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1 Introduction

Consider the measurement error model

Y = X + ε,

where X is the signal while ε is the noise. Assume X is independent with ε, X has

density fX , ε has density k, so the density of Y , denoted as fY , is the convolution of fX

and k

fY = fX ∗ k,

where the ∗ denotes convolution.

Assume we observe the realizations Y1, . . . , Yn of Y , and the function k is fully known,

one possible estimator for fX from the noisy observations Y1, . . . , Yn is the kernel decon-

volution estimator

f̂X(x) =
1

2π

∫ +∞

−∞
e−itx

φK(th)φ̂fY (t)

φk(t)
dt, (1)

where

φ̂fY (t) =
1

n

n∑
j=1

eitYj ,

is the empirical characteristic function of density fY , K(x) is a kernel function, φK and φk

are the Fourier transform of K and k, respectively1. The kernel deconvolution estimator

was first proposed for the measurement error model by Carroll and Hall (1988) and

Stefanski and Carroll (1990).

Define the kernel deconvolution function as follows:

νh(x) :=
1

2π

∫ +∞

−∞

φK(t)

φk(t/h)
e−itxdt,

1Characteristic function of a random variable with density f is defined as φf =
∫
R
eitxf(x)dx.
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the kernel deconvolution estimator can be written compactly as

f̂X(x) =
1

nh

n∑
j=1

νh

(
x− Yj
h

)
. (2)

In this paper, I show the asymptotic normality for the estimator f̂X(x) when the

distribution of ε is logarithmic Chi-square. The asymptotic distribution of the kernel

deconvolution estimator has been considered in Fan (1991a), Fan and Liu (1997), Van Es

and Uh (2004), and Van Es and Uh (2005) for identically independently distributed

(i.i.d.) observations. Masry (1993) and Kulik (2008) consider various cases for the

weakly dependent observations. However, none of the above research allows the error

distribution to be the logarithmic Chi-square distribution. I consider both the identical

and independently distributed (i.i.d.) observations and strong mixing observations in

this paper, which complements the above mentioned literature.

The results obtained in this paper can be applied to obtaining the asymptotic distri-

bution of deconvolution volatility density estimator. The problem of estimating volatility

density has been gaining increasing interest in econometrics in recently years, see e.g.

Van Es, Spreij, and Van Zanten (2003) and Van Es, Spreij, and Van Zanten (2005)

for the kernel deconvolution estimator, Comte and Genon-Catalot (2006) for the penal-

ized projection estimator, and Todorov and Tauchen (2012) for the study in the context

of high-frequency data. Kernel deconvolution with logarithmic Chi-square noise arises

naturally when estimating the volatility density in Stochastic Volatility (SV) models. Ex-

isting research (e.g. Van Es, Spreij, and Van Zanten (2003) and Van Es, Spreij, and Van

Zanten (2005)) focuses on the convergence rates of the estimators, and the asymptotic

distribution of the estimators is not available.

In Section 2, I review the probabilistic properties of logarithmic Chi-square distribu-

tion; Section 3 presents the asymptotic normality of the estimator, for both i.i.d. obser-

vations and dependent observations; Section 4 discusses the application of the results to

volatility density estimation in SV models; Section 5 concludes the paper.
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2 Logarithmic Chi-square distribution

The logarithmic Chi-square distribution is obtained by taking logarithm of a Chi-square

distribution with degree of freedom 1. The density function of logarithmic Chi-square

distribution is

k(x) =
1√
2π
e

1
2
xe−

1
2
ex .

The density function of the logarithmic Chi-square distribution is asymmetric and is

plotted in Figure 1.

Figure 1: Density function of the Logarithmic Chi-square distribution

The characteristic function of the logarithmic Chi-square distribution is

φk(t) =
1√
π

2itΓ

(
1

2
+ it

)
,

where Γ(.) is the gamma function.

Fan (1991a) studies the quadratic mean convergence rate of the kernel deconvolution

estimator, it turns out that the convergence rate of the estimator depends heavily on

the type of the error distribution. In particular, it is determined by the tail behavior

of the modulus of the characteristic function of the error distribution - the faster of the

modulus function goes to zero in the tail, the slower the converge rate. The following

Lemma, which is from Van Es, Spreij, and Van Zanten (2005), gives the tail behavior of

|φk(t)|.
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Lemma 1 (Lemma 5.1 of Van Es, Spreij, and Van Zanten (2005)) For |t| → ∞, we

have

|φk| =
√

2e−
1
2
π|t|
(

1 +O

(
1

|t|

))
, (3)

and

Reφk(t) = |φk|
(

cos
[
t log

(√
1 + 4t2 − t

)]
+O

(
1

|t|

))
, (4)

Imφk(t) = |φk|
(

sin
[
t log

(√
1 + 4t2 − t

)]
+O

(
1

|t|

))
. (5)

From (3), it is known that the modulus of φk(t) decays exponentially fast as |t| → ∞.

It thus belongs to the supersmooth density according to the classification in Fan (1991b).

According to Fan (1991b), the optimal convergence rate of the estimator is (log n)−2,

when h = (log n)−1. Figure 2 plots the modulus function |φk| and its approximation
√

2e−
1
2
π|t|, we notice that the two functions almost coincide at both tails.

Figure 2: Modulus function of the characteristic function of logarithmic Chi-square dis-
tribution, and its approximation: the higher peak curve is the approximating function√

2e−
1
2
π|t|

From (4) and (5), it is known that in both tails, neither the real part nor imaginary

part of the characteristic function can dominate the other, this violates the assumptions

in the previous works by, e.g. Fan (1991a) and Masry (1993), on studying the asymptotic

normality - for supersmooth error distributions, these papers assume either the real part

or the imaginary part to be dominant.
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3 Asymptotic normality

In this paper I consider one particular kernel function, namely the sinc kernel function:

(C1) The sinc kernel function is defined as

K(x) =
sin(x)

πx
,

with Fourier transform2

φK(t) = I{|t| 6 1}.

The sinc kernel function is favored in theoretical literature because of the simplicity of

its Fourier transform and is thus used here.3

3.1 i.i.d. observations

In this section, I prove the asymptotic normality of the estimator when the observations

are i.i.d ..

Theorem 1 When the observations are i.i.d., and ε is distributed as logarithmic Chi-

square, if assumption (C1) holds, when exp (1/h) /n→ 0 as n→∞ and h→ 0, it holds

that,

f̂X(x)−Kh ∗ fX(x)√
1

2π2n
exp (π/h) fY (x)

→d N(0, 1),

where Kh(x) := (1/h)K(x/h).

2In this paper, I follow the convention to define the Fourier transform of a function f to be φf =∫ +∞
−∞ eitxf(x)dx.

3Usually for practical implementations, the following kernels

K1(x) =
48 cosx

πx4

(
1− 15

x2

)
− 144 sinx

πx5

(
2− 5

x2

)
,

with Fourier transform
φK1

(t) = I{|t| 6 1}
(
1− t2

)3
,

is used because it has better numerical properties, see Delaigle and Gijbels (2004) for the discussions.

6



Proof Denote

Zj =
1

h
νh

(
x− Yj
h

)
,

then

f̂(x) =
1

n

n∑
j=1

Zj.

First

Ef̂(x) = EZ1

= E

[
1

2π

∫ +∞

−∞
e−itx

φK(th)φ̂fY (t)

φk(t)
dt

]

=
1

2π

∫ +∞

−∞
e−itx

φK(th)E
[
φ̂fY (t)

]
φk(t)

dt

=
1

2π

∫ +∞

−∞
e−itx

φK(th)φfY (t)

φk(t)
dt

=
1

2π

∫ +∞

−∞
e−itxφK(th)φfX (t)dt

= Kh ∗ fX(x),

Second, I evaluate VarZ1,

VarZ1 = Var

(
1

h
νh

(
x− Y1
h

))
=

1

h2

(
Eνh

(
x− Y1
h

)2

−
(
Eνh

(
x− Y1
h

))2
)

=
1

h2

(∫
νh

(
x− y
h

)2

fY (y)dy − (Kh ∗ fX(x))2
)

=
1

h2

(
h

∫
νh (y)2 dyfY (x)− (Kh ∗ fX(x))2

)
=

1

2π2
exp

(π
h

)
fY (x) (1 + o(1)) , (6)
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where the last equality is obtained becauseKh∗fX(x)→ fX(x) as h→ 0, and
∫
|νh(x)|2 dx =

h
2π2 exp

(
π
h

)
(1 + o(1)). The latter result is showed as follows,

∫
|νh(x)|2 dx =

1

2π

∫
|φνh(u)|2 du

=
1

2π

∫ ∣∣∣∣ φK(u)

φk (u/h)

∣∣∣∣2 du

=
h

π

∫ 1/h

0

∣∣∣∣ 1

φk (u)

∣∣∣∣2 du

=
h

π

(∫ M

0

∣∣∣∣ 1

φk (u)

∣∣∣∣2 du+

∫ 1/h

M

∣∣∣∣ 1

φk (u)

∣∣∣∣2 du

)
,

where M is a very big number. The first term in the bracket is a constant depending on

M ; the order of the second term can be evalued as follows,

∫ 1/h

M

∣∣∣∣ 1

φk (u)

∣∣∣∣2 du =
1

2π

(
exp

(π
h

)
− exp (πM)

)
=

1

2π
exp

(π
h

)
(1 + o(1)),

where I use the fact that when M is big |φk(u)| can be replaced by its asymptotic ap-

proximation. The second term clearly dominates the first term, which is a constant, such

that ∫
|νh(x)|2 dx =

h

2π2
exp

(π
h

)
(1 + o(1)). (7)

Here I use the argument of Butucea (2004) to split the integral and show the tail part of

the integral dominates.

A sufficient condition for asymptotic normality is the Lyapounov condition, which

reduces to

E|Z1 − EZ1|2+δ

nδ/2[Var(Z1)]1+δ/2
→ 0, (8)

for i.i.d. data.
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For an upper bound for the numerator,

E|Z1 − EZ1|2+δ 6 E|Z1|2+δ + |EZ1|2+δ

6 2E|Z1|2+δ

=
2

h2+δ

∫ +∞

−∞
|νh
(
x− y
h

)
|2+δfY (y)dy

6
C

h2+δ

∫ +∞

−∞
|νh
(
x− y
h

)
|2+δdy (9)

Now notice the result from Van Es, Spreij, and Van Zanten (2005) and Masry (1991)

that, for p > 2,4

‖νh‖p 6 ‖νh‖1−2/p∞ ‖νh‖2/p2 .

An upper bound for ‖νh‖∞ is easy to get, as5

‖νh‖∞ = sup
x

∣∣∣∣ 1

2π

∫
φK(t)

φk(t/h)
e−itxdt

∣∣∣∣
6

1

2π

∫ ∣∣∣∣ φK(t)

φk(t/h)

∣∣∣∣ dt
6

√
2

π2
h exp

( π
2h

)
,

while ‖νh‖22 is known from (7), such that

∫
|νh(z)|p dz 6 ‖νh‖p−2∞ ‖νh‖22

6 C × hp−2 exp

(
π(p− 2)

2h

)
× h exp

(π
h

)
= C × hp−1 exp

(πp
2h

)
,

for p > 2.

4This is easy to see by noticing
∫
|νh(x)|p dx 6

∫
|νh(x)|2 |supx νh(x)|p−2 dx for p > 2.

5Here again the splitting integral argument as in proving (7) is used, I omit the details for ease of
exposition.
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So take p = 2 + δ in (3.1), it then holds that

E|Z1 − EZ1|2+δ 6 C × exp

(
π(2 + δ)

2h

)
, (10)

this together with (6) imply the Lyapounov’s condition (8) holds, which completes the

proof. �

3.2 Strong mixing observations

In this section, I consider the model

Y = X + ε, (11)

where X’s realizations of X1, · · · , Xn are strictly stationary and strong mixing, while the

noise realizations ε1, · · · , εn are i.i.d. logarithmic Chi-square variables, independent with

X, such that the observations Y1, · · · , Yn are also strictly stationary and strong mixing.

There are various concepts of dependence, here I consider the case of α-mixing, also

called strong mixing, which is the weakest among all the dependence concepts.

Definition 1 Let {Xt}, t = · · · ,−1, 0, 1, · · · be an infinite sequence of strictly stationary

random variables, and F ji be the σ-algebra generated by {Xt, i 6 t 6 j}, then the α-mixing

coefficient is defined as

α(k) = sup
A∈F0

−∞,B∈F
+∞
k

|P (A)P (B)− P (AB)| .

The sequence {Xt}, t = · · · ,−1, 0, 1, · · · is called α-mixing if α(k)→ 0 as k →∞.

For dependent case, a bounded assumption on the joint density of observations is also

needed.

(C2) The probability density function of any joint distribution (Yi, Yj), 1 6 i < j 6 n,

exist and bounded by a constant.
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Now I give the asymptotic normality theorem. Notice that the mixing assumption

here is a litter weaker than that in Masry (1993).

Theorem 2 In model (11), let X1, X2, · · · , Xn be strictly stationary, α-mixing with

∞∑
k=1

α(k)1−2/δ <∞, (12)

for some δ > 2; the noise ε1, · · · , εn are i.i.d. logarithmic Chi-square variables, inde-

pendent with X; if (C1) and (C2) hold, when exp (1/h) /n → 0 as n → ∞ and h → 0,

then

f̂X(x)−Kh ∗ fX(x)√
1

2π2n
exp (π/h) fY (x)

→d N(0, 1).

Proof First by strictly stationarity and using Ergodic theorem for strong mixing se-

quences, similarly as in the proof of Theorem 1,

Ef̂(x) = Kh ∗ fX(x).

Next the variance of the estimator is evaluated, first

Var
(
f̂(x)

)
=

1

n
Var (Z1) +

2

n2

n−1∑
j=1

(n− j) Cov (Z1, Zj+1) .

Knowing from Theorem 1 that the first term is

1

n
Var(Z1) =

1

2π2n
exp

(π
h

)
fY (x)(1 + o(1)). (13)

For the covariance term, first notice

|Cov(Z1, Zj+1)| 6 |E (Z1Zj+1)|+ (Kh ∗ fX(x))2

6 |E (Z1Zj+1)|+O(1), (14)
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as h→ 0. Now because

|E(Z1Zj+1)| =
1

h2

∣∣∣∣E (νh(x− Y1h

)
νh

(
x− Yj+1

h

))∣∣∣∣
=

1

h2

∣∣∣∣E ∫ ∫ φK(t)φK(t′)

φk(t/h)φk(t′/h)
e−it

x−Y1
h e−it

′ x−Yj+1
h dtdt′

∣∣∣∣
=

1

h2

∣∣∣∣∫ ∫ φK(t)φK(t′)

φk(t/h)φk(t′/h)
E
(
E
(
e−it

x−X1−ε1
h e−it

′ x−Xj+1−εj+1
h

∣∣∣X)) dtdt′
∣∣∣∣

=
1

h2

∣∣∣∣∫ ∫ φK(t)φK(t′)

φk(t/h)φk(t′/h)
φk(t/h)φk(t

′/h)E
(
e−it

x−X1
h e−it

′ x−Xj+1
h

)
dtdt′

∣∣∣∣
=

1

h2

∣∣∣∣∫ ∫ φK(t)φK(t′)E
(
e−it

x−X1
h e−it

′ x−Xj+1
h

)
dtdt′

∣∣∣∣
6

1

h2

∣∣∣∣∫ ∫ |φK(t)φK(t′)|E
(∣∣∣e−itx−X1

h e−it
′ x−Xj+1

h

∣∣∣) dtdt′
∣∣∣∣

6
1

h2

∣∣∣∣∫ ∫ |φK(t)φK(t′)| dtdt′
∣∣∣∣

6
C

h2
,

where C is a constant, continue on (14) I get

|Cov(Z1, Zj+1)| 6 C
1

h2
(1 + o(1)) . (15)

On the other hand, using the assumption on the α-mixing coefficients and the covariance

inequality for strong mixing sequence in Proposition 2.5 in Fan and Yao (2002), for δ > 2,

Cov (Z1, Zj+1) 6 8α(j)1−2/δ
(
E |Z1|δ

)1/δ (
E |Zj+1|δ

)1/δ
= 8α(j)1−2/δ

(
E |Z1|δ

)2/δ
6 C ′α(j)1−2/δ exp

(π
h

)
. (16)
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So using (15) and (16),

∣∣∣∣∣
n−1∑
j=1

Cov (Z1, Zj+1)

∣∣∣∣∣
6

∣∣∣∣∣
mn∑
j=1

Cov (Z1, Zj+1)

∣∣∣∣∣+

∣∣∣∣∣
n−1∑
j=mn

Cov (Z1, Zj+1)

∣∣∣∣∣
6 C

1

h2
mn + C exp

(π
h

) n−1∑
j=mn

α(j)1−2/δ,

if one chooses mn = 1
h|log h| , then mn → ∞ and mnh → 0, then obviously the first term

is o
(
exp

(
π
h

))
; the second term is also o

(
exp

(
π
h

))
by noticing the mixing assumption in

(12). Then it is shown that

∣∣∣∣∣
n−1∑
j=1

Cov (Z1, Zj+1)

∣∣∣∣∣ = o
(

exp
(π
h

))
. (17)

From (13) and (17) it then follows that

Var
(
f̂(x)

)
=

1

2π2n
exp

(π
h

)
fY (x) (1 + o(1)) .

Now I prove the central limit theorem, for which I use the classical large block-small

block argument of proving central limit theorem for dependent sequence. First I make

some normalizations, define σ0 =
(

1
2π2 exp

(
π
h

)
fY (x)

)1/2
, and

Z ′j =
Zj −Kh ∗ fX(x)

σ0
,

then Z ′j has mean 0 and unit variance, and

1

n

n∑
j=1

Z ′j =
f̂(x)−Kh ∗ fX(x)

σ0
,
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and it will be shown that
√
n

(
1

n

n∑
j=1

Z ′j

)
→d N(0, 1),

which is the result need to show.

First the set {1, · · · , n} is partitioned into 2kn + 1 subsets with large blocks of size ln

and small blocks of sized sn, such that kn = bn/(ln + sn)c ,so the last remaining block is

having size n− kn(ln + sn). The size are such that ln →∞, sn →∞, ln/sn →∞. Then

we can write
n∑
j=1

Z ′j =
kn∑
j=1

ξj +
kn∑
j=1

ηj + ζ,

where

ξj =

(j−1)(ln+sn)+ln∑
j′=(j−1)(ln+sn)+1

Z ′j′

ηj =

j(ln+sn)∑
j′=(j−1)(ln+sn)+ln+1

Z ′j′

ζ =
n∑

kn(ln+sn)+1

Z ′j.

which are sum of large blocks, small blocks, and the last block respectively. Then as a

standard procedure for small block-big block argument, I show the following

1

n
E

(
kn∑
j=1

ηj

)2

= o(1), (18)

1

n
Eζ2 = o(1), (19)∣∣∣∣∣E exp

(
it

kn∑
j=1

ξj/
√
n

)
−

kn∏
j=1

E exp
(
itξj/
√
n
)∣∣∣∣∣ → 0, (20)

1

n

kn∑
j=1

Eξ2j → 1, (21)

1

n

kn∑
j=1

E
[
ξ2j I
(
|ξj| > εn1/2

)]
→ 0, (22)
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for ∀ε > 0. (18) and (19) say the small blocks and the last block are of smaller order.

(20) says that the large blocks are as if independent in the sense of characteristic func-

tion. Then (21) and (22) are Lindeberg-Feller condition for the asymptotic normality for∑kn
j=1 ξj under independence.

For (18) and (19), using the moment inequality for α-mixing sequence in Proposition

2.7 (i) in Fan and Yao (2002), it can be shown that

E

(
kn∑
j=1

ηj

)2

= O (knsn) ,

Eζ2 = O(n− kn(ln + sn)),

notice that the conditions for Proposition 2.7 (i) are satisfied - because by (10), E
∣∣Z ′j∣∣δ <

∞ for δ > 2; and the mixing assumption (12) implies that α(j)1−2/a = j−b for b > 1,

which is α(j) = j−ab/(a−2) = j−
1
2
× 1

1/(2b)−1/(ab) , take δ = ab and q = 2b so the mixing

condition is also satisfied.

For (20), using the covariance inequality in Proposition 2.6 in Fan and Yao (2002),

we have

∣∣∣∣∣E exp

(
it

kn∑
j=1

ξj/
√
n

)
−

kn∏
j=1

E exp
(
itξj/
√
n
)∣∣∣∣∣

6 16(kn − 1)α(sn),

this is o(1) by choosing for example ln = (nhγ1)1/2, sn = (nhγ2)1/2 for 1 < γ1 < γ2. Then

kn = O(n1/2h−γ1/2), such that for some q > 1,

knα(sn) = n1/2h−γ1/2
1

(nhγ2)q/2

= n
(1−q)

2 h−
(γ2q+γ1)

2 ,

obviously the above expression is o(1) by the assumption that exp (1/h) /n→ 0, so (20)

is proved.
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For the Feller’s condition (21), first use the same strategy as calculating the variance

of the estimator, it holds that

Eξ2j = ln (1 + o(1)) ,

for any j, because ξj is also an infinite sum of the observations. So

1

n

kn∑
j=1

Eξ2j =
1

n
knln (1 + o(1))→ 1.

Finally for the Lindeberg’s condition (22), first observe that

E
[
ξ2j I
(
|ξj| > εn1/2

)]
6

(
Eξ4j

)1/2
P
(
|ξj| > εn1/2

)
6

(
Eξ4j

)1/2 Eξ2j

(ε
√
n)

2 ,

where I first use Holder’s inequality and then Markov’s inequality. Using again the

moment inequality for strong mixing sequence in Proposition 2.7 in Fan and Yao (2002),

(
Eξ4j

)1/2 Eξ2j

(ε
√
n)

2 6
(
l2n
)1/2 × ln

(ε
√
n)

2

=
l2n
ε2n

,

so

1

n

kn∑
j=1

E
[
ξ2j I
(
|ξj| > εn1/2

)]
= O

(
kn
n
× l2n
ε2n

)
=

1

ε2
O

(
ln
n

)
= o(1).

Using the Lindeberg-Feller condition, and employ the standard argument for the proof
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of central limit theorems, it can be shown that

kn∏
j=1

E exp
(
itξj/
√
n
)
→ exp

(
−t

2

2

)
,

this together with (18), (19) and (20) entail the stated result. �

4 Application to density estimation in stochastic volatil-

ity model

In this section, I consider applying the results of Theorem 2 to obtain the asymptotic

distribution of the kernel deconvolution volatility density estimator in SV models. A

generic SV model has the following form,

yti = σtiεti , i = 1, · · · , n, (23)

where εti , i = 1, · · · , n are i.i.d. N(0, 1); {σti} is a latent stochastic process called volatil-

ity process; {yti} is the observed financial returns. SV model is a popular model used in

financial econometrics to describe the evolution of financial returns. Model (23) incorpo-

rates popular discrete-time SV models (e.g. Taylor (1982)) and discretized continuous-

time SV model which assume the volatility process to be stationary as special cases (see

e.g. Shephard (2005) for a review). Van Es, Spreij, and Van Zanten (2003) and Van Es,

Spreij, and Van Zanten (2005) considered estimating the volatility density using kernel

deconvolution estimator in this model.

Remark 1 By using the term ”stochastic volatility” here, I consider the so-called ”gen-

uine stochastic volatility” models, where the volatility process has a separate stochastic

driving factor (see e.g. Shephard and Andersen (2009) and Andersen, Bollerslev, Diebold,

and Labys (2009) for detailed discussions). It thus does not include the ARCH/GARCH

class models, where one has explicitly specified one-step-ahead predictive densities. Van Es,
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Spreij, and Van Zanten (2005) considered estimating volatility density in the context of

ARCH/GARCH class of models and had given rate of convergence for their estimator.

To apply the general theory derived in Section 3, it is further assumed that the volatil-

ity process {σti} is strictly stationary, and it is independent with εti for i = 1, · · · , n. The

independence assumption rules out the leverage effect in stochastic volatility models and

thus suitable to apply to say, exchange rate data, where the leverage effect is rarely

observed. Extending the model to allow for the leverage effect is an important yet chal-

lenging task, which is thus left for future research.

The SV model can be written as a measurement error model (11) by taking squares

and logarithms on both sides of equation (23),

log y2ti = log σ2
ti

+ log ε2ti , i = 1, . . . ., n, (24)

such that the variable log y2i is the convolution of log ηi with a completely known distri-

bution logarithmic Chi-square. Following the notations in the previous sections, write

the density functions of log y2ti , log σ2
ti

and log ε2ti to be fy, fσ and k respectively.

If we want to recover the density fσ of log σ2
ti

from the observations {log y2ti}, this is a

problem of deconvolution with logarithmic Chi-square error, and the kernel deconvolution

estimator can be used. Van Es, Spreij, and Van Zanten (2003) and Van Es, Spreij,

and Van Zanten (2005) first noticed this connection. Define Zj := log y2j , they use the

following estimator to recover fσ(x),

f̂y(x) =
1

2π

1

n

n∑
j=1

∫ +∞

−∞

φK(th)

φk(t)
e−it(x−Zj)dt,

where φK is the Fourier transform of a kernel function K, φk(t) is the characteristic

function of logχ2
1 variable. Van Es, Spreij, and Van Zanten (2003) and Van Es, Spreij,

and Van Zanten (2005) derive the convergence rate of the estimator, but a central limit

theorem is missing.
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If we assume the observed return sequence {Zj}, j = 1, · · · , n is generated by the SV

model (23) with a strictly stationary, α-mixing volatility process satisfies (12) and i.i.d.

errors, a simple application of Theorem 2 will lead to the following corollary.

Corollary 1 In the stochastic volatility model (23), when the volatility process {σj},

j = 1, · · · , n is α-mixing with (12) satisfied; εti’s are i.i.d. N(0, 1), independent with the

volatility process; when exp (1/h) /n→ 0 as n→∞ and h→ 0, it holds that

f̂σ(x)−Kh ∗ fσ(x)√
1

2π2n
exp (π/h) fy(x)

→d N(0, 1).

Since the density fu(x) can be estimated with the observed return sequence {log y2ti}

consistently using classical kernel density estimator for any x, see e.g. Fan and Yao

(2002). The above result can be used to construct pointwise confidence intervals for the

kernel deconvolution density estimator.

5 Conclusion

In this paper, I have proved the asymptotic normality for kernel deconvolution estima-

tor with logarithmic Chi-square noise. I consider both the case identical and indepen-

dently distributed observations and strong mixing observations. The results are applied

to prove the asymptotic normality of kernel deconvolution estimator for volatility density

in stochastic volatility models.
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