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The Levenberg-Marquardt (LM) learning algorithm is a popular algo-
rithm for training neural networks; however, for large neural networks,
it becomes prohibitively expensive in terms of running time and memory
requirements. The most time-critical step of the algorithm is the calcula-
tion of the Gauss-Newton matrix, which is formed by multiplying two
large Jacobian matrices together. We propose a method that uses back-
propagation to reduce the time of this matrix-matrix multiplication. This
reduces the overall asymptotic running time of the LM algorithm by a
factor of the order of the number of output nodes in the neural network.

1 Introduction

A neural network is a smooth function �y = �y(�x, �w) that maps an input
column vector �x to an output column vector �y and where �w is a parameter
vector known as the weight vector.

For the specific input and output vectors �xp and �yp, corresponding to a

training pattern p, the Jacobian matrix of the neural network is defined to

be Jp =
∂�y

p

∂�w
, which is a matrix with element (i, j) equal to

∂(�y
p
)i

∂(�w) j . The Gauss-

Newton matrix is defined to be G =
∑

p Gp, where Gp = Jp
T Jp. We define

nw = dim(�w), no = dim(�y) and np as the number of training patterns. Then

Jp is a no × nw matrix, and so forming the matrix G by direct matrix mul-

tiplication and summation over all patterns would take 2nonpnw
2 floating

point operations (flops), ignoring lower power terms.
We define a technique that can calculate the G matrix in the faster time

of approximately 3npnw
2 flops (ignoring lower-power terms). This faster

algorithm is related to the method of Schraudolph (2002) and exploits a trick
that backpropagation (Werbos, 1974; Rumelhart, Hinton, & Williams, 1986)
can be used to quickly multiply an arbitrary column vector on the left by Jp

T .
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Forming the G matrix is important because it is central to the Levenberg-
Marquardt (LM) training algorithm (Levenberg, 1944; Marquardt, 1963).
The LM algorithm uses a weight update that requires the inverse of G. De-
tails are given by Bishop (1995). Since G ∈ ℜn

w
×n

w , the inversion of G will
take time O(nw

3), and since usually np ≫ nw, it turns out that the formation

of the matrix G is usually slower than its inversion. Hence, our algorithm is
reducing the asymptotic time of the most time-critical step of the LM algo-
rithm. Previous research to speed up the formation of G has concentrated
on parallel implementations (Suri, Deodhare, & Nagabhushan, 2002).

2 The Technique

Backpropagation is an algorithm to calculate the gradient
∂E

p

∂�w
very efficiently

for a given pattern p and error function, Ep. If we assume the computations

at the nodes of the network are dwarfed by those at the network weights,
then the backpropagation algorithm takes 3nw flops per pattern.

By the chain rule,
∂E

p

∂�w
= ∂�y

∂�w

T ∂E
p

∂�y
= Jp

T ∂E
p

∂�y
. Hence, we see that backpropa-

gation can be used to multiply a column vector,
∂E

p

∂�y
, very efficiently on the

left by the transposed Jacobian matrix. The choice of column vector here is

arbitrary; it does not have to specifically be
∂E

p

∂�y
. This is the trick we use to

create our fast algorithm for calculating G.
A standard method to calculate the Jacobian matrix is as follows. To

calculate the ith row of Jp, we use backpropagation to multiply Jp
T by the ith

column of I, an no × no identity matrix. Repeating this for all i ∈ {1, 2, . . . , no}
outputs will calculate the full Jp matrix in 3nonw flops.

The new method to calculate the Gp matrix is as follows. Since Gp = Jp
T Jp,

the ith column of Gp is equal to the product of the matrix Jp
T with the ith

column of Jp. Hence each column of Gp can be calculated using one pass of

backpropagation. Therefore, calculating the whole Gp matrix from a given

Jp matrix takes 3nw
2 flops.

In addition to the time taken to calculate Jp and Gp, we also need one

initial forward pass through the network, which will take 2nw flops. Hence,
the total flop count to calculate G, when summing over all np patterns, is

np

(

2nw + 3nonw + 3nw
2
)

. Since usually no ≤ √
nw, the most significant term

here is 3npnw
2 flops.

3 Discussion

Since the work of Schraudolph (2002) allows fast multiplication of the G
matrix by an arbitrary column vector, in time 7npnw flops, it would be

trivial to extend that work to form the full G matrix column by column.



Efficient Calculation of the Gauss-Newton Matrix in Neural Networks 609

This would give an asymptotically equivalent algorithm to ours, but in a
slower absolute flop count of 7npnw

2.

The calculation time of the direct multiplication method and our method
could both be halved further by exploiting the symmetry of G.

Our calculations indicate that while Strassen multiplication (Huss-
Lederman, Jacobson, Tsao, Turnbull, & Johnson, 1996) is not useful in calcu-
lating Gp for a single pattern, it does confer an asymptotic advantage when

calculating G for all patterns in a single outer product. However, doing so
is memory intensive and significantly more complicated to implement than
our method.

We have not considered hardware acceleration and caching issues, both
of which would likely favor conventional matrix multiplication over our
method.

4 Conclusion

We have presented a way to use backpropagation to reduce the time taken
to calculate the Gauss-Newton matrix in Levenberg-Marquardt down by a
factor proportional to no. This reduces the critical time step in implement-
ing the LM algorithm and so could be a useful tool to optimize any LM
implementation where no ≫ 1.
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