-

View metadata, citation and similar papers at core.ac.uk brought to you byj’f CORE

provided by City Research Online

Yan, S. & Ma, Q. (2010). QALE-FEM for modelling 3D overturning waves. International Journal for
Numerical Methods in Fluids, 63(6), pp. 743-768. doi: 10.1002/fld.2100

CITY UNIVERSITY City Research Online
LONDON

EST 1894

Original citation: Yan, S. & Ma, Q. (2010). QALE-FEM for modelling 3D overturning waves.
International Journal for Numerical Methods in Fluids, 63(6), pp. 743-768. doi: 10.1002/fld.2100

Permanent City Research Online URL.: http://openaccess.city.ac.uk/4299/

Copyright & reuse

City University London has developed City Research Online so that its users may access the
research outputs of City University London's staff. Copyright © and Moral Rights for this paper are
retained by the individual author(s) and/ or other copyright holders. All material in City Research
Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised
to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact
with the author(s) of this paper, please email the team at publications@city.ac.uk.


https://core.ac.uk/display/29017525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

QALE-FEM for modelling 3D overturning waves

By S. Yan and Q.W. Ma

School of Engineering and Mathematical Sciences, City University, London, EC1V OHB, UK

SUMMARY

A further development of the QALE-FEM (Quasi Arbary Lagrangian-Eulerian finite element method)
based on a fully nonlinear potential theory is preseimelis paper. This development enables the QALE-
FEM to deal with 3D (three dimensional) overtmgniwaves over complex seabeds, which have not been
considered since the method was devised by the authtiris @aper in their previous works [1-2]. In order
to tackle challenges associated with 3D overturniayes, two new numerical techniques are suggested.
They are the techniques for moving the mesh and fauleding the fluid velocity near overturning jets,
respectively. The developed method is validated loypeoing its numerical results with experimental data
and results from other numerical methods availablthénliterature. Good agreement is achieved. The
computational efficiency of this method is alsoéstigated for this kind of wave, which shows that the
QALE-FEM can be many times faster than other methods based on the same theory. Furthermore, 3D
overturning waves propagating over a non-symmetrieabed or multiple reefs are simulated using the

method. Some of these results have not limamd elsewhere to the best of our knowledge.

KEY WORDS: QALE-FEM; 3D overturning wavesspring analogy method; Complex seabed; Fully

nonlinear potential flow.
1. INTRODUCTION

Overturning waves are common physical phenomena isdhgparticularly in the nearshore area. The
destructive energy released by overturning waves may result in huge loads and cause severe damage. For
example, the overturning wave in the 2004 Greah&ta Tsunami caused collapse of numerous buildings
and death of many people [3]. In order to reducddbses due to such events,ny&fforts, e.g., building
submerged breakwaters/artificial reefs to protecthtbach [4], have been and are still being made. The

effectiveness of these efforts depends on a good uaddnsg of overturning waves. Due to the strong
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nonlinearity, the linear, second-order or higher order@pmrate solutions (see, for example, [5-7]) may not
be sufficient to describe overturning waves. This itgé8aan interest in fullyonlinear numerical simulation

of these waves. For this purpose, two classes ofemattical models have been employed, as summarised
below.

The first one is called the Navier-Stokes (NSpdél, in which the Navier-Stokes equation and the
continuity equation (or equivalent pressure Poiseguoation, see, [8]) together with proper boundary
conditions are solved using numerical methods. Theseerical methods may be split into two groups:
conventional mesh-based methods and meshless methods. The former mainly includes the finite volume
method [9-14], finite difference method [15] and Q{Rubic interpolated propagation) method [16]. The
latter covers SPH (Smoothed Pd#itlydrodynamic [17-19]), MPS (Mowrg Particle Semi-Implicit Method
[20-21]) and PFEM (Particle Finite Element Methi@&2]). However, no matter which method is used,
solving NS equations is always a time consuming, tpakticularly for 3D (three dimensional) cases. For
more reviews on the NS Model, readers rhayeferred to the above cited papers.

The second one is called FNPT Model, in which alhee’s equation for velocity potential with fully
nonlinear boundary conditions is dealt with. Compdcetthe NS Model, the number of variables as well as
complexity of the governing equations in this model is dramatically decreased. As a result, thddePT
needs much less computational resources than the &¢®INInd, therefore, is computationally much more
efficient. Although viscosity is ignored in the FNRTodel, comparison with expienental data ([1],[8],[23-

26]) has shown that the results obtained by usingntilmdel are sufficiently accurate for strong nonlinear
waves up to overturning. Other comparison betwienFNPT Model and the finite-volume-based NS
Model has also revealed that the testrom the former are closer taperimental data than those from the
latter in the cases with non-breaking overturning soliteayes [27-28]. The reason may be that the finite-
volume-based NS Model suffers from numerical diffusion, leading to energy loss over a long distance of
wave propagation, as indicated by Grilli, Guyenne & Dias [29]. Therefore, the FNPT Model is preferred
over the NS Model in terms of both computationaloégficy and accuracy, unless post-breaking waves, i.e.
after the overturning jet hits the free surface, are ohrancern. In addition, a coupled FNPT-NS model

has recently been developed and applied to simulater@éking waves [30-31]. In this kind of model, the
FNPT Model is used to simulate the pre-breaking wakide the NS Model continues the calculation in the

post-breaking stage.



This paper aims to present a method simulating 3Btanweng waves, excluding the post-breaking stage,
thus the FNPT model is chosen. The problems formdlay the FNPT model are usually solved by a time
marching procedure. In this procedure, the key im$ solve a boundary value problem (BVP) by using a
numerical method, e.g. BEM (Boundary Element method) or FEM (Finite Element method). A brief review
on this model for simulating nonlinear water waveshait overturning has been given by Ma & Yan [1].
Only the references related to overturning waveslmmussed here. The application of the FNPT Model to
numerically model overturning waves can be tracacklto Longuet-Higgins & Cokelet [32]. The earlier
researchers focused on 2D problems with a relativetplsi computational domain, i.e. in deep water [33]
and/or in a spatially periodic domain [34-35]. Howeva the real sea, the seabed effects could be very
evident and the spatially periodic problems are rare to $edater 2D studies, these limitations on the fluid
domain and on the water depth were removed ([3B-47The waves in these applications include
propagating oscillating waves (see, for example, [4%] @7]), solitary waves (seéor instance, [40] and
[42]) and wave groups ([41] and [46]). Apart frahem, Zhao & Faltinsen [48] studied overturning waves
initiated by water entry of 2D bodies and Grilli & Sabranya [23] investigated 2D overturning waves
generated by moving boundaries. @iZerturning waves are not the focus of this paper. Reader may be
referred to the cited papers abdoemore literature about them.

Compared to 2D overturning waves, numerical sitmhaof 3D overturning waves requires much more
computational resource and sophisticated techniques.tahes, the applications of the FNPT Model to 3D
overturning waves are still rare. >X& Yue [49-50] modelled 3D ovturning Stokes waves in space-
periodic numerical tank. In their model, the wavesgaeerated by specifying pressure distributions on the
free surface. This model has been extended by Xuael M & Yue [51] to simulate crescent waves in
water of infinite depth, which are generated by spewfynitial wave elevation and the velocity potential on
the free surface based on a linear theagain in a spatially periodic domain. Grilli, Guyenne & Dias [29]
developed another FNPT-based model for 3D overturninggsvan water of finite depth. Guyenne & Grilli
[52] followed the work and investigad the effect of seabeds on overturngodjtary waves. By using this
model, Grilli, Vogelmann & Watts [53] simulated 3Bunami waves generated by underwater landslides and
Brandini & Grilli [54] modelled 3D overturning freak was over a flat seabed. Although these applications
have shown a good applicability of thisodel, its computational efficiency needs to be improved. For this

purpose, Fochesato & Dias [55] introduced a fast multipole algorithm (FMA), referred as fast BEM method.



The fast BEM method has successfully modelled 3D overturning solitary waves [55] and freak waves [56].
Their numerical tests indicated ththe fast BEM method can be 6 times faster than the conventional BEM
by Grilli, Guyenne & Dias [29]. It could be considered as the fastest method at the time for modelling 3D
overturning waves. Although these methods shaosg l@anitation on the wave generation and seabed
geometries than those models based on infinite vekgieth and periodical domain, it has not been used to
investigate overturning of propagating oscillating wawekich are more popular than solitary waves or
freak waves in reality. In addition, the seabed geomin their applications is symmetrical about the
central longitudinal vertical plane, a special caseeal seabed geometry. More investigations on other
types of waves and non-symmetrical seabed are interesting.

In the studies discussed above, the BVP is solvedsing the BEM, either linear/low-order BEM (see,
for instance, [45]), higher-order BEM (see, for examf#8]) or the fast BEM ([55-56]). On the other hand,
the FEM has been developed by Wu & Eatock Tajg@} and Ma, Wu & Eatock Taylor [58-59] to solve
fully nonlinear wave problems. As pointed outthgm, the FEM requires less memory and is therefore
computationally more efficient for fully nonlinear wes than the BEM, which will be confirmed again in
this paper. However, for the FEM, a good computational mesh (good element shapes and reasonable node
distribution), covering the whole fluid domain, is re®gi and needs to be updated at every time step in
order to conform to the motion of the free surfacer the problems where the free surface is always single-
valued, i.e., without wave overturning, one may useuwtred mesh (for example, [58-59]), which needs a
little CPU time to be updated or regenerated. H@wneonce overturning wavexcur, an unstructured
mesh (at least near the overturning jet) is necedsaagchieve accurate results. Repeatedly regenerating
such a mesh may take a major part of CPU time and so make the overall simulation very slow. To reduce
the CPU time spent on regenerating a suitable meghym@ay use a hybrid structured-unstructured mesh,
which is unstructured near the overturning jet andctirad in the other region, as adopted by Turnbull,
Borthwick & Eatock Taylor [60] and Heinze [61] f®D wave-structure intaction problems without
overturning. But this technique still needs to regateethe unstructured part and needs to know where the
overturning occurs a priori. Apart from the challenge @ssed with the mesh, it is crucial to use a robust
method to evaluate the fluid velocities on the freeamgrfoecause they are neetiedpdate the information
on the free surface at every time step. Several mefbodkis purpose have been developed in the FEM.

They mainly include the direct method (solving the velocity in a similar way to the velocity potential)



developed by Wu & Eatock Taylor [57] and followed by Wang & Wu [62] , Wang, Wu & Drake [63], the
finite difference method [64-65], the three-point metisadgested by Ma, Wu & Eatock Taylor [58] (see,
also [66]) and the cubic spline method suggeste&iiyam, Sannasiraj & Sundra [67]. Only the direct
method and the three-point method have been empfoy&D nonlinear water waves in those papers. The
three-point method has been proved more robust andadedhan the former. However, this method is
originally developed for meshes with special strugsuii.e., at least two nodes lying on the vertical line
through each free-surface node, which is hard to satibBn using unstructured meshes. Perhaps due to
these two challenges, i.e., regenerating arbitrary unstructured meshes and evaluating the fluid velocities, the
conventional FEM has not been demonstrated to modeluomag waves, even in 2D cases. Ma and Yan
[1] have recently devised a new method called QAEM (Quasi Arbitrary Lagrangian-Eulerian Finite
Element Method). In this method the complex unstinectumesh is generated only once at the beginning of
the calculation and is moved at other time stepsotdorm to motions of boundaries by using a novel and
robust spring analogy method purpose-developed fdaenmaaves. This feature allows one to use an
unstructured mesh with any degree of complexityheut the need of regenerating it. Furthermore, a
velocity calculation method suitable for the arbitrary moving unstructured meshes is also developed based on
the three-point method. The QALE-FEM has been sgfully used to simulataonlinear waves and its
interactions with complicated seabeds ([1], [26], [68]) and free responses of floating bodies to steep waves
([2], [69-70]). Ma & Yan [1] compared the QALE-FEM with the conventional FEM in terms of
computational efficiency and accuracy in the cases foogie bars on the seabed. They concluded that the
QALE-FEM may require less than 15% of the CPU tiiman the conventional FENb achieve the same
level of accuracy.

In this paper, the QALE-FEM is extended to sinell8D overturning waves before the overturning jet
hits the free surface ahead of the wave. In ordedkle the challenges associated with overturning waves,
two new numerical techniques are developed. Thedaede special techniques for moving mesh and for
evaluating the fluid velocity in the cases for 3D owsring waves. The accuracy of the QALE-FEM with
the newly developed techniques is studied by comgahe numerical results with experimental data and
other results available in the public domain. Googt@gent is achieved. The convergent property and the
computational efficiency are also investigatedas®I on these, numerical investigations on solitary waves

over a 3D non-symmetrical sloping seabed and transient oscillating waves propagating over artificial reefs,



which have not been made before te iest of our knowledge, are presented.

2. MATHEMATICAL MODEL
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Fig. 1. Sketch of fluid domain
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In this paper, the computational domain is chosen as a rectangular tank. Two types of methods are used to
generate nonlinear waves. The first one is to utdigpéston or paddle wavemaker which is mounted at the
left end of the tank (see Fig. 1The second one is to specify the initial condition for the position of and the
velocity potential on the free surface. In this case, the wavemaker shown in Fig. 1 is treated as a fixed
boundary. Reflective boundary conditions are impldetton the lateral boundaries while the absorbing
boundary condition is applied at the right end of ek unless mentioned otherwise. For the absorbing
boundary condition, a damping zone with a Sommerfelditionds applied, as sketched in Fig. 1. Details
can be found in [58]. Arbitrary forms of seabed gettsynmay appear. A Cartesian coordinate system is
adopted with thexy on the mean free surface, e coinciding with the central longitudinal vertical plane
of the tank and the-axis being positive upwards.

Similar to the usual formulation for thENPT Model, the velocity potentialg() satisfies Laplace’s

equation
V=0 (1)
in the fluid domain. On the free surface= {(x,y,t), the velocity potential satisfies the kinematic and

dynamic conditions in the following Lagrangian form,

Dx_0¢ Dy _3p Dz _op
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WhereF is the substantial (or total timelerivative following fluid particlesand g is the gravitational
4

acceleration. In Eqg. (3), the atnpberic pressure has been taken as z€o.all rigid boundaries, such as

the wavemaker, the velocity potential satisfies

i
PRl ON (4)

where U(t) andn are the velocity and the outward unit normal vector of the rigid boundaries, respectively.

The problem described by Egs. (1) to (4) iselioy using a time step maing procedure. At each time
step, the BVP for the velocity potesitis solved by the FEM. The details about the FEM formulation have

been described in our previous publicatifhhss8] and will not be repeated here.

3. SUMMARY OF THE QALE-FEM

As indicated in the Introduction, the QALE-FEM devised by Ma & Yan [1] will be further developed in
this paper to deal with 3D overturning wave$his method for problems about waves without floating
bodies includes two key elements in comparison withconventional FEM method presented in [58]: (1)
the scheme for moving mesh and (2) the method for estignthe fluid velocity on the free surface. All the
elements have been described in [Eppr completeness, the two elements presented in our previous related

papers will be summarised in the next twb-sections before presenting new developments.

3.1. Scheme for moving mesh

In the QALE-FEM, the computational mesh is getetaonly once at the beginning of the calculation
and is moved at other time steps to conform to moving bounddiesinitial mesh used is unstructured and
is generated using an in-house mesh generator bast mixed Delaunay triangulation and the advancing
front technique (see, for instance, [71]jo reflect the complexity of the fluid domain, one may assign a
suitable representative mesh siz&) (on the free surface to the mesh generator, which indicates the
characteristic distance between two connected nodes. For exdmplajld be equal to approximately one
thirtieth of a wavelength. It should be noted ttet specified mesh sizesay be different in the-direction
(dx) and they-direction ¢y). In such a cas@s = min(dx, dy). The mesh generator also needs a number of
element layersN;) in the vertical direction, which is used éwaluate the vertical representative mesh size

using an exponential function based formulation suggested by Wu and Eatock Taylor [57]. Adthandh



N, are not precisely equal to the real mesh size and the real number of layers (actually the number of layers
may be different at different positions), it largely irates how fine the mesh is. It is noted that the QALE-
FEM can also accept meshes from other mesh generators.

For moving the mesh at every time step, a novel methodology is suggested and adopted, in which interior
nodes and boundary nodes are separately considered; and the nodes on the free surface and on rigid
boundaries are treated differently. Nodes on the dtgéace are further split into two groups: those on
waterlines and those not on waterlines (inner-free-surface nodes). Different methods are employed for
moving different groups of nodes.

To move the interior nodes which do not lie on boundaries, a spring analogy method is used. In this
method, nodes are considered to be connected by spridghe whole mesh isah deformed like a spring
system. Specifically, the nodal displacement is determined by

N, N,
AEzE@@ ;@ (5)
J= J=

where A7; is the displacement of Node k; is the spring stiffness an; is the number of nodes that are

connected to Node As pointed out by Ma & Yan [1], the spring analogy method was originally adopted to
cope with aerodynamic problems without the free surfate.apply it to the problems associated with a
large deformation of the free surface, the authorsisfghper have considerably modified the method by

proposing a robust and distinctive method for computiegspring stiffness:

_ 7.0y figybs
ky = kW EP”, (6)
in whichk; is the spring stiffness anq.? is given by

1
0
k=2 (7)

i
wherel; is the distance between Nodeand;. ¥/ and P" are the correction functions associated with the
free surface and the moving rigid boundaries, respecti¥#ély.is taken as 1 in the cases without floating

bodies [1]. ¥ ” is defined as

@k _ e;/f[l+(z[+z/)/2d] ’ (8)



wherez; andz; are the vertical coordinates of Nodeand.J; d is the water depth; angd, is a coefficient that

should be assigned a larger value if the springs are egbairbe stiffer on the free surface. Numerical tests

indicate thaty , =1.7 is suitable.

The positions of nodes on the freerface and waterlines are determined by physical boundary conditions,
i.e., following the fluid particles at most time steps. The nodes moved in this way may become too close to
or too far from each other. To prevent this from feappg, these nodes are relocated at a certain frequency,
e.g., once every 40 time steps. Wligning so, the nodes on the watezBrare re-distributed by adopting a

principle for a self-adaptive mesh, i.the weighted arc-segment lengths satisfy

@ As, =C,, 9
wherew is a weight function and can be taken ad\d, the arc-segment length between two successive

nodes and’; a constant.

In order to relocate the inner-free-surface nodes, éineyfirst moved using the spring analogy method in
the projected plane of the free surface, resulting in new coordinatedy; and then the elevations of the
free surface corresponding to the new coordinates are &dloy an interpolating method. In order to take
into account of the local gradient of the free surféosvever, the spring stiffness for moving the nodes in

andy- directions is determined, respectively, by:

2 2
klg.*) =12‘/1+ (%j andkiﬁy) =i2‘f1+ (6_{} : (10)
I Ox I; oy

where kéf‘) and klgy) are the spring stiffness for moving the free surface nodes and y- directions,

respectively; 66_5 andg—g the local slopes of the free surface ie ttorresponding directions. It is noted
x Y

that if a floating body is involved, Eq. (10) should be changed to the one given by Ma & Yan [2].

3.2. Calculation of fluid velocity on the free surface

The mesh used in the QALE-FEM is arbitrarily unstructured and moves during the calculation. An
effective method to calculate the fluid velocity on ftee surface under this conditisras developed in [1].

In this method, the velocity at a noflwith neighboury, (k=1,2,3, ...... ,m) on the free surface is split into

normal and tangential components. The normal componentdf the velocity is determined by a three-



point finite difference scheme:

‘7,1:{ 2 (2h11+h'2+1j¢,—[—2 +ij¢,l+ 2 ( i jd” (1)
3h11 h[l+h12 2 3h12 h]l 3h12 h[l+h12

where is the unit normal vector of the free surface at the nbidandi2 represent the two points selected

along the normal line};; andh;; are the distancdsetween’ and// and betweelid/ andi2, respectively and

¢, , ¢,, and¢,, denote the velocity potentials at the node and the two paiptsind ¢,,, are found by a
moving least square method [26]. After the normal ponent of the velocity is determined, the tangential
components of the velocity are calculated using a legqisare method, in which each of the equations is
given by

Ve, 'Zuk +V, 'lle :izjk Vg—v 'ZIJk (k=1,2,3, ...... ), (12)

y n

wherel}k is the unit vector from Nodé to NodeJ;; v, andv_ represent the velocity componentszin
and 7, directions, respectivelyr, and7, can be any two orthogonal unit vectors in the tangential plane of

the free surface at Node In this paper, they are determined fy=¢ xnandz, =rnxz, if ‘éy xﬁ‘ #0;

otherwise 7, =ixé , 7, =7,xii, wheree, and ¢, are the unit vectors in the and y-directions,

respectively. Obviously, for 2D cases, this methatiessame as that described by Ma & Yan [1].

4. NUMERICAL TECHNIQUE FOR MOVING MESH ASSOCIATED WITH 3D

OVERTURNING WAVES

The new developments in this paper for dealinth wroblems concerning 3D overturning waves will
be presented in the next two sections. They maiahtain the numerical techniques for moving the mesh
and for computing the fluid velocity on the free surfaden overturning occurs. The first one is presented
in this section.

The basic strategy and principle to move the nastsimilar to that summarised above. Nevertheless,
special consideration is devoted to the mesh rmearturning jets when moving interior nodes and

redistributing nodes on the free surface, whiatlissussed in the following two subsections.

10



Overturning jet

Fig. 2 lllustration of an overturning jet and Jet Nodes

For clarity, special nodes and elements are named before moving on. If a node is on the free surface
and near or at the tip of an overturning jet, it is calledNode. One of them is shown in Fig. 2 as a solid
circle. In addition, if an element has one facetlom free surface, the face is called Outer Face and the

element is called Free Surface Element.

4.1. Moving interior nodes

In the cases involving 3D overturning waves, the interior nodes are moved by the spring analogy
method summarised above. Nevertheless, the inteoides near Jet Nodes demand special care so as to
result in elements of good qualityror this purpose, the stiffness oktBprings in this area is assigned a
relatively larger value. To do s&” in Eq. (6) is changed to

s Nz, z; 2d
p s :eh[ i+, ) ](1+7_jet5x§y5z) (13)
where y,, is a coefficient which is non-zero only ifettfree surface near the node concerned becomes
vertical or overturningy,,0, and¢é, are correction functions i, y- andz-direction, respectively. They
are all in a similar form and one of them is given by

— Jet Jjet
5 :{1 d,|D/ d, <D/ 14

o d, >DM’
in which subscripk can be replaced byorz to give s, ando. . d, (d,or d_) is the distance between the
centre of Spring-j and the nearest Jet Node in (y- or z-) direction; D/ , D) andD/* indicate the
maximum distance in different directions (Fig.. 2)According to the numerical tests so far,, =

0.5,D/“ = D) =10ds and D/ = 05H are appropriate, wheré is the wave height.

Obviously, the above method works only liftae Jet Nodes are knownk-or 3D overturning waves,

there may be many Jet Nodes. To find them, thewiong parameter is calculated for each free surface node,

11



e.g., Node,

Cons = MING, 71 ) J,K=123NE,, J#K (15)

min,i
where subscripts and K denote the element numbel&,,; are the total number of all the Free Surface

Elements connected to Nodei, is the outward unit normal vecsof the Outer Face of a elemein. this

paper, ifc < 0.5, Nods is considered as a Jet Node.

min 1i

J 67
Fig. 3 Facing angle in a tetrahedron element

Furthermore, when a wave is overturning, the free surface near the overturning jet may have an extremely
large deformation (Fig. 2) which makes the element&ess distort than in earlier applications ([1], [68-
70]). In order to preserve the element shape during the mesh moving procedure, the ability of resisting
torsion of elements needs to be enhanced in suehean To do so, one may attach torsional springs to the
vertexes of every element (referred as the torsional spring analogy method [72]) or introduce additional
linear springs that resist the motion of an elemenexddwards its opposite fa¢eeferred as the ball-vertex
spring analogy method [73]). However, the fotcansformation and displacement conversion in the
torsional spring analogy method and the additionahgprin the ball-vertex spring analogy method consume
extra computational resources and therefore reducesfflogency. Alternatively,this aim can also be
achieved by modifying the linear spring stiffness, considering the angular or volume changes of the
elements, which needs less computational cost. ekample, Zeng & Ethier [74] developed a 3D semi-
torsional spring analogy method where the facing angéaci spring is taken into account when calculating

the spring stiffness. This idea is extended here bgdotting coefficients related to the quality of elements,

i.e., thek] in Eq. (7) and¥” in Eq.(6) are replaced by

R |
K==+a _ 16
Y l;. ,nz::lsin2 o7 (16)
v =gl (17)
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whereNE; is the total number of elements sharing spr%gﬁ;{ is the angle between two faces of i

element as shown in Fig. 8,is an coefficient. ¢’ is the minimum value of the quality indexes of all the

min
elements sharing Spririg. The quality index for a single elemenis defined as

B
9. Rce

: (18)

where R, andR, are the inradius and circumradius of the @atnrespectively. This quality index is based

on the fact that the best tetrahedron element is the regular tetrahedron whose circumradius is three times of
the inradius (see, for example, [26] and [75]). The range of its value is from 0 to 1. It equals to 1 for a
regular tetrahedron and 0 for an element whose 4 noddscated in one plane. A similar correction to Eq.

(17) was also made for problems associated with floating bodies by Ma & Yan [2].

According to our numerical investigations [26], the coefficieig chosen by

o= {0 dmin > 90 (19)

1 9min < 90
where ¢ is a control parameter equal to 0.02;, is the minimum value of the quality indexes of all

elements in the whole computational domain. It casden from Eqgs. (16) and (19) that when the worst

NE;;

element has a quality index less than 0.02, the @mz—eu becomes effective. In addition, dividing
masin© g’

g’ in Eq. (17) renders springs stronger when theiyuaidex is reduced. All these help enhance the

quality of elements.

4.2. Redistributing inner free surface nodes

As discussed by Yan & Ma ([2] and [69(he method to redistribute free-surface nodes outlined in
section 3.1 can only deal with problems where the dteface can be expressedaasingle-valued function
of x andy, e.g., in cases without overturning waves. Tha@s of this paper have developed an approach
to redistribute nodes on a multi-valued body surface [2}e Sdme idea will be used here to redistribute the
inner free surface nodes when overturning occurs. This approach is based on a local coordinate system
formed by the local tangential lines and normal line atrtbde concerned. In this local coordinate system,
the surface is always single-valued, i.e., there ig onk intersecting point between the free surface and a

line parallel to the local normal line (and, of course, pedticular to the local tangential lines). A node, e.g.,

13



i, is firstly moved in the tangentiplane formed by tangential lines by
N, N,
Ariz = ZkijAfﬁ,- Zkij (20)
j=1 1

where A7;; represents the displacement of Nade the tangential plane. After that, a new position of the

nodes on the free surface is found by interpolation énldbal coordinate system. In order to consider the

effect of the overturning jet, the spring stiffsefor moving inner-free-surface nodes is assigned as

1
kij = 1_2 (1+ y(/eté‘xé‘ydz) ’ (21)

ij
wherey ,,,6,,6, andd, are the same as those in Eq. (18)is noted that the effect of the local gradient

of the free surface involved in Eg. (10) are implicitly taken into account here because of the use of the local

coordinate system.

5. NUMERICAL TECHNIQUE FOR CALCULATING FLUID VELOCITY NEAR

OVERTURNING JETS

Free surfa

(@) (b)

Fig. 4 Elements near the overturning(®olid circle: free surface nodes; Hollowate: interior nodes; Solid Triangles:
point/! or 12; Dashed circle: influence domain Bffor estimating the velocity potential at this point)

The principle for calculating the fluidelocity on the free surface is slar to that summarised in §3.2, in
which the fluid velocity is split into the normal atite tangential components aglifferent schemes are used

to calculate different velocity components. The aacy of the normal velocity component in Eqg. (11)
depends on the estimation @f, and ¢,,, for which a moving least square method is usédr a node near

the overturning jet, interior nodes around Poiiitand/2 may be only few and unevenly distributed about

the normal line, as shown in Fig. 4(a). Thigmeles the accuracy of the velocity calculatidm.order to
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tackle the problem, a special treatment is applied in such a situation, which is similar to that for the nodes
near the rigid boundary suggested by Ma & Yan [1]. ThdEgs. (11) and (12) are still used, but the normal

vector 7 is replaced by another unit vectar(Fig. 4b). Accordingly, instead of tangential vectorsnd
7,, two other vectorsd and 7,,) perpendicular to;, are employed.

To describe how to defing, , take Node as an example (Fig. 4b). It lies on the free surface and the
interior nodes/}, J,, J;, ... Jy are connected with it. The angle, betweenn and each vector of, —x T
(K=1,2,..M) is estimated by

cosa, =ii- (¥~ %, )/|(% -%,)| - (22a)
If Jkmin is the interior node whose angleds ., = mi{e,,, a,5,...,2,,,} , 7, is then chosen to pass the
node and estimated by

(22b)

n" = (xl _x‘]k’min)/‘xi _xJKmin '

After determinings, , 7, and 7,, are given in the similar way as far, and 7 in Eq. (12), ie,

ro

#0, otherwise 7,, =7, xé,, 7, =7, x#,. To determine the two

rx ry r

7,26, xii,and 7, =i, x 7, if [, xii,
points along the new vectar. , the values of;; andh;; in Eq. (11) are assigned to be 0.6 times the distance

between Nodeéand Node/xmin. It can be understood that after ajpd the special treatment, the two points
11 andl2 should have more interior nodes in their infloe domain for estimating the velocity potential at

this point, more evenly distributing about the liag than those in Fig. 4a and therefore the accuracy of the

velocity is improved.

6. VALIDATION AND CONVENGENCE INVESTIGATION

In this section, the QALE-FEM is validated dymparing its numerical predictions with published results
obtained by using other numerical methods or experimeitae to the fact that almost all the experiments
regarding overturning waves are two-dimensional, some&&as will be considered together with 3D cases.
For a 2D case, the width of the tank is takendaar?l all parameters do not vary algndirection, making it
ay-independent 3D problem in order to use the 3D QAEBAF Effort is also devoted to investigations on
the convergent properties of this method. For alldhses presented below, tharameters with a length

scale are nondimensionalised by the water déptid other parameters pyandd, such as
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t—>7dlg andw— wygld ,

wherer is thenondimensionalisefbrm of the time.

6.1. Selection of time steps
In order to achieve convergent results, the timersiggi be properly selected. It can be understood that

the required time stepAr ) is a function of the characteristic minimum mesh siz& () and the
characteristic particle velocity{, ). It may be determined by,

dSmin
At = C, U— ) (23)

c

which is similar to the well-known Courant condition, whereis a coefficient less than 1. In the correction
function for spring stiffness in Eq. (13), the maximum value of the fe¥m,, 5,5 ,5, is 1+ 7 o » OCCUITiNG

near the overturning jets, and its minimum value is 1, occuritingther areas awalyom the overturning

jets. In additionds;, should occur near the overturning jets. Therefore, it may stand to reasals that

min

should be related to the representative mesh diyeufd can be estimated I ., = ds /(L +y ).

min
For periodic wavesls can be correlated td/ N, , wherel is the characteristic wavelength estimated by

2 - :
/1:77[ and w® = ktanh{) for a specified wave frequenay , and N,, is the averaged number of

elements in one wavelength. In such a situatigrmay be chosen ds, = A/T (the celerity of a linear

wave) and thus Eq. (23) becomes

Ar=—G T (24)
1+7_/.E,N

m

For solitary waves which do not haadinite wavelength, one may uéé =1 and obtain

d
Ar=_S% (25)
l+ ]/jet

The last equation is similar to that in [29] and [4@] determining the time step when simulating solitary
waves by using the BEM.

According to our numerical investigations [2&jr regular water waves without overturning, where
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7« =0, the maximum time step for the QALEEM to achieve acceptable results7ig 64 for strongly

nonlinear waves (wave steepness up to 0.1)/&@ifor linear waves if the initial mesh size is abdut30.

Based on this and Eq. (24), is not necessarily less than 0.45 for waves without overturning. However, the

value ofc, may not be suitable for the cases with overturning.

2 T T
QALE-FEM
2D BEM(Grilli et al [29])

"0

7 8 9 10 1 12

Fig. 5 Comparison of the wave profiles from the QALE-FEM #re BEM for 2D solitary wave at different instants (a:
T =7.55, b:7 =~8.16,H=0.6, slope: 1/15)

0.5 1 1

To test what value of, is suitable for the QALE-FEM to modelerturning waves, the case studied by

Grilli, Svendsen & Subramanya [42] is considered het@ch was also used to validate simulation of 3D
overturning waves by Grilli, Guyenne & Dias [29]. this case, the length and width of the tank are 18 and
2, respectively. A seabed with the slope of 1:15-dlrection starts fromy,=5.4and truncated at=18. As

in the above two references, thditeoy wave is initialized by usindanaka’s method [76] which gives
‘exact’ solution for the wave profile, the velocity poti@al and the fluid velocity on the free surface. The
initial wave height /) is 0.6 and the initial crest is locatedvab.5. ds is selected as 0.05 in bothandy-

directions anav,=12. The numerical results by the QALE-FEM are firstly compared with those obtained by

Grilli, Guyenne & Dias [29] to ensure the computatiorbe sufficiently accurate. In this comparison,is

taken as 0.45 (time step is 0.015). The free surface prafiléwo different instants are plotted in Fig. 5.
Curve (a) corresponds to the state that the tangentetidin of the front face of the crest tends to become
vertical. Curve (b) shows the results after the awveibg wave occurs. At both instants, the QALE-FEM
leads to almost the same results as the BEM model.

1.8

1.6

1.4F

1.2

1+

| | | | | | | | L 70
10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12
Fig. 6 Free surface profiles @t~ 8.16 obtained by using different time stefsQ.6, slope: 1/15)
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The cases with different values of are then considered. For this pugabey are chosen as 0.375, 0.45,

0.5 and 0.6, respectively. The wave profiles at8.16 obtained by using these valuescpére plotted in
Fig. 6. Itis found that the differences between allciees shown in this figure are negligible. However, the
computation withc, =0.6 quickly ceases after this instant. This indicatesdjstiould not be larger than 0.5
and not necessarily less than 0.375 for simulating orrérng waves in this case by using the QALE-FEM.

This range of the, value for the present method is not much different from (0.45 ~0.5) that suggested by

Grilli, Guyenne & Dias [29] for the BEM.

6.2. Numerical validation

In this sub-section, the method will be validated by using both 2D and 3D solitary waves in different

configurations. 2D cases are first considefedyhich experimental results are available.

6.2.1. Overturning of 2D solitary waves over seabeds with different geometries

A preliminary comparison with 2Besults of Grilli, Guyenne & Dias [29] has been presented in the

above sub-section to investigate the proper valug ofvhich showed a good agreement. Two other cases

are presented here to further show the accuracy of the QALE-FEM.

1.66], 1.63 Absorbing
az boundaw

0_424I / \’\ . I B |
X
Step 0.84

€ N
< P

6.45
Fig. 7 Sketch of the configuration for the case with a submerged step

In the first case, a 2D solitary wave propagating @veubmerged step is considered. The configuration
is sketched in Fig. 7, in which P2, P3 and P4 areevgmuges. The similar set-up has been used by Yasuda
et al [25] in their experiment, whose results hawe used by many researchers for the purpose of
validation (e.g. Helluyer al [27] and Devrardet al [28]).  In our study, the parameters are the same as in
Devrard,et al [28] but they are here nondimensionalised by the water depth, which is 0.31m in that reference.
The left side of the tank is locatedxat0. The submerged step with a height of 0.848 starts fped?.9.
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The solitary wave is generated by specifying the initial position of and the velocity potential on the free
surface given by using Tanaka's method [76] with the initial crest locatedba15 and the wave heighf

being 0.424. An absorbing boundary conditioapplied at the right side of the tans is taken as 0.05 on

the free surface andl. is specified as 1z, in this case is taken as 0.5. Fig. 8 shows the wave histories

recorded at wave gauges P2 and F8r the purpose of comparison, the experimental data from Yasuda,
al [25] and the numerical results from the BEM by Devrard/ [28] are plotted together. From this figure,
it is observed that the results from the QALE-FEMeagwell with those from the BEM method, and that

both numerical results are very close to the experimental data.

: , . 0.5 !
—— QALE-FEM —— QALE-FEM
0.6 <+ BEM(Dewvard, et al[28]) J + BEM(Deward, et al[28])
+ Experiment (Yasuda, et al[25]) 0.4+ + Experiment (Yasuda, et al[25])
0.5F
0.4t 0.3r
+
0.3F j 025
+
02t i o
0.1¢
0.1+
0 I I | T 0 4 et et
0 2 4 6 8 0 2
(a) gauge P2 (b) gauge P3

Fig. 8 Wave elevation recorded by different gaudss0(424, step height: 0.848)

135

QALE-FEM
13 + Experimental (Kimmoun et al [77]) 7

o BEM (Grilli et al [44])
1.25+ B

1.2t

1.15¢

11r

1.05¢

1t

0.95+

0.9 | | | | |
10.7 10.8 10.9 11 111 11.2 11.3

Fig. 9 Free surface profiles reded at different time step&/€0.135)

In the second case, the solitary wave is genetataaiflap paddle wavemaker with the motion angle and
angular velocities specified. The saoa@se in the experiment by Kimmouwarnger & Zucchini [77] is used
as described by Grillier al [44]. In our computation, the wavemaker motion parameters are taken from
Grilli, et al [44]. By using these parameters, thegheiof the generated solitary wave is abdg0.135. In

this case, the numerical tank has the length of 18 anditith of 2. A composite sloping seabed starts from
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x,=6.45. The slope of the seabed are 1/6 frenwyto x=x,+2 but becomes 1/15 whehx,+2. ds is 0.04 and

the time step is determined again by using=0.5. Fig. 9 shows the comparison of free surface profiles near

the overturning jet calculated by the QALE-FEM with the experimental data from Kimmoun, Barnger &
Zucchini [77] and the numerical results by the BEM from Grilial [44]. A similar agreement with
numerical results by the BEM and the experimental tathe case shown ind:B is observed from this

figure.
6.2.2.0verturning of a solitary wave over a 3D symmetrical seabed

Experiments on 3D overturning solitary waves hae¢ been found. The numerical results from
Grilli, Guyenne & Dias [29] for solitary waves propagatiover a 3D sloping ridge are used here to validate
our method. The 3D ridge is expressed as

z=s, (x —xy) sech(ky) , (30)
wherex, is the location where the sloping seabed starts,the slope at=0 and secifk.y) is the transverse
modulation of the slope alongdirection depending on the coefficieitwhich is constant with respect o
in [29]. That means that the seabed geometry in those applications is symmetricak@bout this case,
the length and the width of the tank are 19 and 8, respectively. The ridge stans=B®25. 5. is 1/15 and
k. is taken as 0.25. The solitary wasegenerated by using the same method as for Fig. 8. The wave height
is 0.6 with the initial crest located &t5.7. ds is specified as 0.07 for generating the mesh and the value of

c,is 0.5 for determining the time step.

Figs.10 and 11 show the free surface profiles on the side walis4) and in the central plang=0) of
the tank at different instants. For this casdlliGGuyenne & Dias [29] gave the results up#e=8.57 and
presented the corresponding free surface profiles=a8.25 andr =8.57. Guyenne & Grilli [52] used a
finer grid and obtained results up t0~9.14. We took the results at=8.25 andr =8.57 from Girilli,
Guyenne & Dias [29] and those at=7.89 andr =8.827 from Guyenne & Grilli [52] for the comparison.
Obviously, the results shown in Fig.10, well before oveihg, are almost the same as those from the papers
using the BEM. For the free surface profiles=@ in Fig. 11, the Curve (c) dn(d) show slight differences
near the overturning jet. In order to ays& the accuracy, the relative errors in magsand energye() are

estimated by using the same method as in Grilli, GuyénbBéas [29]. The relative errors in mass at these
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two time steps are 0.09% and 0.2%, respectively amadiresponding relative errors in energy are 0.16%
and 0.43%, respectively. All the errors can be considered as very small.

25

QALE-FEM

2L o BEM(Grilli et al [29]) il
+ BEM (Guyenne et al [52]) a b c d

0.5F B

T T T T | | | | 0
8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

Fig. 10 Free surface profik y=+ 4 (H=0.6;s5.=1/15;k, =0.25;ds=0.07; Curve ar ~7.89; b:7 =8.25; c:7 =8.57;
d: 7 =8.827; thick solid line represents the seabed geometry)

2.5

T
QALE-FEM

o BEM (Grilli et al [29])
+ BEM (Guyenne et al [52]) a b c

0.5F B

| | | | | | | | 20
8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

Fig. 11 Free surface profikg y=0 (H=0.6;s.=1/15;k. =0.25;ds=0.07; Curve ar =7.89; b:7 =8.25; c:7 =8.57; d:
7 ~8.827; thick solid line represents the seabed geometry)

6.3. Convergence tests on initial representative mesh sizes

In the cases shown above, the solitary waves difterent heights and over different seabeds are
modelled by using specified mesh sizes. As discussedr previous papers [2,69], the main factors which
affect the convergence property of the QALE-FEM aeetifme step and the mesh size for the cases without
floating bodies. In 86.1, the effect of the time stepshenresults has been investigated. In this section,
discussions are devoted on the effect of the representative meshsyite €nsure the numerical results
given are convergent. Although convergence investigatiane been made for all the cases shown in this
paper, only the analysis for the 3D case shown in Figs ptesented in this section. For this purpose, the
values ofds are selected to be 0.05, 0.07, 0.085 and 0.1otAdr parameters remain the same as for Fig.11.

Fig.12 shows the free surface profilgad. The results for all the cases corresponding to different values
of ds agree well with each other, though there is visilitierence near the overtung jet in Curve (b) and
(c) between the results df=0.1 and others. Even using the coarsest m&si0.(), the relative errors in the
mass and energy at~8.57 are about 0.11% and 1.21%, respectively. Therefot8,1 is acceptable for

the purpose of predicting the occurrence of the overtgrhefore forming a jet. However, for studying the
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properties of overturning with a jet, finer mesh#s0.085) are preferred for this case.

| — ds=0.05
- -~ ds=0.07
—  ds=0.085 @ b

0.5 | | | | |
9.5 10 10.5 11 11.5 12 12.5

Fig. 12 Free surface profile g0 in different instants
(H=0.6,5.=1/15,k. =0.25; a:7 =#7.89 ; b:7 =8.25; c:7 =8.57)

The investigation in this subsection demonstrated the representative mesh sizes selected in the
previous subsection are appropriate. However, ihdted that the appropriate mesh size is problem-

dependent and it must be carefully selected fiberdint cases as in all other numerical methods.

6.4. Computational efficiency

All comparisons of the numerical results obtainedhsy present method with the experimental data and
the results by other methods may lead to one cesiwlui.e. the QALE-FEM can simulate overturning
waves at the same level of accuracy as the BEModdbased on the same FNPT Model. One may ask how
about its efficiency. In this subsection, attentisrconcentrated on discussions about the computational
efficiency of the QALE-FEM. Ma & Yan [1] pointed out that the QALE-FEM might use only 15% of the
CPU time required by the conventional FEM. Itsaédfincy is now compared with the BEM using the case

shown in Fig. 11.

Tab. 1. Computational efficiency ofdfQALE-FEM for the case shown in Fig.11

dx dy N, N, Az CPU/step (s) Total (h) &.(%) &%)
0.100 0.100 139,23¢ 38,10¢ 0.03333 9.0 0.65 0.11 1.21
0.085 0.100 164,02t 44,550 0.02833 10.2 0.91 0.10 0.26
0.085 0.085 235,12t 52,650  0.02833 14.5 1.22 0.10 0.26
0.070  0.100 230,384 53,85¢ 0.02333 14.0 141 0.09 0.17
0.070 0.070  314,16C 69,086  0.02333 18.0 1.8) 0.09 0.16
0.050 0.050 448,437 98,332.  0.01667 26.6 3.81 0.03 0.09

As mentioned before, Grilli, Guyenne & Dias [29\vd®ped a high-order BEM model that is believed to
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be the most efficient model for overturning waa that time. To obtain the results uprts 8.57 for the

case in Fig. 11, they used a coarser quadrilateral grid2884) for the first 70 time steps and then used a
finer grid (60x 30x 4) for the next 120 time steps. The totallCime spent on the two stages is about 52.8
hours on a supercomputer (CRAY-C90). Fochesato & [65] developed a fast BEM method, which may

be 6 times faster than the conventional BEM [29] astpdiout by the authors. Their calculations for the
same case were also spiito two stages. They used a coarser griok@®@x 4) with 1,422 boundary nodes

for the first stage € < 6, about 54 time steps) and then a finer grid{80x 4) with 6,022 boundary nodes

for the rest of calculation (200 time steps). Totally, they spent about 19 hours to achieve the results up to
7 =8.57 by using a PC (2.2GHz processor, 1G RAMur simulations of the same case are run on a PC
with 2.53GHz processor and 1G RAM. The computdargely similar to that used by Fochesato & Dias

[55], though the processor is slightly faster. The CPU time taken by the QALE-FEM for simulation up to

7 =#8.57 and the relative error in the cases with different representative mesh sizes are displayed in Table 1.
In some of these cases, the reprgative mesh size is differentin andy-directions, i.e.dx # dy, to show

more variations. As could be seen from thedalihe QALE-FEM takes only 0.91h (or 54 minutes) to
produce the results with acceptable errors in mass and engrg. 1% and.= 0.26%, respectively). Even

to achieve higher accuracy gf= 0.09% ands.= 0.16% , which are smaller than those errors given by
Fochesato & Dias [55], the CPU time taken by thd @A4EM is only 1.8h (or 108 minutes). Therefore, for

this particular case, the QALE-FEM can beeast 10 times faster than the fast BEM method.

6.5. Application: 3D overturning waves over complex seabeds

So far, all 3D results presented are symmetrical abouytBeplane. It is understandable that the
overturning properties, such as when and where theuomary occurs, will be different if the seabed is non-
symmetrical about the=0 plane. To see how different the pedpes are and to show the flexibility of the
QALE-FEM, the method is employed to model sojitavaves over a non-symmetrical seabed ape0t In
this investigation, the length and the width of the tarkthe same as those in Fig.11. The seabed geometry

is also expressed by Eq.(30) with the sameands. , which are 5.225 and 1/15, respectively, but with
different variation of.. In this case, the. for y>0 (referred ask:) is 0.25, the same as Fig.11; however,
that fory<0 (referred ask, ) is 1.0. The representative mesh size is take0.07.

Fig. 13 shows the free surface profiles recorded aB.57, the same instant as shown by Curve c in
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Fig.12, for cases with differekf . One can see from this figure, thattas instant, the overturning jet in the

case withk_ =1.0 (Fig.13 (b)) is not evidentHowever, that in the case wift) =k = 0.25(Fig.13 (a)), the

same case as shown in Fig.11, seems to be well dedeldjes implies that the breaking time varies as the

change of seabed geometry.

To further show how the overturning jet develops in the case with non-

symmetrical seabed, the free surface profiles at two othEmts after overturning starts are plotted in Fig.

14.

Fig. 13(a)k, =0.25

2
15
4 1
0.5
0
2
18
4 1
0.5
0

Fig.13(b) k =1.0

Fig. 13 Free surface profiles at~8.57 in the cases with differedt, (/=0.6,s.=1/15; k, =0.25; the colour bar

represents the spe€{¥ ¢| ) on the free surface)

*Xg

Fig.14(a)T = 8.95

| !
0
| !

Fig.14(b) 7 =9.16
Fig. 14 Free surface profiles affdrent instants after overturnirgyer non-symmetrical seabed=0.6,s.=1/15,

k: =0.25 andk_ =1.0; the colour barepresents the spe(e|d7¢| ) on the free surface)
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As can be seen, the free surface prefileFig.14 are non-symmetrical abgaD, as expected. It is also
observed that the overturning does not start to ocos@gtinstead, it occurs in the argal. This is quite
different from the above symmetrical cases in Wwhite overturning always starts to occup=. This is
clearer in Figure 15 that shows the free surface prdilegveral longitudinal vertical planes with different

y-coordinates.
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Fig.15(c) 7 =9.16
Fig. 15 Free surface profilesdifferent longitudinal planeg4=0.6;s.=1/15; k: =0.25 andk, =1.0;x, is the initial
position of the crest of the solitary wave).

Fig. 15(a) evidently shows that the wave frontya0.8 reaches the farthest positionxhairection at
7 =8.55 while those at the other two longitudinal planes, i.e;z@i5 andy=1.1 (which are symmetrical
about the plane at=0.8) are behind it and both are very close to each other. All of them are considerably
farther than the wave front g£0. Fig. 15(b) gives the results when the overturning just occurathile
the overturning jet has been well-developed at other thngiealeplanes. It is interesting to point out that
the wave front ay=1.1 now clearly departures from the frontyaD.5 and becomes closer to the front at
»=0.8 and also that the jetyatl.1 is as sharp as the jetyaD.8 but much sharper than the jey=0.5. This

observation is confirmed by curves in Fig. 15 (c). All these facts indicate that the overturning jet is moving
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gradually towards the wall g&=4. This seems to suggest that the overturning jets may be guided to occur
in some areas by changing the sshigeometry in order to prevent them from happening at places where

important structures sit near the shore.

0

Fig.16 Free surface profiles at=~8.70 forkc+ =0.25 andk_ =0.1, (=0.6,5.=1/15,the colour bar represents the speed
(|[v¢|) on the free surface)

Fig. 17 Free surface profiles in easwith three artificial reefs for ~26.68. The three reefs are centredvatl(l, y.
=0), =115, y. =3) and (=12, y. =-3), respectively. Each reef is  defined

byz= 0.2(1— ¢ Trxel+4) )se(‘hz[z(y—yc)] . The amplitude (a) and frequenaey) (of the wavemaker to generate the

wave area=0.2andw =1.0, respectively. The sloping seabed starts ftpav.0 with a slope of 1:15. The profiles
below the free surface illustrate theabed geometry, which is shifted by0.5. The colour bar represents the speed
(|[v¢|) on the free surface)

More cases with different incident waves and diffesm@bed geometries have also been simulated, such
as solitary waves propagating over non-symmdtseabeds with different combinations df andk, ,

transient oscillating waves overturning over bumps tific@al reefs on a slope. We could not present all the
results in one paper but more illustrations will be given in the rest of this subsection. For this purpose, some

snapshots of overturning waves are shown in Fig. 16Famd7. Fig.16 displays the wave profiles with

well-developed overturning jets for the case wifh=0.25 andk_ =0.1. All other parameters for this figure

are the same as for Fig.15, exceptAgrthat is now less thak . It can be seen that the overturning now

takes place in the areasf0, rather thap>0 in Fig. 14. This confirms that wave overturning can be guided

to avoid some area by changing seabed geometrg.17Hllustrates the free surface profile for a transient
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oscillating wave overturning over \wxal artificial reefs on a slope, wh is generated by a piston
wavemaker subjected to a harmonic motion. Indhge, two groups of overturning jets are observed at the
same time. Each group embodies three jets and thargtdifferent from each other.  This figure also
reveals some interesting points, i.e. overturning chmtsonly occur above the reefs but also beyond them

and several different overturning jetgy simultaneously take place.

7. CONCLUSION

In this paper, the QALE-FEM has been further develdpemodel 3D overturning waves. In this method,
the boundary value problem for the velocity potentiadaks/ed by using a finite element method in a time
marching procedure. Compared with the conventional finite element method for water wave problems
without involving floating bodies, the QALE-FEM contai two distinctive elements: 1) the scheme for
moving the mesh by using a robust spring analogy method purpose-developed for problems associated with
oscillating free surfaces, and 2) the method for comgutelocity on the free surface, which is suitable for
unstructured and moving mesh. The main technical dpr@nts in this paper are the improvement in these
two aspects required for dealingthv3D overturning waves. Theseclude the special techniques for
moving the mesh and for calculating the fluid velocigar overturning jets presented in 84 and 85. The
main application developments, as discussed in g6jda simulations of overturning of solitary waves and
transient oscillating waves propagatioger 3D complex seabeds. Theassults reveal some interesting
points. For example, overturning jets may be guigedccur in some areas by changing the seabed for
engineering purposes; and sevenarturning jets may simultaneousgke place over a complex seabed.

The method has been validated by comparing itsenigal predictions with experimental data and
results of other numerical methods in many cases wiféreint configurations. This validation leads to the
conclusion that the QALE-FEM can yield results agre@ipj with experimental data and being at the same
level of accuracy as those produced by the BEBAsed on comparison with a fast BEM under the same
conditions, the QALE-FEM can be over tifes faster. Using this method, one can obtain the satisfactory
results for complex 3D overturning waves within one or two hours on a normal PC. Such efficiency has

never been demonstrated by other numerical methods as far as the authors know.

27



8.

9.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24

ACKNOWLEDGEMENT

This work is sponsored by Leverhulme Trust, UK (F/00353/G), for which the authors are most grateful.

REFERENCE

. Ma QW, Yan S. Quasi ALE finite @hent method for nonlinear water wavésrnal of Computational

Physics, 2006;212: 52—-72.

. Ma QW, Yan S. QALE-FEM for Numerical Modelgnof Nonlinear Interaction between 3D Moored

Floating Bodies and Steep Waves. Submittediriernational Journal for Numerical Methods in
Engineering, 2008.

. Wtrwy J. Effects of the 2004 Great Sumatra Tsunami: Southeast Wdiam:! of waterway, port, coastal,

and ocean engineering ,2007: 133: 382—400.

. Black K. Atrtificial surfing reefs for erosiorontrol and amenity: theorgnd application. InProceeding of

International Coastal Symposium (ICS), Rotorua, New Zealand, 2000.

. Wei J, Kirby JT, Grilli ST, Subramanya R. A fuliyonlinear Boussinesq model for surface waves. |.

Highly nonlinear unsteady wavekwrnal of Fluid Mechanics, 1995;294: 71-92.

. Fuhrman DR, Madsen PA. Simulation of nonlineave run-up with a high-order Boussinesq model.

Coastal Engineering, 2008%: 139-154.

. Ducrozet G, Bonnefoy F, Le Touzé D, FerfanB8-D HOS simulations of extreme waves in open seas.

Natural Hazards, 2007;7: 11-14.

Ma QW, Numerical Generation of Freak Wavdsing MLPG_R and QALE-FEM Methods. Computer
Modeling in Engineering and Sciences (CMES), 20@(3): 223-234.

Miyata H, Kanai A, Kawamura T, Park J. Numal simulation of three-dimensional breaking waves.
Journal of Marine Science and Technology, 1996;1:183-197.
. Chen G, Kharif C, Zaleski S, Li J. Two-dinsonal Navier—Stokes simulation of breaking waves.
Physics of Fluids, 1999; 11: 121-133.

Guignard S, Marcer R, Rey V, Kharif C, FrauRieSolitary wave breaking @toping beaches : 2-D two
phase flow numerical simulation by SL-VOF methédropean Journal of Mechanics, B/Fluids, 2001;
20(1): 57-74.

Lubin P, Vincent S, Caltagirone J, Abadie SlyFHinree-dimensional direct numerical simulation of a
plunging breaker, Comptes Rendus Mecanique ,288I37): 495-501.

Hieu PD, Katsutoshi T, Ca VT. Numerical sintiola of breaking waves using a two-phase flow model.
Applied Mathematical Modelling, 2004;28(11): 983—-1005.

Andrillon Y, Alessandrini B. A 2D+T VOF fullgoupled formulation for the calculation of breaking
free-surface flowJournal of Marine Science and Technology, 2004;8: 159—-168.

Park JC, Kim MH, Miyata H, Chun HH. Fullynlinear numerical wave tank (NWT) simulations and
wave run-up prediction around 3-D structur@sean Engineering, 2003;30: 1969-1996.

Hu C, Kashiwage M, A CIP-based method for ariocal simulations of violent free-surface flows.
Journal of Marine Scree and Technology,2009; 143-157.

Lo EYM, Shao S. Simulation of near-shore solitaave mechanics by an incompressible SPH method.
Applied Ocean Research ,2002; 24(5): 275—-286.

Issa R, Violeau D. Modelling a plunging breaksajitary wave with eddy-viscosity turbulent SPH
models,CMC,2004; 1: 101-112.

Dalrymple RA, Rogers BD. Numerical mdoe of water waves with the SPH metho@oastal
Engineering, 2006;53: 141-147.

Koshizuka S, Nobe A, Oka Yumerical Analysis of Breaking Waves using the Moving Particle Semi-
Implicit Method. International Journal for Numerical Methods in Fluids, 1998;26: 751—769.

Gotoh H, Sakai T. Key issues in thetigde method for computation of wave breakinGoastal
Engineering,2006;53: 171-179.

Pin FD, Idelsohn S, Onate E, Aubry R. The Aldgfrangian Particle Finite Element Method: A new
approach to computation of free-surface flows and fluid-object interactionguters and Fluids,2007;
36(1): 27-28.

Grilli ST, Subramanya R. Numerical modelling ofvevdoreaking induced by fixed or moving boundaries.
Computational Mechanics,1996; 17(6), 374-391.
. Skyner DA. A comparison of numerical predicticarad experimental measurements of the internal

28



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

kinematics of a deep-water plunging waseurnal of Fluid Mechanics,1996; 315: 51—-64.

Yasuda T, Mutsuda H, Mizutani N. Kinematiaf overturning solitary waves and their relations to
breaker types. Coastal Engineering, 199[3-4):317-346.

Yan S. Numerical simulation of nonlinear respoofsenoored floating structures to steep wave's)
thesis, School of Engineering and Mathemati&aiences, City University, London 2006.

Helluy PH, Golay F, Caltagirone JP, Lubin P,dént S, Drevard D, Marcer R, Seguin N, Grilli ST,
Lesage AC, Dervieux A. Numerical simulatiom§ wave breaking. Mathematical Modelling and
Numerical Analysis, 20059: 591-607.

Devrard D, Marcer R, Grilli ST, Fraunie P, Rey Experimental Validation of a Coupled BEM-Navier-
Stokes Model for Solitary Wave Shoaling and BreakingProceeding of 5th International Symposium
on Ocean Wave Measurement and Analy€652 166—-176.

Grilli ST, Guyenne P, Dias F. A fully non-lineaodel for three-dimensional overturning waves over an
arbitrary bottominternational Journal for Numerical Methods in Fluids,2001;35(7): 829-867.

Lachaume C, Biausser B, Grilli ST, FraunieGRjgnard S, Modelling of breaking and post-breaking
waves on slopes by coupling of BEM and VOF methodsPtoceedings of the International Offshore

and Polar Engineering Conference, 2003; 1698-1704.

Garzon M, Sethian JA. Wavedaking over Sloping Beaches Usiagoupled Boundary Integral-Level
Set Methodinternational Series of Numerical Mathematics,2006 154: 189-198.

Longuet-higgins MS, Cokelet ED. The deformaidrsteep waves on water: |. a numerical method of
computationProceedings of the Royal Society of London, series A, 1976;350: 1-26.

Dommermuth DG, Yue DKP, Lin WM, Rapp RJ, Clz®, Melville WK. Deep water plunging breakers:
a comparison between potential theory and experiménigual of Fluid Mechanics, 1988;189: 423—
442,

Vinje T, Brevig P. Numerical simulation of breaking wavksances in Water Resources,1981;4 (2): 77—

82.

New AL, Mciver P, Peregrine DH. Computation of overturning wakegnal of Fluid Mechanics, 1985;
150: 233-251.

Grilli ST, Skourup J, Svendsen IA. An efficidmoundary element method for nonlinear water waves.
Engineering Analysis with Boundary Elements 6, 1989; 97-107.

Seo SN, Dalrymple RA. An efficiemodel for periodic overturning waveBugineering Analysis with
Boundary Elements 7 ,1990; 196-204.

M.J. Cooker, D.H. Peregrine, Violent water motwireaking-wave impact. Froc. Coastal Eng. Conf.
1991, 1, 164-176.

Otta AK, Svendsen LA, Grilli ST. The breagi and run-up of solitary waves on beaches. In:
Proceedings of the Coastal Engineering Conference, 1993;2: 1461-1474.

Cao Y, Beck RF, Schultz WW. Numerical compuotadi of two-dimensional solitary waves generated by
moving disturbancesuternational Journal for Numerical Methods in Fluids, 1993;17(10): 905-920.

Wang P, Yao Y, Tulin MP. Wave group evolutismave deformation, and éaking: simulations using
LONGTANK, a numerical wave tankaternational Journal of Offshore and Polar Engineering, 1994;4

(3): 200-205.

Grilli ST, Svendsen IA, Subramanya R. Break@rgerion and Characteristics for Solitary Waves on
SlopesJournal of Waterway, Port, Coastal and Ocean Engineering,1997; 123: 102-112.

Maiti S, Sen D. Computation of solitary waves during propagation and runup on a slope. Ocean
Engineering,199926(11): 1063—-1083.

Grilli ST, Gilbert R, Lubin P, Vicent S, Legendre D, Duyam M, Kimmoun O, Branger H, Devrard D,
Fraunie P, Abadie S. Numerical modeling and expenis for solitary wave shoaling and breaking over
a sloping beach. IProceedings of the Fourteenth (2004) International Offshore and Polar Engineering
Conference (ISOPE2004), Toulon, France, 2004; 306—-312.

Drimer N, Agnon Y. An improved low-ordéoundary element method for breaking surface waves.
Wave Motion,2006;43(3): 241-258.

Christou M, Swan C, Gudmestad OT. The dp8on of breaking waves and the underlying water
particle kinematics. Inthe International Conference on Offshore Mechanics and Arctic Engineering
(OMAE2007), 2007; 291-299.

Ortiz JC, Douglass SL. Boundary element solutionaiér particle velocities of waves breaking on mild
slopesBoundary Element XV: Fluid Flow and Computational Aspects, 1993; 221-232.

Zhao R, Faltinsen OM. Water Entry of a Two-Dimensional BodyPtoceeding of 6th International
Workshop on Water Waves and Floating Bodies, Woods Hole, MA, USA, 1991; 275-279.

29



49

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

XU H, Yue DKP. Numerical study of three dimensional overturning waveSréaeeding of 7th
International Workshop on Water Waves and Floating Bodies, Cointe, France, 1992; 303-307.

XU H, Yue DKP. Numerical study of kinematieEnonlinear water waves in three dimensior3vi/
Engineering in the Oceans V, 1992; 81-98.

Xue M, Xi H, Liu Y, Yue DKP. Computations &illy nonlinear three-anentional wave-wave and
wave-body interactions. Part 1. Dynasof steep three-dimensional wavéswnal of Fluid Mechanics,
2001;438: 11-39.

Guyenne P, Grilli ST. Numerical study of thdimensional overturning waves in shallow water.
Journal of Fluid Mechanics, 2006;547 : 361-388.

Grilli ST, Vogelmann S, Watts P. Developmentad8D Numerical Wave Tank for modelling tsunami
generation by underwater landslid&ggineering Analysis with Boundary Elements, 2002;26(4): 301—
313.

Brandini C, Grilli ST. Modeling of freak wave generation in a 3D-NWT. Araceedings of the
International Offshore and Polar Engineering Conference (ISOPE2001), Stavanger, Norway, 2001;
3:124-131.

Fochesato C, Dias F. A fast methodronlinear three-dimensional free-surface wayksceedings of

the Royal Society of London, series A, 2006;462: 2715-2735.

Fochesato C, Grilli ST, Dias F. Numerical modellbf extreme rogue waves generated by directional
energy focusingWave Motion,2007;44(5): 395-416.

Wu GX, Eatock Taylor R. Finite element analysfiswo dimensional non-linear transient water waves.
Applied Ocean Research, 1996: 363—-372.

Ma QW, Wu G.X, Eatock Taylor R. Finite elemt simulation of fully non-linear interaction between
vertical cylinders and steep waves. PartMethodology and numerical procedurelnternational
Journal for Numerical Methods in Fluids, 2001;36(3): 265-285.

Ma QW, Wu G.X, Eatock Taylor R. Finite elent simulation of fully non-linear interaction between
vertical cylinders and steep waves. PartNumerical results and validatiofmternational Journal for
Numerical Methods in Fluids, 2001;36(3): 287—-308.

Turnbull MS, Borthwick AGL, Eatock Taylor R. Wéa-structure interactionsing coupled structured—
unstructured finite element meshégplied Ocean Research, 200325: 63—77.

Heinze C. Nonlinear hydrodynamic effectsfoed and oscillating structures in wave¥D Thesis,
Department of Engineering Science, Oxford University, 2003.

Wang CZ, Wu GX. An unstructured-mesh-baseiefielement simulations with non-wall-sided bodies.
Journal of Fluids and Structures, 2006 22:441-461.

Wang CZ, Wu GX, Drake KR. Interactionstween nonlinear water waves and non-wall-sided 3D
structuresOcean Engineering, 2007;34:1182—-1196.

Westhuis JH, Andonowati AJ. Applying the finkéement method in numerically solving the two
dimensional free-surface water wave equationsPhaceeding of the 13" International Workshop on
Water Waves and Floating Bodies, Hermans, The Netherlands, 1998; 171-174.

Clauss GF, Steinhagen U. Numerical simulatiomaiflinear transient waves and its validation by
laboratory data. InProceedings of the International Offshore and Polar Engineering Conference
(ISOPE1999), Brest, France, 1999;368-375.

Wu GX, Hu ZZ. Simulation of nonlinear interactidretween waves and floating bodies through a finite-
element-based numerical tarfkoceedings of the Royal Society of London, Series A, 2004,;460:3037—
3058.

Sriram V, Sannasiraj SA, SundarSimulation of 2-D nonlinear waves using finite element method with
cubic spline approximatiodournal of Fluids and Structures , 2006;22: 663—681.

Yan S, Ma QW. Application of QALE-FEM to ghinteraction between nbnear water waves and
periodic bars on the bottom. |®roceeding of the 20" International Workshop on Water Waves and
Floating Bodies, Norway, 2005.

Yan S, Ma QW. Numerical simulation of fullyonlinear interaction between steep waves and 2D
floating bodies using the QALE-FEM metho@urnal of Computational Physics,2007;221: 666—692.

Yan S, Ma QW. Effects of an arbitrary sea bed spaeses of moored floating structures to steep waves.
In: Proceedings of the Seventeenth International Offshore and Polar Engineering Conference
(ISOPE2007), Lisbon, Portugal, 2007; 2192-2199.

Frey PJ, Borouchaki H, George P. 3D Delaunssh generation coupled with an advancing-front
approachComputer Methods in Applied Mechanics and Engineering, 1998;158: 115-131.

Farhat C, Degand C, Koobus BM, Lesoinne Mhree-dimensional torsional spring analogy method for

30



73.

74.

75.

76.
77.

unstructured dynamic mesh&amputers and Structures, 2002;80: 305-316.

Bottasso CL, Detomi D, Serra R. The ball-vertex method: a new simple spring analogy method for
unstructured dynamic meshe€omputer Methods in Applied Mechanics and Engineering,2005; 194:
4244-4264.

Zeng D, Ethier CR. A semi-torsional spring aggl model for updating unstructured meshes in 3D
moving domainskinite Elements in Analysis & Design, 2005 41: 1118-1139.

Lewis RW, Zheng Y, Gethin DT. Three-dimensional unstructured mesh generation: Part 3. Volume
meshesComputer Methods in Applied Mechanics and Engineering, 1996;134: 285-310.

Tanaka M. The stability of solitary wav@aysics of Fluids, 1986;29: 650—655.

Kimmoun O, Branger H, Zucchini B. Laboratory PIV Measurements of Wave breaking on a beach. In
the Fourteenth (2004) International Offshore and Polar Engineering Conference (ISOPE), Toulon,
France, 2004: 293-298

31



