrates to 1. 
sx is the spatial location, 

rx is the intensity 

and 
six is the shape index feature; )(xk is the common profile used in all the domains; sh , rh and sih are the kernel 

window size for spatial, intensity and shape index kernel function, respectively. The normal kernel is used in this paper, 
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⎞⎜⎝

⎛−= − 22/
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1
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By using the mean shift framework, the shape index feature can be combined with the intensity for object 

segmentation. The mean shift vector with three kernel windows (spatial, intensity and shape index kernel windows) can 

then be calculated as:  
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where ( ) ( )sksg '−= .  

    The joint spatial-intensity-shape index mean shift procedure estimates the modes (the densest regions) of the 

multivariate distribution underlying the feature space. The set of points that converge to the same mode is defined as the 

attraction basin.  Mean shift maps all the data samples to the local maxima of their corresponding attraction basin.  

 

2.3 Modified expectation-maximization considering spatial information  

The mode map ( iM ) obtained by the above joint spatial-intensity-shape index mean shift algorithm expresses the local 

structure of the data in a given region of the feature space. The number of modes depends on the kernel window size and 

the data structure. Although this number is a large compression of the initial data, sometime it is still larger than the 

targeted number of classes. Next, a mixture Gaussian model with expectation-maximization (EM) that considers the 

spatial information is applied to the mode map to merge neighboring modes. Based on the Bayesian probability theory, 

for each mode, the probability of the mode belonging to one class is defined as: 
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where, m is the total number of the modes in the mean shift mode map, ( )lil Mp ϕ  is lth Gaussian model with parameter 

),( lll σµφ =  (mean lµ  and standard deviation lσ ), and ( )( )
ilp ϕ  is a spatial prior probability.   

    Each mode is assigned to the Gaussian component that has the highest likelihood, ( )il
l

i Mpl ϕmaxarg* = . 

It is noted that the spatial prior probability ( )( )
ilp ϕ  plays an important role in Eq.(4). The spatial constraint can be 

imposed by a Markov Random Field (MRF) and Gibbs Random Field (MRF-GRF) [8].  

 

      
 

         
 

 

Fig.1. Two examples of nodule segmentation. 1st column: original 

sub-image; middle column: segmentation results based on 

mean shift without the shape feature; 3st column: 

segmentation results based on the proposed method. 

Fig.2. Volume overlap ratio based on the two 

different methods. The mean overlap ratio 

over the whole dataset for the proposed 

method is 0.80; and 0.71 for using MEM on 

the mean shift map without shape feature. 
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3. RESULTS 

The proposed segmentation algorithm has been evaluated with a database of clinical chest CT scans, containing 68 

nodules. The size of the nodules ranges between 5mm to 20mm in diameter. For comparison, a second experiment was 

performed, for which the MEM was applied on the mean shift mode map without the shape index feature. 

     Fig. 1 shows two examples of nodule segmentation based on the two different methods. It can be seen that, by 

combining the shape index feature into mean shift framework, the target lung nodule is properly delineated from the 

background lung parenchyma despite the presence of other non-target structures such as vessels.  

To give the overall performance of the proposed algorithm, each nodule is segmented and compared with a ground 

truth segmentation that was manually delineated by an experienced radiologist. An overlap ratio between the segmented 

nodule and the ground truth annotation is calculated. Fig. 2 shows the overlap ratios based on the proposed method with 

and without shape index feature, respectively. It is noted that, without shape index combined into mean shift framework, 

the mean overlap ratio for the whole dataset is 0.71. However, it has been increased to 0.80 by using the proposed 

method. This demonstrates the potential of the proposed method for accurate nodule segmentation. 

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED 

This paper proposes a novel approach to lesion segmentation. To our knowledge, this is the first paper to utilize the 

volumetric shape index in the mean-shift framework for image segmentation. By employing 5-dimensional JSIS feature, 

our method can successfully segment lesions adjacent to structures of similar intensity but different shape. In addition, 

we apply a modified expectation-maximization algorithm to the intensity mode map from the mean shift clustering to 

merge the neighboring regions (modes).  Qualitative and quantitative analysis of the segmentation results demonstrate 

the effectiveness of the proposed method. 

5. CONCLUSION 

Volumetric shape index is a very useful geometric feature. The joint spatial–intensity-shape feature provides rich 

information for the lesion segmentation. This is particularly useful when the region of interest is within an area of 

complicated anatomy for which the image intensities of the lesion is similar to its neighboring tissues but has a different 

shape (such as juxta-vascular nodules and juxta-pleural nodules). Both of visual inspection and quantitative measurement 

on a clinical dataset of thoracic CT scans confirm high performance of the proposed method. The approach can also be 

applied to lesion segmentation in other anatomies, such as polyps in the colon. 

6. CLAIMS ON FIRST-TIME SUBMISSION 

We herein confirm that this submission is our latest research work and we have not published and presented it elsewhere. 
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