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Image Segmentation Techniques for Granular Materials 

J. Fonseca, C. O’Sullivan and M. R. Coop 

Imperial College London, UK 

Abstract. To improve understanding of the mechanical behavior of granular materials it is important to be able to 
quantify the relative arrangement of the grains, i.e. the fabric. This can be done, for example, by measuring the 
orientations of the particles (e.g. the long axis orientation) or by considering the orientations of the vectors normal to 
each grain–grain contact. In two dimensional (2D) analyses this information can be obtained by digital image analysis of 
images of thin sections obtained from an optical microscope. While such data is useful, granular materials of engineering 
interest are three dimensional (3D) materials and quantification of the 3D fabric is necessary. Micro Computed-
Tomography (µCT) together with 3D image analysis has emerged as a promising technique for obtaining the 3D data 
required. This paper aims to highlight the challenges associated with using image analysis to provide quantitative 
information on fabric. While automated image segmentation has proved to produce reasonable results in some cases, it is 
sometimes less successful when dealing with highly irregular and angular soil grains. This paper evaluates the 
effectiveness of 2D and 3D segmentation techniques that rely on the watershed segmentation algorithm. The primary 
material considered is Reigate Silver Sand, a natural quartzitic sand with grain diameters in the range of 150-300µm. 
While the sand considered is primarily of interest to geotechnical engineers, the results of this study wil l be of interest to 
anyone seeking to quantify granular material fabric using either 2D microscopy data or µCT 3D data sets. 

Keywords: granular material, fabric, watershed segmentation 
PACS: 01.30Cc 83.80.Fg 83.85.Hf 

INTRODUCTION 

Recent studies have clearly shown the influence of 
the rearrangement of the particles i.e. fabric on the 
mechanical behavior of granular soil [1, 2]. These 
earlier experimental studies considered soil in its 
natural state and the same soil reconstituted in a 
standard way. A comparison of the overall 
(macroscopic) response of the two material fabrics can 
be used to define the contributions to strength and 
stiffness of the natural structure. However accounting 
for the effect of fabric in practical engineering analysis 
and design is limited by the lack of quantitative 
descriptions of the soil fabric. This paper aims to 
highlight the challenges associated with 3D image 
analysis to provide quantitative information about 
fabric and specifically the effectiveness of image 
segmentation based on the watershed algorithm. 

For the data presented here, image acquisition was 
carried out using a commercial high-resolution CT 
system (Phoenix X-ray Systems and Services GmbH) 
with a voltage of 100kV. Seven hundred and twenty 
images were captured from a 1.8mm diameter sample 
on a detector of 1024x1024 pixels and then 
reconstructed with a voxel size of 2.5um. The 
material used in the scans was Reigate Sand, a 
quartzitic sand with grain diameters in the range of 
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150-300µm [2]. In the natural state it presents a 
particular fabric with interlocked grains with long 
contacts. In addition, the grains are highly fractured 
and some particles are significantly smaller than the 
mean diameter. 

IMAGE ANALYSIS 

Numerical simulations have provided us with 
useful insights into the way assemblies of relatively 
simple particles deform under loading. Quantitative 
relationships between fabric and overall material 
response have been established in DEM simulations 
[3, 4]. Theoretically we can apply the tools used in 
statistical analyses of DEM simulations to real 
granular materials, if we have sufficient information 
on the contact geometry of the particles. The fabric of 
granular material is often quantified by a tensor 
defined in terms of packing orientations. This 
orientation data can be defined by the contact between 
two particles, the vector joining the centroids of two 
contacting particles (i.e. the branch vector) or the long 
axis of the particle, as shown in Figure 1. 



FIGURE 1. Schematic definition of directional data in a 
granular soil, (a) contact normal (b) branch vector (c) long 
axis orientation 

Real soil particles have, however, rather complex 
shapes and packing. Most of quantitative information 
on soil microstructure comes from microscopy 
techniques (e.g. thin section analysis). The major 
drawback of these techniques is the difficulty in 
obtaining the desired plane of section, i.e. the plane 
containing the contact. A complete 3D volume can be 
obtained by serial sectioning [5] but the laborious 
nature of the process, together with unavoidable 
uncertainties, limits its use. 

A modern alternative is high resolution CT (µCT). 
This non-destructive technique has emerged in recent 
years. Once a machine is available, 3D images (e.g. 
those shown in Figure 2(a)) can be obtained relatively 
quickly. 

Image analysis is by definition the process of 
extracting measurements from an image. But the 
“raw”  images have to be processed i.e. converted into 
another image with meaningful features. The 
discussion here focuses on the processing stages 
required to generate images for quantitative fabric 
analysis. 

IMAGE SEGMENTATION 

Image segmentation is the division of the image 
into regions of interest in this case identifying distinct 
particles. Once the image has been segmented, 
orientation data can be obtained regarding the relative 
arrangement of the particles. Image segmentation is 
therefore a key step in image processing towards the 
quantitative interpretation of image data. The 
segmentation process was performed in 3D but for 
simplicity the results displayed here are for one slice 
only. Therefore we refer to pixels instead of voxels in 
the CT scans. Note that many of the points raised here 
are also applicable to thin section analysis. 

Image Pre-processing 

The image pre-processing step consisted of 
applying a median filter (3x3x3) in order to improve 
the image quality by removing noise and enhancing 
edges. The use of this smoothing but edge-preserving 
type of filter is important for effective image 

segmentation as it decreases the sensitivity to small-
scale features and texture. 

Image Thresholding 

For an image with a bi-modal intensity distribution 
histogram, where the two peaks correspond to the solid 
phase and the void space respectively, thresholding 
might initially seem to be straightforward. However 
the presence of artifacts such as partial volume effects 
wil l result in a lack of accuracy. The “partial volume 
effect”  is due to the limited resolution of the CT scan, 
and results in pixels with intermediate gray values 
appearing in the image because they merge the 
properties of the grain and the void space. This 
phenomenon can affect the segmentation results 
significantly as these pixels are located along the 
boundaries of the particles and so define the particle 
contacts. Image segmentation by simple thresholding 
gives good results when we want to separate the solid 
phase from the void space providing that there is 
enough contrast between both materials. The result is a 
binary image where pixels belonging to the particles 
have value 1 and pixels in the void space have value 0 
as shown in Figure 2(b). However for the material and 
technology considered here simple thresholding was 
found to be insufficient to separate touching particles, 
and to define accurately the nature of the contacts. A 
more sophisticated segmentation technique was 
therefore needed and the watershed algorithm was 
considered. 

FIGURE 2. (a) microCT image of Reigate Sand, 3D view 
(b) result of simple thresholding applied to a slice. 

Watershed Algorithm 

The watershed algorithm is originally derived from 
the principle in which regions are segmented into 
catchment basins [6]. This analogy with a 
geographical model requires defining the image as a 
height function. 

For the present analysis the original image was 
“converted”  into a surface where the physical 
elevation was given by a distance map. By applying a 
distance transform to the binary image, a distance map 
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is obtained by replacing the value of the solid pixels 
with the value 1 by the distance, measured in pixels, to 
the closest void space pixel. The length of the shortest 
path joining any two pixels was calculated based on 
the Euclidean distance between them following the 
algorithm proposed by Danielsson [7]. Therefore, in 
the Euclidean distance map (EDM) the central area of 
each grain appears as a mountain peak, as shown in 
Figure 3(a). 

The base for the watershed segmentation is 
however, the inverse of the EDM, where the 
topography is inverted and peaks are replaced by 
“minima”. A catchment basin can therefore be defined 
as the set of points whose path of steepest descent 
terminates in the same local minimum in the inverse 
EDM. Figure 3(b) shows the distance map after being 
preprocessed with a curvature flow filter available in 
the Insight Toolkit (an open-source software toolkit, 
Ibanez et al. [8]). Unlike the linear filtering, this image 
smoothing technique preserves the edges and the fine 
details remain unchanged. 

FIGURE 3. (a) EDM where light pixels are high and dark 
pixels are low (b) EDM after pre-filtering displayed using 
iso-distance contours. 

There are two different watershed algorithms 
commonly used to distinguish particles. The first 
strategy is the immersion approach [9] and it consists 
of “flooding”  the regions surrounding the minima from 
bottom up looking for the places where the flooded 
regions touch. The second “top-down”  approach 
associates each pixel with a catchment basin by 
identifying a preferential downward “flow path” 
towards a minimum or a point that has already been 
associated with a minimum [10]. 

Immersion algorithm 

The watershed segmentation was performed using 
MATLA B image processing toolbox [11]. This 
method starts with seeds at the local minima and 
grows regions outwards and upwards at discrete 
intensity levels, equivalent to a sequence of 
morphological operations. This limits the precision of 
the segmentation by imposing a set of discrete gray 
levels on the image. 

For the analysis presented here, the MATLA B 
function watershed was applied to the inverse of the 
distance map to produce a label matrix that contains 
positive integers corresponding to the locations of each 
catchment basin and values equal to zero along the 
watershed lines. However, as shown in Figure 4(a), 
because the watershed lines are the highest crest lines 
separating the regional minima, the labeled regions 
will  not coincide with particle boundaries. Therefore 
the zero valued pixels (voids) in the distance map are 
set to a minimum value (–inf) forcing in this way the 
background to be its own catchment basin. The 
drawback of this practice is that the catchment basins 
will  not correspond only to the solid phase but also to 
the void space and it wil l produce as many different 
regions as the number of unconnected areas as shown 
in Figure 4(b). In fact, because the void space is not 
associated with a unique label, it will  require further 
consideration prior to image analysis. 

FIGURE 4. Watershed ridge lines, (a) considering only 
particles as catchment basins (b) both particles and void 
spaces are catchment basins. 

Top-down approach 

The second, top-down methodology was applied by 
making use of the implementation in the Insight 
Toolkit [8]. This algorithm proceeds in a few steps, an 
initial classification of all points into catchment basin 
regions followed by an analysis of neighboring basins 
in order to create a hierarchy or merge tree between 
them. The merge tree between those basins that occur 
at different flood level thresholds is created by 
evaluating the height of the common boundary points. 
The flood level is a value that reflects the amount of 
metaphorical precipitation that is rained into the 
catchment basins; its minimum value is zero and its 
maximum value is the difference between the highest 
and lowest values in the input image (EDM) [12]. The 
process is controlled by two parameters: the threshold 
and the level, both set as a fraction (0.0 - 1.0) of the 
maximum flood level. The threshold is used to remove 
shallow background regions, i.e. making them flat. By 
deciding upon a value for the level parameter, a 
labeled image can be obtained for any level of the 
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merge tree. The level parameter controls the number of 
regions in the final labeled image by defining the 
precipitation that is rained into the catchment basins. 
As the level rises, the boundaries between adjacent 
regions erode and those regions merge. 

The parameters chosen for images analyzed in this 
investigation were threshold 0.06 and level 0.4. The 
results of the watershed segmentation for one slice 
image using both watershed approaches are shown in 
Figure 5(a) and Figure 5(b) respectively, and each 
region has associated to it a different color. 

FIGURE 5. Watershed segmentation results using (a) the 
immersion algorithm (b) the top-down algorithm 

ANALYSIS AND DISCUSSION 

The analysis of the results obtained has shown that 
watershed segmentation of irregular particles is a 
rather challenging task. One of the most common 
inaccuracies is image over-segmentation, i.e. the 
image is divided into a number of regions that is 
greater than the number of features that it represents. 

Based on the fundamental assumption of the 
watershed algorithm that each regional minimum in 
the EDM represents the center of a distinct object, 
irregularities and variations along the surfaces of 
particles will  cause the same particle to be divided into 
multiple parts. Pre-filtering the distance map with a 
smoothing filter can prevent small minor regional 
minima being associated with different particles. 
However, the basis for finding the watershed lines, i.e. 
lines that separate grains, is that each grain should 
produces a single, distinct minimum and therefore 
more sophisticated approaches are required. The use of 
marker points allows us to identify or “mark”  regions 
that we want to be associated with one particle [13]. 
This can be particularly useful in the immersion 
algorithm considering the poor flexibilit y of this 
method. For the top-down approach, merging adjacent 
catchment basins based on the hierarchy of the merge 
tree can significantly improve the segmentation 
results. 

There are also additional special situations. For 
example, consideration of elongated grains or particles 
with long contacts will  require adapting the watershed 
segmentation to special rules. This will  obviously 

involve a good understanding of the image, and an 
awareness of the features of the granular material that 
the pixels represent [14]. 

CONCLUSIONS 

The paper has presented a methodology for the 
segmentation of 3D images of granular materials 
exhibiting complex packing and geometries. Diverse 
tools and algorithms available in image processing 
were used and their effectiveness critically analyzed. 
The results have shown that automated methods for 
partitioning features within an image may not 
correspond to the same regions that a human expert 
would identify. Each material analyzed presented 
unique challenges depending on the shape, size and the 
need of the application. No single method can give the 
right answer. The tools available should be creatively 
combined in a constructive process to achieve the 
designed purpose. 
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