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Bootstrap Estimation of the Predictive Distributions of
Reserves Using Paid and Incurred Claims

Abstract

This paper presents a bootstrap approach to estthmagrediction distributions of reserves produced

by the Munich chain ladder (MCL) model. The MCL model was introduced by Quarg and Mack
(2004) and takes into account both paid and incurred claims information. In order to produce
bootstrap distributions, this paper addresses the application of bootstrapping methods to dependent
data, with the consequence that correlations are considered. Numerical examples are provided to
illustrate the algorithm and the prediction errare compared for the new bootstrapping method
applied to MCL and a more standard bootstrapping method applied to the chain-ladder technique.
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1. Introduction

Bootstrapping has become very popular in stoahatims reserving because of the simplicity and
flexibility of the approach. One of the main reas for this is the ease with which it can be
implemented in a spreadsheet in order to obtain an approximation to the estimation error of a fitted
model in a statistical context. Furthermore, itailso straightforward to extend it to obtain the
approximation to the prediction error and the predictive distribution of a statistical process by
including simulations from the underlying distributions. Therefore, bootstrapping is a powerful tool
for the most popular subject for reserving purposes in general insurance, the prediction error of the
reserve estimates. It should be emphasised thalttin the predictive distiution, rather than just

the estimation error, it is necessary to extendbtiwstrap procedure by simulating the process error.

It is also important to realise that bootstrapping is not a “model”, and therefore it is important to
ensure that the underlying reserving models are dbyrealibrated to the observed data. In this paper,

we do not address the issue of model checkingsibuply show how a bootstrapping procedure can

be applied to the Munich chain ladder model.

In the area of non-life Burance reserving, there are primarilyottypes of data used. In addition to

the paid claims triangle, there is frequently a triangfl incurred data also available. The traditional
approach is to fit a model to either paid ocumred claims data, separately, and one of the most
popular methods in this context is the chain ladder technique. While we do not believe that this is the
most appropriate approach for all data sets, it hasmesl its popularity for a number of reasons. For
example, the parameters are understood in a practical context; it is flexible; and it is easy to apply.
This paper concentrates on methods which haebhain ladder structure, and in this context, two
types of approaches exist: deterministic methaish as chain ladder, and the recently developed
stochastic chain ladder reserving models. When dhain ladder technique is used (either as a
deterministic approach or using a stochastic model), one set of itldia emitted - either the paid or

the incurred data can be used, but not both at the same time. Obviously, this does not make full use of
all the data available and results in the lafssome information contained in those data.

This leads us to consider whether it is possible to construct a modeltfodaia sets, and to a
consideration of the dependency between the two rutriahgles. A related issue also arises when
traditional methods are applied segiaely to each triangle, whicproduces inconsistent predicted
ultimate losses. In response, Quarg and Mack (2004) proposed a different approachawith
regression framework, considering the likely cotietzs between paid and incurred data. Quarg and
Mack (2004) called this new method as the Munichrchedder (MCL) model. It is this model that is

the subject of this paper, and we show how fhedictive distribution may be estimated using
bootstrapping. Thus, in this paper an adapted bootstrap approach is described, combined with
simulation for two dependent data sets. The spreadsthset in this paper can be used in practice for
any data sets, and are available on request from the authors.

The paper is set out as follows. Section 2 briefly describes the MCL model using a notation
appropriate for this paper. In section 3, thesic algorithm and methodology of bootstrapping is
explained. Section 4 shows how to obtain the estimates of the prediction errors and the empirical
predictive distribution using the adapted bootstrapping and simulation methods. In Section 5, two
numerical examples are provided including the data from Mack (1993) andamsoreal London
market data. Finally, section 6 contains a discussion and conclusion.



2. TheMunich chain ladder method

The MCL model aims to produce a more consisfetiction of ultimate claims when modelling

both paid and incurred claim data. It is specialgsigned to deal with the correlation between paid

and incurred claims as the traditional models, such as chain ladder model, sometimes produce
unsatisfactory results by ignoring this dependence. It should be emphasized that the paid and incurred
claims from thesamecalendar years are not correlated. It is that the paid claims (incurred claims) are
correlated to the incurred claims (paid claims) from the next (previous) calendar year.

The fundamental structure of the MCL model is saene as Mack’s distribution-free chain ladder
model (Mack, 1993). In the other words, the chain ladder development factors in the MCL model are
obtained by Mack’s distribution-free approach. However, the MCL model adjusts the chain ladder
development factors using the correlations between the observed paid and incurred claims. The
adjusted chain ladder development factors tleeefbecome individual not only for different
development years but also for different accidentsi€Ene adjustment is explained in more detail in
sections 2.1 and 2.2.

2.1 Notation and Assumptions

For ease of notation, we assume that we haverateiaf data. Although the data could be classified
in different ways, we refer to the rows as “accident years” and the columns as “development years”.

Denote CijP as cumulative paid claims ar@i} as cumulative incurred claims occurred in accident

yeari, development yegr wherel<i <n and K j<n-i+ Ifor the observed data. The aim of the
chain ladder technique and of MCL is tdiemte the data up to development yeailhis produces

estimates forC{’ and C; , where 1<i<n andn-i+2<j<n, and we therefore refer to the

complete rectangle of data in the assumptidrist, j <n.

Mack’s distribution-free chain ladder method mod#is pattern of the development factors, which

P |
- _ _ '
—=, for paid claims and:ij' =—d=,

ij ij

are defined asFiJ.P = for incurred claims. Also the ratios of

P |

paid divided by incurred claims and the inverse are introduced%s=—”I and Qij'lzc—ijp,
ij ij

respectively.
Furthermore, define the obseds data for accident year, up to development yeak as

P.(k):{C”.P: j< k}, Ii(k):{CI; ; jsk} and Bl(k):{qu, G:is k} , for paid claims, incurred

claims and both, respectively.
The following assumptions are taken from Quarg and Mack (2004), section 2.1.2.

Assumptions A (Expectations)

(A1) Forl< j<n there exists a constariliP such that (foi =1,...,n)

E[FHP“?( j)]: "

This assumption is for paid claims. It is necessary to make another anadesgoosption for incurred
claims since both data sets are taken into account.
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(A2) Forl< j<n, there exists a constariii,t' such that (foii =1,...,n)
E[F”.' ||i (j)]: fiI :
In order to analyse the two run-off triangles depanly, the following assumptions are also required.

(A3) Forl< j<n,there exists a constaqq1 such that (for =1,...,n)
E[Q[P()]=9"

(A4) For 1< j<n, there exists a constaqt such that (foi =1,...,n)

E[Qi | h( j)]:qi :
Note that assumptions (A3) and (A4) will apply ti@at is constant, which is contradictory — see

section 3.1.2 of Mack and Quarg (2004) for a discussion of this point.

Assumptions B (Variances)
(B1) Forl< j<n,there exists a constaatjp such that (foi =1,...,n)

()

CP

ij

Var[F.jP| o ( J)] =

Again, the analogous assumption for the incurred claims is made as follows.

(B2) Forl< j<n, there exists a constant, such that (foii =1,...,n)

(o)

Var[ F' [ (j)]:c—i!.

Also, for the ratios of incurred to paid and vices& the following variance assumptions are made.

(B3) Forl< j<n,there exists a constanf such that (foi =1,...,n)




Assumptions C (I ndependence)

The usual assumptions for individual triangles are as follows:
(C1) The random variables pertaining to different accident years for paid claims, i.e.

{Cf”j = :L2,...,n}, {C,f;|j = :L2,...,n}, are stochastically independent.

(C2) The random variables pertaining to diffdreaccident years for incurred claims, i.e.
{Cl'j|j = 2L2,...,n}, ,{C,',j|j = 2L2,...,n}, are stochastically independent.

In fact, a stronger assumption is used (see section 3.2 of Quarg and Mack, 2004), which is
independence of accident years across both paid and incurred claims:

(C3) The random sets {Cl'j,Cl'j|j=1,2,...,n}, ,{CP

nj?

Cr']j| i=1 2,...,n} , are stochastically
independent.
Using assumptions A to C, the Pearson residuals used in the MCL model can be defined as shown in

equations (2.1) to (2.4). These residuals are a ¢npaitof the bootstrapping procedures described in
section 4.

|
T @

" = \/Var[Qj"1| I.D( J)] ’ (2.2)
o F —E[F |1 ()] | 2.3
’ ar[ ! |Ii (])]
and
r__QzQ'j _E[Q || (J)] (2.4)

Assumptions D (Correlations)

(D1) There exists a constapt” such that (forl <i, j <n)
E[r7[B ()]=,"% " 29)

The following equation states that the constafit is in fact the correlation coefficient between the

residuals. Note that since the residuals have variande correlation is equal to the covariance. The
proof can be found in Quarg and Mack (2004).

Cov| 17,17 [P ()= Con 175" [P (1) | =Corr[F QP (i) ]= "

(2.6)



Quarg and Mack (2004) derives expected MCL paid development factors adjusted by the correlation
as shown in equation (2.7).

Var[ ,JP|I? j}

var[ Q[P J]Corr[ " QY B()|(@'- B @ R)]). @7

e[ F7[8(i)]= [ F°IP()] +

(D2) Analogously to assumption (D1), for the incurred claims it is assumed that there exists a
constantp' such that (fofl<i, j <n)

E[r[B(i)]=r"s. 2.8)

Similarly, the constantp' measures the correlation coefficient or the covariance between the
residuals. i.e.

Cov ¢ |8 (1) = Con f'.1°[B (i) = Cor [ §. Q [B(1) ] =
(2.9)

Hence, the expected MCL incurred development factors adjusted by the correlation can be derived as
follows:

€[5 [8(0]- €[5 1)) oo - cof . | ] ©- £ 1)

(2.10)

2.2 Unbiased Estimates of the Parameters

In this section, we summarise the unbiased estimates of the parameters derived by Quarg and Mack
(2004). For the paid data, estimates are requiredhfo parameters of the development factors, the
variances and also the correlation coefficient.

The estimates of the paid development factor patenmiean be interpreted as weighted averages of
the observed development factdfs or Q;* , usingC;” as the weights:

Scr

P i=1 Wl CijP P

fi = o :Zl:nfj PFu (2.11)
C. = C:

and



6 == > e Q 212)
P i=1 P
Zcii Cfl
i=1 i=1

N 1 Hopfer zpf
(GJ ) o1 j _1;Cu (Fii - 1 ) (2.13)
and
~p )2 1 & PlA-Ll ~-1\2
(Tj) = G (QJ -G ) (2.14)
n J i=1
Hence the Pearson residuals are
Fi-P _ A'P
rijP :JA—P' /Clip (2.15)
O
and
. Q’ -g°
Q i P
I Jf d JC (2.16)

J

Finally, the estimate of the correlatioaefficient is given in equation (2.17).
z rQ'r ..P

_ - SR
)

i

AP _

(2.17)

Similarly, for incurred data, the estimates of theale@pment factor parametecan be interpreted as
weighted averages of the development fact?—quLsor Q; » using Ci} as the weights:

n-j

ch j+1 n—j C'

f )= => —F (2.18)
Sap = ZC
i=1
and
n—j+1
R Z (:“P n—j+1 C'
qJ = nl—=jj;1 = Z r1—j+1IJ QJ ) (219)
Yo Tq
i=1 i=1

Also the unbiased estimates for the variance parameters are as follows:



n-j

~l 1 I )2
(6]) - - j_li;cu(':n -1 ) : (2.20)

and
" 2 1 n—j+1 | N2
(7)) "] le Ci(Q-8) (2.21)
Hence the Pearson residuals are
F' —f!

ri.' =1 1 — ! Q.‘ (2.22)

j 5! i
and

rijQ :Qlj,\—qu Cijl . (2.23)

T
And finally, the estimate of the correlaticoefficient is given in equation (2.24).

Q.|
Zrij T
A

Lo = (2.24)

Assumptions A in section 2.1 have defined the exieets of the development factors, given just the
data in the respective triangles.drder to produce a single estimate based on the data from both paid
and incurred data, Quarg and Mack (2004) also cersithe expectations of the development factors

given both triangles and defineE[EjP|B(j)]=7\1]P and E[Fij' |B( j)]z&!. Using plug-in

]
estimates from equations (2.11) to (2.17), the estimates of the paid MCL development factors are
calculated using equation (2.7):

P

A =1+ pP L (Q-47). (2.25)

7

Q>

Similarly, plug-in estimates from equations (2.18) to (2.24) are used in equation (2.10) so that the
estimates of the incurred development factors are

I
i

>
Q>

e p

1

(Q-9) (2.26)

b



3. Bootstrapping and Claims Reserving

Bootstrapping is a simulation-based approach to statistical inference. It is a method for producing
sampling distributions for statistical quantities oferest by generating pseudo samples, which are
obtained by randomly drawing, with replacement, from observed data. It should be emphasized that
bootstrapping is a method rather than a model. Bootstrapping is useful only when the underlying
model is correctly fitted to the data, and bootstragps applied to data which are required to be
independent and identically distributed. The ktrapping method was first introduced by Efron
(1979) and a good introduction to the algorithm can be found in Efron and Tibshirani (1993).

For the purpose of clarity we begin by giving a gahbootstrapping algorithm and briefly reviewing
previous applications of bootstrapping to claimsmgag. In section 4, we show how an algorithm of

this type can be applied to the MCL. Suppose we have a safngled we require the distribution of
a statisti@d . The following three steps comprise the simplest bootstrapping process:

1 Draw a bootstrap sample )?lB:{XlB,XZB,...,Xf}l from the observed data
X ={X;, X5, X, ).

2 Calculate the statistic of intere@f for the first bootstrap samplX ® = {XlB, X2, XEB }1.
3 Repeat steps 1 and\times.

By repeating steps 1 and\times, we obtain a sample of the unknown statiétia:alculated fronN
pseudo samples, i.é° = {ﬁfﬂf,...ﬁ,ﬁ}. When N >1000, the empirical distribution constructed

from 9% = {HAlB,HAf,...,é,\?} can be taken as the approximatiorthie distribution for the statistic of

interestd. Hence all the guantities tife statistic interesf can be obtained since such a distribution
contains all the information related &b.

The above bootstrapping algorithm can be applied to the prediction distributions for the best estimates
in stochastic claims reserving subject. England\&rdall (2007) contains an excellent review on the
application. In addition, Lowe (1994), England and Verrall (1999) and Pinheiro (2003) are also good
resources for more details. England and Verrall (2007) showed how bootstrapping can be used for
recursive models, following on from the earlier pap@&ngland and Verrall, 1999 and England 2002)
which applied bootstrapping to the over-dispersed Poisson model.

It should be noted here that the Pearson residualscanmonly used rather than the original data in

the Generalized Linear Model (GLM) framework. The Pearson residuals are required in order to scale
the response variables in the GLM so that theyidertically distributed. This is necessary because

the bootstrap algorithm requires that the response variables are independent and identically
distributed.

Other papers in the actuarial literee that consider triangles dépendent data include Taylor and
McGuire (2007) and Kirschner et al (2008). It should be noted here that a model taking account of all
information available could be potentially very vallegleven when the data is dependent in practice.
The dependence makes it evenidifft to calculate the prediction error theoretically. For these
reasons, we believe that adopting bootstrap method for these models is worthy of investigation,
particularly in order to obtain the predictive distriion of the estimates of outstanding liabilities.



4. Bootstrapping the Munich chain ladder model

This section considers bootstrapping the MCL model. In section 4.1 wébdetbre methodology and
in section 4.2 we give the algorithm that is used.

4.1 Methodology

The method of bootstrapping stochastic chain ladder models can be seen in a number of different
contexts. England and Verrall (2007) categorizentioglels as recursive and non-recursive and show
how bootstrapping methods can be applied in eithee. Since we are dealing with recursive models
here, we follow England and Verralhd consider the observed development link ratios rather than the
claims data themselves. In other words, forckia distribution-free chain ladder model the link

ratios, F; , are randomly drawn again3; , noting that

E[EM}E{% >s} 2

Here, X; is used to represent observed claims daigeimeral. Note that éhbootstrap estimates of

the development factorsfjB which are obtained by taking weighted averages of the bootstrapped

observed link ratiosFijB, use X; rather thanXijB as the weights.

However, this method cannot be simply extendethéoMCL method, since this model is designed
for dealing with two sets of correlated data, th& @and incurred claims. This means that it is not
possible to use the normal bootstrap approach: the independence assumption cannot be met any more.

In order to address the problem of how to adapt the existing bootstrap approach in order to cope with
the MCL method for dependent data sets, the coraidarof the correlation is crucial. It should be

noted that the correlation which is observed indhta represents real dependence between the paid
and incurred claims, and the model is specifically designed because of this dependence. Therefore, it
should remain unchanged within any re-sampling procedure. The straightforward solution is to draw
samples pairwise so that the correlation betwthentwo dependent original data sets will not be
broken when generating a sampling idittion for a statistic of interest.

Obviously, when bootstrapping the recursive MCL method, the residuals of the paid and incurred link
ratios are required instead of the raw data. The queatises of how to deal with these residuals in
order to meet the requirement of not breaking ¢dhserved dependence between paid and incurred
claims. The answer is to group all the four sets of residuals calculated in the MCL method, i.e. the
paid and incurred development linktios, the ratios of incurred over paid claims from the previous
years and its inverse, individually. There are twasoms for this. Firstly, the paid claims (incurred
claims) are correlated to the incurred to paid claims ratio (paid to incurred claims ratio) that are from
only the previous year and doing this will pgage the required dependence. Secondly, the
correlation coefficient of paid and incurred claims is equal to the correlation coefficient of those
residuals, as stated in equations (2.6) and (2.10).

Thus, the case of the paid claims data, the triangles (which have the same dimensions) containing the
residuals of the observed paid link ratios and tseuals of the ratios of incurred over paid (except

the first column), are paired together. The same procedure is used for the incurrediaiaimga/e

do this for convenience, even though the ratios of the paid over incurred claims and the inverse, give
the same information. Note that these ratios shoemain unchanged when pairing them with paid

and incurred claims with the same dimensions. ddmsequence of this is that all the four sets of
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residuals for paid, incurred link rati and the ratios of incurred ovgaid claims and the inverse are
all be grouped together. (Note here that an ater@ approach would be to group three sets of
residuals: the residuals of the paid and incutirdd ratios and either the residuals of the paid over
incurred ratios or the inverse. This would prodilee same results as grouping four sets of residuals
as the residuals of paid over incurred ratios andnierse can always be calculated from each other.
However, it is simpler to group all the four setstlas calculation of the fourth set of residuals is
naturally skipped in this case.)

This combines the four residualdangles into one new triangle that consists of these grouped
residuals and we name it as the grouped resittiaigle. In each unifrom this triangle of
guadruples, the residuals are from the same ewti@nd development year and correspond to paid
and incurred claims. Therefore, the new triangle of quadruples contains all the information available
and meanwhile maintains the observed dependence.

When applying bootstrapping, this triangle is considered as the observed sample. The new generated
pseudo samples are obtained by random drawing,refiflacement, from the triangle of quadruples.

The re-sampled incurred and paid triangles can be obtained by separating the pairs in the pseudo
sample generated as above and backing out the residual definition. The MCL approach can then be
applied to calculate all the statistics of interesttli@ re-sampled paid and imeced triangles, i.e. the
correlation coefficient for paid and incurred, the paid and incurred development factors, thefratios
paid over incurred or the inverse, and the vasan Finally, adjusting the paid and incurred
development factors by the correlation coefficient using the MCL approach, the bootstrapped MCL
reserve estimates are obtained. Thisgetes a single bootstrap iteration.

Again, the bootstrap method provides only the estimation error of the MCL method. In order to
include the prediction error and estimate the predictive distribution for the MCL estimates of
outstanding liabilities, aadditional step is added at the enatath of the bootstrap iteration, which is

to add the process variance to the estimation error.

Note that we apply the final simulation for the process variance to paid and incurred claims,
independently. This is because, for a paréiciccident and development year, paid and incurred
claims are actually independent. Under the assiomg of the MCL model, paid (incurred) claims

are only correlated with previous incurred (Qaiclaims, and the forecasts produced by the
bootstrapping will pick up this dependency.

In order to obtain a reasonable approximation to the predictive distribution, at least 1000 pseudo
samples are required. For each of the pseudo santpéerow totals and overall total of outstanding
liabilities are stored so that the sample means, kavapiances and the empirical distributions can be
calculated and plotted. They are taken as theoappations to the best estimates of outstanding
liabilities, the prediction errors and the predictivstdbutions of the outstanding liabilities. Also, an
estimate of any required percentile and confidence interval can be calculated from the predictive
distribution.

In order to satisfy the assumption that the sanmpléentically distributed in the bootstrapping
procedure, the Pearson residuals are calculated and used. As in England and Verrall (2007), we use
the Pearson residuals of the observed development factors rather than those for the amtyal clai
since we are using recursive models. Note thabatstrap bias correction is also needed, and the

simplest way to do this is to multiply the residuals\,gg/n_%_ j—1) .

In addition to drawing the grouped sample for bootstrapping correlatacses, there are also two
other practical points that should be mentioned. The first is to note that the fitted values are obtained
by starting from the final diagonal in each triangle and working backwards, by dividing by the
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development factors. The second is that the zeiduals which appear in both triangles are also left
out.

4.2 Algorithm

This section provides the algorithm, step by stepchvts needed in order to implement the bootstrap

process introduced in section 4.1,

- Apply the MCL method to both the cumulative paid and incurred claims data to obtain the
residuals for all the four sets ratios, the paid, iredilink ratios, the paid over incurred ratios and

the reverse. They can be obtained from following equations:

A~
| |

FF-fP o ' f —q
rijp:uo—.\lcupn i _Q pal ql \/Cup’ ij :M\/Cﬂl and riiQ:% Clil :

J J

- Adjust the Pearson residual estimates by muIUpIymg\#y /_ J— to correct the

bootstrap bias.

- Group all the four residuals, ier/, r? , r' and r® together. We write this as

- Start the iterative loop to be repeated N timNsX1000). This consists of the following steps:

1. Randomly sample from the grouped desils with replacement, denoted as
1\B
us ={(rijP)B ,(rijQ ) ,(rij ')B ,(rij Q)B}, from the grouped triangle so that a pseudo sample of the

grouped residuals is created.
2. Calculate the pseudo samples of the four triarfglethe paid, incurred link ratios, the ratios of

paid over incurred and the inverse by inveytihe Pearson residuals definition as follows:

-12 -



3. Calculate theCii —weighted andC,"j —weighted average of the bootstrap paid and incurred

development factors as follows:

i=1 . i=1 ij
and
~ n-j C;Il ~ n—j+1 Cll
()-SR (a) =2 —(Q)

Note that the weights used here are from theraiglata sets and nfsom the pseudo samples.

4. Calculate the corresponding correlation coedfit for the re-sampled data using the pseudo

1

residuals(rijp)B, (r.Qfl)B, (r )B and(rijQ)B as follows,

5. Calculate the variances for the bootstrap data as follows:

((6)) - n,lz (( ) (T)sz

-13-



Note that all the sums here are from Inte j because the last diagonals of paid to incurred (and

incurred to paid) are not included in the resampling procedure.

6. Calculate the bootstrap development factorssaelliby the correlation coefficient between the

pseudo samples as follows:

for the re-sampled bootstrap paid anclimed run-off trianbes, respectively.

7. Simulate a future payment for each cell in the lower triangle for both paid and incurred claims,
from the process distribution with the mean aadiance calculated from previous step. To do

this, the following steps are required:

= For the one-step-ahead predictions from trealiley diagonal, a normal distribution is

assumed, i.e. foR<i <n,

A~ B B
X{\i., ~ Normal ((ﬂfgm) Xi24+1,((6np4+1)2) XZ”J for paid claims
and

[ - 2 Byl ~ 2\® . ,
Xi iz ~ Normal (ﬂinfwl) Xioin (anﬂl) Xiy4+1| forincurred claims.

= For the two-step-ahead predictions up to the n-step-ahead predictions, normal
distributions are still assumed, but with tmean and variance calculated from previous

prediction instead of the observed data, i.eJerk < nandn-k+3< j<n,
P p \Byr ~p2\° op . .
X ~ Normal (/1”71) XkH,((qfl) ) X1 | for paid claims,
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and

~ B A~ “ 2 B .
X,, ~ Normal [(ﬂ,l'v,_l) Ck',_l,((d,'_l) ) X,('L_lj for incurred claims.

8. Sum the simulated paymentstlire future triangle by origin yeand overall to give the origin

year and total reserve estimates respectively.

9. Store the results, and returrthe start of the iterative loop.

-15 -



5. Examples

This section illustrates the bootstrapping approach to the MCL and uses two numerical examples to
assess the results. The first example uses the data from Quarg and Mack (2004). Example 2 uses
market data from Lloyd’s which have been scdiedconfidentiality reasons. These data relate to
aggregated paid and incurred claims for twoyid's syndicates, categorized at risk level.

Example 1 is included in order to illustrate the hssfor the original set of data used by Quarg and
Mack (2004). The purpose of example 2 is tostitate that the MCL motleloes not necessarily
provide better results in all situations. The indiaagifrom our results that it performs better when the
data have less inherent variability and are less “jumpy”.

Example 1

In this section, we apply the bootstrapping methaghyphith 10,000 bootstrap simulations, to the data
from Quarg and Mack (2004).

Tables 1 and 2 show the data. In order to illustitadenature of the run-ofif the data, Figures 1 and
2 are the plots of the data from Table 1 and 2, respectively. From Figures 1 and 2, it can be seen that
the data are stable and not too much spread out.

Table 1
Paid Claims from Quarg and Mack (2004)

Fl__ =2 3 4 =5 =6 =7

i=1 576 1804 1970 2024 2074 2102 2131
i=2 866 1948 2162 2232 2284 2348

i=3 1412 3758 4252 4416 4494

i=4 2286 5292 5724 5850

i=5 1868 3778 4648

i=6 1442 4010

i=7 2044

Table 2
Incurred Claims from Quarg and Mack (2004)

Fl__ =2 3 4 5 -6 =7

i=1 978 2104 2134 2144 2174 2182 2174
i=2 1844 2552 2466 2480 2508 2454

i=3 2904 4354 4698 4600 4644

i=4 3502 5958 6070 6142

i=5 2812 4882 4852

i=6 2642 4406

i=7 5022
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The results of applying the bootstrap methodoldggcribed in this paper are shown below, and are
compared with the results from the straightforward chain-ladder technique and Mack’s methed for th
prediction errors. Table 3 shows that the thiecsk MCL reserves (from Quarg and Mack) and the

mean of the bootstrap distributions, together \tlitb chain-ladder reserves when the triangles are
considered separately. It can be seen that the bootstrap means are close to the theoretical values, for
both the paid and incurred claims.

Table 3
A Comparison of Methods for Reserves Projected on Paid and Incurred Claims

Bootstrap MCL Mack
Paid Incurred Paid Incurred Paid Incurred

i=1 0 43 0 43 0 43

i=2 37 A 35 9 32 97

i=3 109 131 103 135 158 88

i=4 277 321 269 326 331 277

i=5 299 296 289 302 407 191

i=6 657 651 646 655 919 465

i=7 5492 5646 5505 5606 4063 6380
Overall Total 6871 7182 6846 7163 5911 7540
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Table 4 displays the bootstrap prediction error of the MCL reserves projected by both paid and
incurred claims. Also shown are the prediction errors for the Mack method. It can be seen that the
MCL prediction errors are lower than those of the Mack method.

Table 4
A Comparison of Bootstrap Prediction Errors for MCL and CL Methods
MCL Mack
Paid Incurred Paid Incurred
i=1 0 0 0 0
i=2 5 5 15 9
i=3 48 70 53 82
i=4 61 86 68 105
i=5 72 104 72 117
i=6 215 208 289 216
i=7 735 716 897 869
Overall Total 776 782 991 980

Since the purpose of the MCL method is to use more data to improve the estimation of the reserves, it
is expected that the prediction errors should bestathan the Mack’s model. This is confirmed for

these data by Table 5, which shows that the prediction error, as a percentage of the reserve, for the
MCL reserves is lower than the pietibn error of CL reserves.

Table 5
A Comparison of Bootstrap Prediati&crrors% for MCL and CL Methods

MCL Mack
Paid Incurred Paid Incurred

i=1 - 0% - 0%

i=2 14% 5% 45% 9%

i=3 44% 53% 33% 93%

i=4 22% 27% 21% 38%

i=5 24% 35% 18% 61%

i=6 33% 32% 31% 46%

i=7 13% 13% 22% 14%
Total 11% 11% 17% 13%

In Figure 3, the distributions of the MCL and CL reserve projections for paid and incurred claims are
plotted. Figure 3 shows that the paid and incurred best reserve estimates are very close when using
MCL approach. In contrast, the paid and incurrest beserve estimates projected by the chainladder
method, are much further apart. Furthermore, the CL method provides a much more spread out
distribution than the MCL approach, in the case of both paid and incurred claims.
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Figure 3
A Comparison of Predictive Distributions of OviéReserves for CL and MCL Reserves for Paid and
Incurred Claims

Example 2

In this section, a set of aggregate data from Lloyd’s syndicates is considered. In this case, the data are
not as stable or well-behaved and the results are different. Tables 6 and 7 show the data, which

are plotted in Figures 4 and 5. It can be seen fi@se figures that the data are much more unstable

and more spread out compared with the previous two examples.

Table 6
Scaled Aggregate Paid Claims at Risk Level from Lloyd’'s Market
=1 j=2 =3 j=4 j=5 j=6 =7 j=8 j=9 =10
i=1 1139 5680 6906 7069 7205 7350 7421 7487 7506 7518
i=2 1101 6223 8038 8652 9064 9249 9343 9421 9455
i=3 1215 8058 10593 11638 12346 12784 12978 13161
i=4 949 5324 7608 8257 8719 8972 9103
i=5 638 4107 6367 7099 7489 7586
i=6 647 4166 6231 7029 7335
i=7 1198 4660 7303 7791
i=8 1194 6540 9251
i=9 1248 6062
i=10 1083
Table 7
Scaled Aggregate Incurred Claims at Risk Level from Lloyd’'s Market
=1 =2 =3 =4 =5 =6 =7 =8 =9 j=10
i=1 2170 6941 7709 7403 7452 7508 7514 7547 7555 7563
i=2 2184 7822 9182 9368 9445 9520 9508 9547 9585
i=3 2759 10947 12649 12947 13090 13283 13328 13360
i=4 1958 8398 9814 9800 9306 9370 9272
i=5 1376 6177 7699 7799 7984 7904
i=6 1464 5861 7546 7679 7687
i=7 2405 6385 8151 8234
i=8 3128 8772 10265
i=9 2980 8045
i=10 2722
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Scaled Incurred Claims from Lloyd’s Market

The MCL method still produces consistent ultimate loss predictions for this data set, as shown in

Table 8. However, the prediction error contained in Table 9, estimated by the bootstrap MCL
approach, appears not to appear to offer sucimprovement as was seen in Example 1.
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Table 8
A Comparison of Methods for Reserves Projected on Paid and Incurred Claims

Bootstrap MCL CL

Paid Incurred Paid Incurred Paid Incurred
i=1 0 45 0 %5 0 0
i=2 24 138 19 139 15 15
i=3 78 245 71 245 63 62
i=4 146 236 139 237 143 142
i=5 252 357 246 354 220 215
i=6 383 455 373 454 400 395
i=7 590 614 579 624 829 825
i=8 1345 1355 1318 1366 1850 1820
i=9 3758 3811 3707 3787 4081 4042
i=10 9874 9962 9740 9840 8765 8698

Overall Total 16451 17218 16192 1709 16367 16214
Table 9
A Comparison of Bootstrap Prediction Errors for MCL and CL Methods
MCL CL
Paid Incurred Paid Incurred

i=1 0 0 0 0

i=2 10 10 2 2

i=3 16 32 11 11

i=4 32 27 39 38

i=5 47 62 43 44

i=6 78 97 92 96

i=7 204 249 166 168

i=8 324 372 391 382

i=9 573 592 987 973

i=10 1762 1818 1940 1963

Overall Total 1911 1994 2277 2305

Table 10 shows a comparison of the prediction errors as a percentage of the reserve, and again it can
be seen that results do not indicate that the MCL is a significant improvement over the CL model.
The conclusion from this is that although the MCL method uses more data, and should be expected to
produce lower prediction errors, this is not alwayscdee in practice. We believe that the reason for

this is that the assumptions made by the MCL method — the specific dependencies assumed — are not
as strong as expected in this case. A conclusion from this is that the data have to be examined
carefully before the MCL method is applied.
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Table 10
A Comparison of Bootstrap Prediction Erroré8 MCL and CL Methods using Scaled Data

MCL CL
Paid Incurred Paid Incurred
i=1 - - - -
i=2 43% 7% 69% 14%
i=3 21% 13% 27% 18%
i=4 22% 11% 28% 27%
i=5 19% 17% 20% 20%
i=6 20% 21% 23% 24%
i=7 35% 41% 20% 20%
i=8 24% 27% 21% 21%
i=9 15% 16% 23% 24%
i=10 18% 18% 22% 23%
Overall Total 12% 12% 14% 14%

This conclusion is reinforced by Figure 11, which shows the predictive distributions.

Figure 6

A Comparison of Predictive Distributions of GiInd MCL Reserves predicted on Paid and Incurred
Claims

-22 -



6. Conclusion

This paper has shown how a bootstrapping amprosan be used to estimate the predictive
distribution of outstanding claims for the MCL model. The model deals with two dependent data sets,
the paid and incurred claims triangles, for gehersurance reserving purposes. We believe that
bootstrapping is well-suited for these purposesmfra practical point of view, since it avoids
complicated theoretical calculations and is easiiplemented in a simple spreadsheet. This paper
adapts the method by taking account of the depeerdelmeerved in the data and maintaining it by re-
sampling pairwise.

A number of examples have been given, which show that the MCL model does not always produce
superior results to the straightforward chain laddedel. As a consequence, we believe that it is
important for the data to be carefully checkeddst whether the dependency assumptions of the
MCL model are valid for each dasat before it is applied.
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