
Skinner, D. M. & Silvers, L. J. (2013). Double-diffusive magnetic buoyancy instability in a quasi-

two-dimensional Cartesian geometry. Monthly Notices of the Royal Astronomical Society, 436(1), 

pp. 531-539. doi: 10.1093/mnras/stt1590 

City Research Online

Original citation: Skinner, D. M. & Silvers, L. J. (2013). Double-diffusive magnetic buoyancy 

instability in a quasi-two-dimensional Cartesian geometry. Monthly Notices of the Royal 

Astronomical Society, 436(1), pp. 531-539. doi: 10.1093/mnras/stt1590 

Permanent City Research Online URL: http://openaccess.city.ac.uk/7394/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


MNRAS 436, 531–539 (2013) doi:10.1093/mnras/stt1590

Advance Access publication 2013 September 26

Double-diffusive magnetic buoyancy instability in a

quasi-two-dimensional Cartesian geometry

D. M. Skinner‹ and L. J. Silvers‹

Centre for Mathematical Science, City University London, Northampton Square, London, EC1V 0HB, UK

Accepted 2013 August 21. Received 2013 August 21; in original form 2012 January 19

ABSTRACT

Magnetic buoyancy, believed to occur in the solar tachocline, is both an important part of

large-scale solar dynamo models and the picture of how sunspots are formed. Given that in the

tachocline region the ratio of magnetic diffusivity to thermal diffusivity is small it is important,

for both the dynamo and sunspot formation pictures, to understand magnetic buoyancy in this

regime. Furthermore, the tachocline is a region of strong shear and such investigations must

involve structures that become buoyant in the double-diffusive regime which are generated

entirely from a shear flow. In a previous study, we have illustrated that shear-generated double-

diffusive magnetic buoyancy instability is possible in the tachocline. However, this study was

severely limited due to the computational requirements of running three-dimensional magne-

tohydrodynamic simulations over diffusive time-scales. A more comprehensive investigation

is required to fully understand the double-diffusive magnetic buoyancy instability and its de-

pendency on a number of key parameters; such an investigation requires the consideration

of a reduced model. Here we consider a quasi-two-dimensional model where all gradients

in the x direction are set to zero. We show how the instability is sensitive to changes in the

thermal diffusivity and also show how different initial configurations of the forced shear flow

affect the behaviour of the instability. Finally, we conclude that if the tachocline is thinner

than currently stated then the double-diffusive magnetic buoyancy instability can more easily

occur.

Key words: instabilities – MHD – Sun: interior – Sun: magnetic fields.

1 IN T RO D U C T I O N

The leading models of the large-scale solar dynamo posit that a

toroidal magnetic field is generated from a poloidal field deep be-

neath the surface of the Sun in the tachocline (see e.g. Silvers

2008; Charbonneau 2010, and references therein). The toroidal

structures then become buoyant and rise towards the surface. The

strongest of these magnetic filaments reach the surface to give rise

to sunspot pairs. The weaker buoyant structures can be twisted

in the solar convection zone, which is an important part of one

large-scale dynamo model, namely, the interface model (Parker

1993). Therefore, given that the process of magnetic buoyancy is

an integral part of both the sunspot formulation picture and mod-

els of the large-scale solar dynamo, it is crucial that it is fully

understood.

Magnetic buoyancy was first discussed by Parker (1955) and

Jensen (1955) and since this time there has been considerable

⋆ E-mail: david.skinner.1@city.ac.uk (DMS); Lara.Silvers.1@city.ac.uk

(LJS)

progress in understanding this process. Early research using lin-

ear stability analysis derived stability criteria for ideal magnetohy-

drodynamics and diffusive magnetohydrodynamics (see e.g. Parker

1966; Thomas & Nye 1975; Acheson 1979).

In the solar tachocline, while diffusivities are small they are

non-negligible. Therefore, the most pertinent of these criteria to

consider for structures in the tachocline is that derived by Acheson

(1979):

−ga2

c2

d

dz
ln B >

η

κ
N2 (1)

where B is the field strength, η is the magnetic diffusivity, κ is the

thermal diffusivity, a is the Alfvén speed, c is the adiabatic sound

speed and N is the Brunt–Väisälä frequency. In the tachocline, κ ≫ η

and it is this regime that we need to explore fully; this paper will

focus on the magnetic buoyancy instability when κ ≫ η. Given

that the magnetic structures in the tachocline are generated by a

shear flow it is important to numerically examine structures that are

generated in this way as opposed to simply examining those that

are unstable at the start of the simulation.

C© 2013 The Authors
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Seeking to understand the formation of shear generated magnetic

buoyant structures is a complex issue because of the dynamic nature

of the problem, which involves a number of different time-scales i.e.

the advective time-scale associated with the generation of a layer of

magnetic field, the time-scale associated with the instability and the

diffusive time-scales. In this particular problem a shear flow will

drag out a layer of magnetic field that is initially perpendicular to

the direction of the large-scale flow. This will create gradients in

the magnetic field, which are necessary to achieve for buoyancy as

can be seen from criterion 1. However, the layer of magnetic field

acts back on the flow, which reduces the shear flow’s effectiveness

to generate gradients of magnetic field. Further, the background

atmosphere will be altered and so the values of the components in

criterion 1 for instability are constantly changing.

Research to date on the interaction between a shear flow and a

magnetic field includes that of Tobias & Hughes (2004) who ex-

amined the stability of an atmosphere where there is a flow aligned

with the magnetic field and concluded that the shear has a sta-

bilizing effect on the magnetic buoyancy instability. However, in

the tachocline the shear is actually responsible for the generation

of an unstable layer of magnetic field aligned with the shear flow

where, in an idealized picture, none exists; this is a very different

proposition. There have been a number of papers to examine shear

generated magnetic buoyancy instabilities when the magnetic field

is not initially in the direction of the shear flow (Cline, Brummell

& Cattaneo 2003; Vasil & Brummell 2008; Silvers et al. 2009).

Silvers et al. (2009) considered if the double-diffusive magnetic

buoyancy instability could occur in the tachocline and were the

first to numerically show that such an instability is plausible. This

work follows earlier calculations and discussions (see Hughes &

Weiss 1995; Schmitt & Rosner 1983, and references there in) re-

garding a magnetic buoyancy instability that presents when the ratio

of magnetic to thermal diffusivity becomes sufficiently small, i.e. a

double-diffusive magnetic buoyancy instability.

While the work of Silvers et al. (2009) was pioneering in the area

of numerical calculations of the double-diffusive instability, their

investigation was inhibited by the computational costs associated

with three-dimensional calculations using small diffusivities. As

such, they were only able to conduct a very limited investigation

into how the instability is affected by the parameters that appear in

the formulation of the problem and, thus, a further investigation is

warranted.

While the investigation of Silvers et al. (2009) was limited, it

was sufficient to show that the initial stages of the instability are

dominated by the rapid growth of two-dimensional modes. This

finding is in agreement with works such as Newcomb (1961) that

suggest that two-dimensional interchange modes will often present

rather than three-dimensional bending modes. That said, modes

that initially onset in a two-dimensional fashion can develop in a

three-dimensional way though interactions with other motion, e.g.

turbulence caused by descending convective plumes, and so are

of interest when we are looking for long-term, three-dimensional

buoyant structures and their evolution.

The work of Silvers et al. (2009) suggests that a useful avenue of

investigation, to explore further how the various parameters affect

the onset of the double-diffusive magnetic buoyancy instability, is

through a reduced model, which will minimize the computational

cost of exploring the parameter space. Such a model will be consid-

ered in this paper where we wish to obtain a greater understanding

of the onset parameters for double-diffusive magnetic buoyancy in-

stabilities, which will be used in later calculations to investigate the

three-dimensional evolution of these structures. The reduced model

that we use in this paper is such that gradients in the x-direction are

neglected. This reduction permits a much fuller exploration of the

parameter space and enables us to determine how certain parameters

affect the onset of the instability and the growth rate.

2 N U M E R I C A L M O D E L

We consider a model similar to those presented in the three-

dimensional work of Silvers et al. (2009) and Vasil & Brummell

(2008) but we form a reduced model by neglecting gradients in one

direction. In this work the x and y coordinates are the latitudinal

and longitudinal directions, and the z-axis points vertically down

and parallel to the constant gravitational acceleration. All lengths

are scaled relative to the depth of the domain, d. The temperature,

T, is scaled relative to T∗, the temperature at the top of the domain.

The density, ρ, is scaled relative to ρ∗ the density at the top of the

layer. The magnetic field, B, is scaled relative to the initial vertical

magnetic field strength, Bz, 0. Time is scaled with the isothermal

sound crossing time at the top of the layer, τ∗ = dρ1/2
∗ /P 1/2

∗ . The

general governing equations are written in the form:

∂ρ

∂t
+ ∇. (ρv) = 0, (2)

ρ

(

∂u

∂t
+ u . ∇u

)

= −∇P + α (B . ∇) B − α∇

(

B2

2

)

+ σCk

(

∇2
u +

1

3
∇ (∇ . u)

)

+ ρθ (m + 1) ẑ + F (3)

∂T

∂t
= −u . ∇T − (γ − 1) T ∇ . u +

Ckγ

ρ
∇2T

+
Ck (γ − 1)

ρ

(

αζJ 2 +
σ

2
S2

)

(4)

∂B

∂t
= ∇ × (u × B) + ζCk∇

2
B, (5)

∇ . B = 0 (6)

where

Sij =
∂ui

∂xj

+
∂uj

∂xi

−
2

3

∂uk

∂xk

δij (7)

is the stress tensor. Ck = Kτ ∗/ρ∗cpd2 is the dimensionless thermal

diffusivity, α = B2
z,0/P∗μ0 provides a measure of the field strength,

ζ = ηcpρ∗/K is the inverse Roberts number, σ = μcpρ∗/K is the

Prandtl number, θ is the thermal stratification and m is the polytropic

index.

Equation (3) has been augmented to include an extra body force,

G = −σCk∂
2
zU0 (z) x̂ that, in the absence of magnetic effects or

instabilities, balances viscous diffusion and maintains a specified

U0(z), which is chosen to mimic the smooth radial shear transition

believed to occur in the tachocline. The shear profile is given by

U0 (z) = Mtanh

[

1

z

(

z −
1

2

)]

. (8)

Fig. 1 shows the velocity shear profile plotted against depth z for

the initial parameter configuration where M = 0.05 and z = 0.1.
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Figure 1. Shear profile, U0(z), versus depth, z, for the case used for the

initial cases where M = 0.05 and z = 0.1.

The above set of equations is further simplified by removing all

gradients of quantities in the x-direction, i.e. we set

∂

∂x
f (x, y, z, t) = 0 (9)

for all quantities.

Boundary conditions for the velocity, v, and the magnetic field,

B, are ∂zu = ∂zv = w = 0 and Bx = By = ∂zBz = 0 at the top

and bottom of the domain, z = 0, 1. The boundary conditions

for temperature are T(z = 1) = 1 and ∂Tz (z = 0) = θ . Periodic

boundary conditions are taken in both the x and the y directions.

These simulations are conducted using resolutions up to 256 × 480.

Initially we take a polytropic atmosphere with temperature

T0 = 1 + θ ẑ and density ρ0 = (1 + θ ẑ)m. We also initially set

Bz = 1, ux = U0(z), uy = uz = Bx = By = 0. The system is forced

out of equilibrium state by a small initial random perturbation to

the temperature field. The governing equations are solved using a

mixed finite difference/pseudo-spectral scheme as discussed in, for

example, Bushby & Houghton (2005).

In this investigation we will allow a number of parameters to vary

but there are some parameters that will remain fixed for the entire

paper. For all of the cases that we consider in our investigation we

take F = 1.25 × 10−5, θ = 5 and m = 1.6.

3 R ESULTS

The double-diffusive magnetic buoyancy instability relies on the

ratio between the magnetic and thermal diffusivities being small.

Accordingly, the main focus of this paper is to see how the onset

and growth rate of the instability, not its non-linear evolution, are

affected by changing this ratio. Hence we will begin by examining

the effect on the onset of the instability of varying the dimensionless

thermal diffusivity, Ck. We note here that, for all results presented

in this paper the Richardson number is such that the shear flow is

stable, i.e. there is no secondary instability that can influence the

results.

In this investigation we choose principally to adjust the ratio of

magnetic to thermal diffusivities by varying the thermal diffusiv-

ity (via its dimensionless counterpart Ck). As we vary Ck we also

adjust the Prandtl number, σ , and the inverse Roberts number, ζ ,

so as to maintain σCk = 2.5 × 10−6 and ζCk = 5.0 × 10−6 thus

leaving the form of the induction equation unchanged and chang-

ing the dynamics through the temperature equation. This method

ensures that the magnetic Prandtl number is fixed, which aids

Figure 2. A comparison of the vertical component of velocity at compa-

rable times for a slice of the three-dimensional case (top) and a quasi-two-

dimensional run (middle). The bottom image shows density perturbation

from the horizontal averaged value.

comparison with the work of Silvers et al. (2009). It is also possi-

ble to vary the inverse Roberts number, ζ , effectively varying the

magnetic diffusivity without scalings and so changing the dynamics

directly through the induction equation (5). This would give rise to a

variable magnetic Prandtl number. For brevity we limit the full dis-

cussion here to considering the case where CK is varied but we will

make comment at the end about the effect of varying the magnetic

diffusivity.

Before we commence our investigation, we begin by illus-

trating that this reduced model captures the essential dynamics

of fully three-dimensional calculations, such as those shown in

Silvers (2008). Fig. 2 shows a comparative slice from a fully three-

dimensional and a quasi-two-dimensional calculation after the onset

of the instability for the same set of parameters (case A1 in Table 1).

Both simulations were started from the equilibrium solution with

the same, small amplitude perturbation, to the temperature value

at each point.1 The resolution for the three-dimensional case is

1 Note the image shown in Silvers et al. (2009) was started and evolved

at early times in a slightly different way and found a slightly different

lengthscale for the instability.
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Table 1. Critical values for instability for

different values of z.

z Critical value

5.0 × 10−2 6.355 × 10−4

6.67 × 10−2 7.692 × 10−4

1.0 × 10−1 1.137 × 10−3

Figure 3. A scatter plot formed from the data at each point for the vertical

velocity and the density perturbation from the horizontal average.

Figure 4. A volume rendering of vertical velocity taken at the same in-

stance as the slices shown in Fig. 2 for case A1 and shows the initial

two-dimensional nature of the instability.

256×256×480 and the resolution for the quasi-two-dimensional

case is 256×480. Fig. 2 shows that, although the two slices are not

exactly identical for the different calculations, the instability onsets

with the same lengthscale. Fig. 2 also shows the density deviation

from the layer average value and shows that the rising structures

are less dense, as you would expect with structures arising from a

buoyancy instability. The formal correlation between vertical ve-

locity and the density deviation from the layer average at the time

of the images shown in Fig. 2 is given in Fig. 3. This scatter plot

shows a good agreement between the two quantities. Further, Fig. 4

shows that, as discussed in Silvers (2008), the instability onsets

in a two-dimensional form. Thus, our reduced model captures the

essential features of the fully three-dimensional calculation.

We commence our discussion of our findings by varying the ratio

of magnetic to thermal diffusivities via varying Ck. The Richardson

numbers, together with all of the exact parameter combinations for

these cases, are given in a table in the Appendix. The background

magnetic field is initially uniform in the z-direction. During the

initial stages of the simulation there is a build up of the x component

of the magnetic field as the z component is stretched out by the

shear flow. During this period, the y component of the magnetic

field undergoes small fluctuations due to the initial perturbation of

Figure 5. ln B2
y versus time for different values of the dimensionless ther-

mal diffusivity, Ck. The data points correspond to cases A1–A10 shown in

Table A1.

Figure 6. The maximum value of d(ln B2
y )/dt versus the dimensionless

thermal diffusivity Ck for different values of the shear width, z. The data

points correspond to cases A1–A10, H1–H11 and I1–I12 in Tables A1

and A3.

the system, before settling back down towards zero, which is shown

in Fig. 5. When the instability occurs large disturbances in By begin

to appear and Fig. 5 shows that the rate of growth of B2
y is noticeably

reduced as Ck decreased from the value set in our reference case,

A1, which is 1.0 × 10−2.

In this investigation we are principally interested in determining

if an instability occurs so we focus our attention to the parts of the

simulation long before boundary effects etc. are seen. For each of

the cases we determine the maximum value of d(ln B2
y )/dt and the

time that it occurs after the initial transient phase. Fig. 6 shows the

maximum value of d(ln B2
y )/dt for cases A1–A10 where the only

parameter that is varied is Ck. It shows that the maximum value of

d(ln B2
y )/dt tends to zero as we reduce Ck when z = 1.0 × 10−1

(the figure also shows other z cases that will be discussed later). A

negative value for d(ln B2
y )/dt indicates that B2

y is tending to zero,

thus implying that there is no magnetic buoyancy instability. As the

maximum value of d(ln B2
y )/dt approaches zero it becomes difficult

to accurately determine the maximum value due to numerical issues

and so a spline interpolant is used to extrapolate from the values

plotted to determine the value of Ck for which the instability no

longer occurs, which is approximately 1.2 × 10−3. Fig. 6 shows

that by plotting B2
y for case A10, where Ck = 1.25 × 10−3, there

is a small increase of B2
y with time. However, for case A11, where

Ck = 1.0 × 10−3, there is a constant decrease. Thus we conclude

that the instability is dependant on Ck being sufficiently large.
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There is a criterion proposed to determine when the double-

diffusive magnetic buoyancy instability might be present. Vasil &

Brummell (2009) derived a new form of the criterion for magnetic

buoyancy instability when a background state is constantly evolv-

ing. This is a more realistic model than that originally envisioned

by Acheson who did not try to account for the back-reaction effect

of the magnetic field on to a shear flow. The criterion proposed by

Vasil & Brummell (2009) is expressed in a form where the magnetic

field does not explicitly appear but where, instead, the shear flow

that generates a layer of unstable magnetic field appears though the

Richardson number and the width of the shear region itself. The

analytic criterion derived by Vasil & Brummell (2009) for magnetic

buoyancy in an isothermal process is

z

4γHp

(

1 +
z

2Hρ

)

�
ζRi

(γ − 1) ζ + 1
. (10)

This expression shows that the threshold for instability will be af-

fected not only by the ratio of magnetic to thermal diffusivities but

also by the parameters associated with the shear forcing. While the

double-diffusive magnetic buoyancy instabilities that we are inves-

tigating are not really isothermal they are closer to isothermal than

adiabatic. We, therefore, will consider criteria (10) as a reference

and now turn to examine how well this criterion is satisfied.

Fig. 7 shows, for the cases we are considering here, both the left-

hand and right-hand sides of inequality (10) for different values of

Ck and shows that the inequality is satisfied for the cases that lead

to instability. The region where the inequality is satisfied covers

a larger area for the higher values of Ck where we have already

observed that the strength of the instability is at its greatest. While

the criterion appears useful it should be noted that the inequality

does, also, remain satisfied for small regions for some values of Ck

that do not lead to instability (anything less than Ck ≈ 1.2 × 10−3

is stable.). This is attributed to the fact that the stability criterion

is analytically derived under assumptions for magnetic buoyancy

instability in the isothermal limit so we would not expect complete

agreement with the results. However, our findings show that this

criterion is useful as a guide even when not fully in the isothermal

regime.

Criterion (10) suggests that the regime where the instability will

occur should also depend on a number of other parameters which

Figure 7. The solid black line that sweeps from the top left to the bottom

right plots the left-hand side of inequality (10) versus depth (on the horizontal

axis). The other three lines plot the right hand side for Ck = 1.0 × 10−2

(pale green dashed line), Ck = 2.5 × 10−3 (dark green dash–dotted line)

and Ck = 1.25 × 10−3 (red solid line), all versus depth. The regions where

these lines are below the black line are where the inequality is satisfied for

instability.

include both the width of the shear flow and the magnitude of the

shear flow. From observations, we only have an upper bound on the

width of the tachocline and so it is important to understand how the

width of the shear flow affects our findings. We adjust the width of

the shear flow by varying z in equation (8).

Fig. 6, that was discussed earlier for the case when

z = 1.0 × 10−1, also shows the maximum value of d(ln B2
y )/dt

plotted against the dimensionless thermal diffusivity, Ck, when the

shear width is z = 6.67 × 10−2, which corresponds to cases

H1–H12, and when z = 5.0 × 10−2, which corresponds to cases

I1–I12. The spline interpolant curves through the data points are all

similar in shape and Table 1 shows the critical values for each case.

The critical value for Ck decreases as we reduce z; this implies

that the greater the width of the region of shear is in the tachocline,

the smaller the ratio of magnetic to thermal diffusivities must be to

obtain magnetic buoyancy. Also, the maximum value of d(ln B2
y )/dt

for any given Ck is greater as we reduce z; this implies that the

width of the shear region affects the strength of the instability. Given

that at this present time we only have an upper bound on the width of

the tachocline the results in this section suggest that if the tachocline

is narrower then the ratio of magnetic to thermal diffusivities would

need to be less extreme for this instability to occur. Further, a nar-

rower tachocline would give rise to a more vigorous formation of

strong structures.

Fig. 8(a) shows ln B2
y plotted against time for different values of

z (corresponding to cases A1, H1, I1, K1, L1 and M1) and shows

that, when all other parameters are fixed, the instability onsets earlier

Figure 8. (a) ln B2
y versus time for different values of the shear width,

z. The data points correspond to cases A1, H1, I1, K1, L1, M1. (b) The

maximum value of d(ln B2
y )/dt versus the shear width, z. The data points

for when Ck = 1.0 × 10−2 correspond to cases A1, H1, I1, K1, L1 and M1

and the data points for when Ck = 2.5 × 10−3 correspond to cases A6, H6,

I6, K2, L2 and M2 in Tables A1 and A3.
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Figure 9. ln B2
y versus time for different values of the shear magnitude, M.

The data points correspond to cases A1, B1, C1, D1, E1 and F1 in Tables A1

and A2.

as z is decreased. This is because the depth of the vertical region

in which Bx is stretched out is determined by the shear width and,

therefore, becomes narrower as z is reduced. The narrowing of

this shear region causes the build up of Bx to happen faster, which

is a result of the fact that Bx is dependent on the velocity gradient

∂zU0(z) (Vasil & Brummell 2009). The faster build up and narrower

shear region cause the gradients in Bx to reach the critical value for

instability earlier and, therefore, the instability to occur sooner. We

also note that the narrowing of the shear region also causes the

instability to occur closer to the centre of the domain, z = 0.5.

The maximum value of d(ln B2
y )/dt plotted against the shear

width for Ck = 2.5 × 10−3 (cases A6, H6, I6, K2, L2, M2) and

Ck = 1.0 × 10−2 (cases A1, H1, I1, K1, L1, M1) is shown in

Fig. 8(b). This plot shows a linear relationship between the maxi-

mum growth rate of the instability and the width of the shear region.

Therefore, this plot suggests that further decreasing the width of the

shear flow region would give rise to a stronger instability but far

greater resolution in z would be required to investigate smaller

values of z than are presented here.

In addition to considering how varying the width of the shear

flow affects the instability it is also interesting to also examine how

the strength of the shear flow, governed by our parameter M, affects

the results. This will allow us to comment on what may occur in

other stars with a similar internal structure to the Sun but where the

magnitude of the shear flow is different.

Cases A1, B1, C1, D1, E1 and F1 only differ in the shear mag-

nitude value M. Fig. 9 shows that there is a non-linear relationship

between M and the maximum value of d(ln B2
y )/dt that is obtained

for each of these cases. In Fig. 10, the maximum value of d(ln B2
y )/dt

is plotted against Ck for different values of M. In this figure two dif-

ferent M values, M = 7.5 × 10−2 and M = 1.0 × 10−1, are compared

with the original case where M = 5.0 × 10−2 and shows that the

critical value of CK for the instability to occur becomes smaller as

M is increased.

At the start of this section we commented on the fact that we

wanted to consider the effect that varying the ratio of magnetic to

thermal diffusivities has on the magnetic buoyancy instability and

that there were two possible ways to change this ratio. First, we

chose to maintain the magnetic diffusivity and vary the thermal dif-

fusivity and so change the dynamics via the temperature equation

and not the induction equation that evolves the magnetic field; the

evolution of which is of greatest interest in this work. However,

we could have chosen to vary the ratio via changing the magnetic

Figure 10. The maximum value of d(ln B2
y )/dt versus the dimensionless

thermal diffusivity, Ck, for different values of the shear magnitude, M. The

data points correspond to cases A1–A10, B1–B14 and C1–C15 in Tables A1

and A2.

Figure 11. The maximum value of d(ln B2
y )/dt versus ζ for different values

of the shear width, z. The data points correspond to cases A1–A10, H1–

H12 and I1–I12 from Tables A1 and A3.

diffusivity and so directly alter the induction equation. Given that

one approach directly affects the evolution of the magnetic field

and the other indirectly, through the temperature equation, these

two approaches are not equivalent. Therefore, we will now briefly

turn our attention to a discussion of the findings of how our results

change, when z is varied, if we had selected the alternative ap-

proach where Ck is fixed and the non-dimensional parameter in our

equations is changed through varying, η.

Fig. 11 shows how the maximum value of d(ln B2
y )/dt varies

as ζ is varied for different values of the shear width, z. The

data in this figure corresponds to cases A1–A10 in Table 1 where

z = 1.0 × 10−1, H1–H12 in Table A3 where z = 6.67 × 10−2

and I1–I12 in Table A3 where z = 5.0 × 10−2. Once again,

we find that Fig. 11 shows that, for each value of z, there is a

critical point that bounds the regime where the instability occurs.

The critical point determines the greatest value of ζ for which the

instability occurs. As we vary z we find critical values as fol-

lows: for z = 5.0 × 10−2 the critical value is approximately

3.599 × 10−2, for z = 6.67 × 10−2 the critical value is approxi-

mately 2.89 × 10−2, and for z = 1.0 × 10−1 the critical value is

approximately 1.953 × 10−2. Thus, for fixed Ck increasing the shear

width increases the value below which instability occurs. We note

though that for any given value of ζ for this fixed Ck investigation,

decreasing the width of the shear region makes this instability more

likely to occur. Thus, as was stated earlier for the variable Ck case, if
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the tachocline is narrower than the ratio of magnetic to thermal in-

stabilities would need to be less extreme for this instability to occur.

Further, a narrower tachocline would give rise to a more vigorous

formation of strong structures.

4 C O N C L U S I O N S

To obtain a full understanding of how the large-scale solar dynamo

operates it is vital that we understand what conditions lead to buoy-

ant structures being formed in the tachocline. There are still some

unknowns when we are considering the tachocline region and fur-

ther it is currently impossible to conduct full numerical simulations

at the extreme values of some of the parameters. Therefore, it is im-

portant that we seek to explore how varying different quantities in

the problem affect the formation of structures and to obtain scaling

laws where possible.

In this paper we have presented the results from an investigation

into the double-diffusive magnetic buoyancy instability. We chose to

consider a quasi-two-dimensional model to enable a full exploration

of how varying the key parameters associated with the problem

affected the onset and initial phase of the instability. Our investi-

gation primarily explored how varying the dimensionless thermal

diffusivity, which varied the inverse Roberts number, affected the

onset of the instability. The critical value for the thermal diffusivity

translates into an upper bound on the ratio of magnetic to thermal

diffusivity.

While in the tachocline we know that the ratio of magnetic to

thermal diffusivities will be small, though exactly how small is not

fully known, we still only have an upper bound at the present time

on the thickness of the tachocline. Therefore, part of our research

in this paper examined how the critical threshold value of the ther-

mal diffusivity changed as we varied the width of the shear flow.

We showed that varying the width of the shear flow by itself gives

rise to a lower critical thermal diffusivity value for the onset of the

instability. We have shown that the value of Ck for the instability to

exist is dependent on the width of the shear region and the magni-

tude of the shear flow. Further, we have shown that the maximum

value of the growth rate varies linearly with the width of the shear

flow.

One of the principal motivations for undertaking this reduced

study was to ascertain information that would inform later three-

dimensional investigations to examine the evolution of structures

formed by the double-diffusive instability. Our work has provided

crucial information for such investigations as it has determined what

part of the parameter space is unstable when σCk = 2.5 × 10−6 and

ζCk = 5.0 × 10−6. We have shown that for M = 5.00 × 10−2 the

system is unstable for z < 0.1 provided Ck > 1.25 × 10−3.

Further, we have shown that for fixed z, increasing M leads

to a more unstable system. These results provide a firm foun-

dation on which later three-dimensional investigations can be

undertaken.

In the latter part of this paper, we discussed the effect of taking the

alternative approach to this problem by varying the ratio of magnetic

diffusivity to thermal diffusivity by altering the magnetic diffusivity.

We showed that while the critical value of ζ , which translates into an

effective value of the magnetic diffusivity, increases as you decrease

the shear flow, for any given magnetic diffusivity (with all other

parameters fixed) as you decrease the width of the shear flow it

becomes increasingly likely that instability will occur.

This work has shown, as anticipated from earlier work, that there

is a critical value for which the double-diffusive instability will

occur. While the diffusive parameters that can be considered nu-

merically are much larger than in the solar tachocline there will be

a critical value of thermal diffusivity, at constant magnetic Prandtl

number, for this instability to occur. Further, this work in vary-

ing the width of the shear flow region has shown that, if the

solar tachocline is thinner than currently predicted, then double-

diffusive magnetic buoyancy instability becomes more plausible

as the ratio of magnetic to thermal diffusivities does not need

to be so small for instability to occur. Once the width of the so-

lar tachocline has been precisely determined, and the value of the

transport coefficients obtained, we will be able to discuss fully if

a double-diffusive magnetic buoyancy instability can exist in the

tachocline.

Also, this work has provided a little insight into the magnetic

buoyancy mechanism in other stars where the shear strength and

width may be very different from the Sun. We have shown that

as the strength of the shear is decreased, there appears to be a

value below which the instability does not occur. This can be ex-

plained by the fact that sufficiently large gradients in the magnetic

field are not being created to give rise to an instability and dif-

fusive spreading of the generated magnetic field dominates. This

would suggest that the presence of a tachocline in other stars would

not be sufficient for magnetic buoyancy and, by current thinking

for the solar cases, insufficient for a large-scale dynamo in other

stars.
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APPENDIX A

Table A1. The parameter values for the cases discussed when varying Ck only.

Prandtl Inverse Dimensionless Maximum velocity Parameter controlling Richardson Instability

number Roberts thermal for the the width number

number diffusivity shear of the shear

σ ζ Ck M z Ri

A1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A8 1.43 × 10−3 2.86 × 10−3 1.75 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A9 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A10 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 Yes

A11 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 5.00 × 10−2 1.00 × 10−1 2.96 No

Table A2. The parameter values for the additional cases needed when M is varied.

Prandtl Inverse Dimensionless Maximum velocity Parameter Controlling Richardson Instability

number Roberts thermal for the the width Number

number diffusivity Shear of the shear

σ ζ Ck M z Ri

B1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B8 1.43 × 10−3 2.86 × 10−3 1.75 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B9 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B10 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B11 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B12 3.13 × 10−3 6.25 × 10−3 8.00 × 10−4 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B13 4.17 × 10−3 8.33 × 10−3 6.00 × 10−4 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B14 5.00 × 10−3 1.00 × 10−2 5.00 × 10−4 7.50 × 10−2 1.00 × 10−1 1.32 Yes

B15 6.25 × 10−3 1.25 × 10−2 4.00 × 10−4 7.50 × 10−2 1.00 × 10−1 1.32 No

C1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C8 1.43 × 10−3 2.86 × 10−3 1.75 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C9 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C10 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C11 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C12 3.13 × 10−3 6.25 × 10−3 8.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C13 4.17 × 10−3 8.33 × 10−3 6.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C14 5.00 × 10−3 1.00 × 10−2 5.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C15 6.25 × 10−3 1.25 × 10−2 4.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 Yes

C16 8.33 × 10−3 1.67 × 10−2 3.00 × 10−4 1.00 × 10−1 1.00 × 10−1 0.74 No

D1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 9.00 × 10−2 1.00 × 10−1 0.92 Yes

E1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 6.00 × 10−2 1.00 × 10−1 2.06 Yes

F1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 4.00 × 10−2 1.00 × 10−1 4.63 Yes

G1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 3.00 × 10−2 1.00 × 10−1 8.24 Yes
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Table A3. The parameter values for the additional cases required when z is varied.

Prandtl Inverse Dimensionless Maximum velocity Parameter controlling Richardson Instability

number Roberts thermal for the the width number

number diffusivity shear of the shear

σ ζ Ck M z Ri

H1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H8 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H9 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H10 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H11 2.78 × 10−3 5.56 × 10−3 9.00 × 10−4 5.00 × 10−2 6.67 × 10−2 1.32 Yes

H12 3.13 × 10−3 6.25 × 10−3 8.00 × 10−4 5.00 × 10−2 6.67 × 10−2 1.32 No

I1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I2 4.17 × 10−4 8.33 × 10−4 6.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I3 5.00 × 10−4 1.00 × 10−3 5.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I4 6.25 × 10−4 1.25 × 10−3 4.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I5 8.33 × 10−4 1.67 × 10−3 3.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I6 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I7 1.25 × 10−3 2.50 × 10−3 2.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I8 1.67 × 10−3 3.33 × 10−3 1.50 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I9 2.00 × 10−3 4.00 × 10−3 1.25 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I10 2.50 × 10−3 5.00 × 10−3 1.00 × 10−3 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I11 2.78 × 10−3 5.56 × 10−3 9.00 × 10−4 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I12 3.13 × 10−3 6.25 × 10−3 8.00 × 10−4 5.00 × 10−2 5.00 × 10−2 0.74 Yes

I13 3.57 × 10−3 7.14 × 10−3 7.00 × 10−4 5.00 × 10−2 5.00 × 10−2 0.74 No

J1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 1.20 × 10−1 4.27 Yes

J2 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 1.20 × 10−1 4.27 Yes

K1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 8.00 × 10−2 1.90 Yes

K2 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 8.00 × 10−2 1.90 Yes

L1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 4.00 × 10−2 0.48 Yes

L2 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 4.00 × 10−2 0.48 Yes

M1 2.50 × 10−4 5.00 × 10−4 1.00 × 10−2 5.00 × 10−2 3.33 × 10−2 0.33 Yes

M2 1.00 × 10−3 2.00 × 10−3 2.50 × 10−3 5.00 × 10−2 3.33 × 10−2 0.33 Yes

This paper has been typeset from a TEX/LATEX file prepared by the author.
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