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Abstract 
This paper presents a new method of graduation which uses parametric formulae together 
with Bayesian reversible jump Markov chain Monte Carlo methods. The aim is to 
provide a method which can be applied to a wide range of data, and which does not 
require a lot of adjustment or modification. The method also does not require one 
particular parametric formula to be selected: instead, the graduated values are a weighted 
average of the values from a range of formulae. In this way, the new method can be seen 
as an automatic graduation method which we believe that in many cases can be applied 
without any adjustments and provide satisfactory graduated values.  
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1. Introduction 
 
Many methods have been proposed for graduating mortality data in order to provide 
smoother values which can be used in practice. Parametric models, using maximum 
likelihood or weighted least squares estimation, are very useful when there is sufficient 
data. Forfar, McCutcheon and Wilkie (1988) provides a comprehensive introduction to 
the use of parametric models for graduation, with a particular emphasis on standard 
tables. Forfar et al. defined a family of models which are sufficiently broad to be able to 
provide satisfactory results in many cases, which they called “Gompertz-Makeham 
formulae”. When classical estimation methods are used for Gompertz-Makeham (GM) 
formula, it is necessary to fit a wide range of formula and search through these to find 
one particular curve which provides a satisfactory graduation. The idea of this paper is to 
use GM formulae, but to replace the classical estimation with a Bayesian method which 
does not require the process of searching through a range of candidate models to identify 
the best one to use. Instead, the Bayesian method calculates the posterior probability for 
each model and produces graduated values based on these. In effect, the graduated values 
are a weighted average of the values from each GM formula, where the weights are the 
posterior probabilities for each GM formula. If there is one GM formula which is clearly 
the “best” model to use, then the posterior probability should be close to 1, and the 
graduated values will be close to those from that formula. While this can happen in 
certain circumstances, it is more likely that there is some doubt about which model is the 
best one (as can be seen from some of the examples in Forfar et al.). In this case, the new 
method in this paper has some advantages since it does not require a single formula to be 
chosen. Instead, the graduated values are a weighted average of the values from the 
whole range of GM formulae using the posterior probabilities as the weights. In this way, 
we believe that this new method may have a further advantage over the classical 
estimation methods, since it is more flexible as well as automatic. It is more flexible since 
it can use a combination of GM formulae, and we believe that this flexibility means that 
it is possible that the method could be applied to a wider range of data than the 
straightforward GM formulae. However, it is unlikely that the method will prove to be 
appropriate for all situations: for example, it would not be appropriate for application to 
population data over the complete life span since there are some features such as the 
accident hump and infant mortality rates which cannot be modelled by any GM formula. 
Thus, we believe that the method will work whenever GM formulae can be used, and it is 
also possible that the Bayesian estimation method will extend the range of circumstances 
when they can be applied. 
 
There have been a number of applications of Bayesian methods to the estimation of 
mortality rates. These include, for example, Kimeldorf and Jones (1967), Broffit (1988) 
and Carlin (1992) which used conventional Bayesian analysis. Markov chain Monte 
Carlo (MCMC) methods have been applied to graduation by Scollnik (2001) and Neves 
and Migon (2007). Scollnik (2001) provides an excellent introduction to the use of 
MCMC methods, with an example of the application to graduation. Neves and Migon 
(2007) applies hierarchical dynamic models (Gamerman and Migon, 1993) to graduation. 
Also, Czado, Delwarde and Denuit (2005) apply Bayesian estimation to Poisson log 
bilinear regression for mortality forecasting, using MCMC methods. 



 
In this paper, use reversible jump Markov chain Monte Carlo methods, which are an 
extension of the MCMC methodology applied to graduation in the actuarial literature. 
The reversible jump algorithms allow us to consider cases where the dimension of the 
parameter vector is unknown: it is not known, a priori, how many parameters are 
appropriate for a particular regression. We use the generic reversible jump 
implementation in the package winBUGS (Lunn et al., 2000).  
 
Bayesian methods have been transformed by the use of Markov chain Monte Carlo 
(MCMC) methods: see, for example Gilks et al. (1996). For example, these methods have 
enabled statisticians to apply complex Bayesian models to a very wide range of 
applications. For specific examples, Congdon (2006) is a wide-ranging book. As 
mentioned above, Skollnik (2001) provides an excellent introduction with actuarial 
examples, and we would also recommend Johansen et al.(2010) for details of the 
algorithms themselves. An important extension is the use of reversible jump MCMC 
(RJMCMC) methods (Green, 1995), which allow the analysis of trans-dimensional 
models. The key idea of this is to extend the range of models so that the number of 
variables is also unknown. In the context of parametric models for graduation, we can 
therefore apply a set of models and allow the Bayesian estimation process to indicate 
(through the posterior distributions) which are the most appropriate for the data. This is 
all part of the model, and it is not necessary to make subjective decisions about how 
many parameters to use for the graduation. In fact, the model can be used so that the 
graduated values are weighted averages of values from a number of different GM models, 
with the weights chosen according to the posterior probability for each model. In this 
way, it is possible to add some flexibility to the family of GM models, which may enable 
them to be used when conventional estimation fails: in other words, when the parametric 
models are abandoned in favour of a non-parametric approach (for example). The 
approach we use is implemented within winBUGS, using the RJMCMC procedures 
outlined in Lunn et al. (2009). 
 
While parametric graduation has proved to be very successful in a number of contexts, 
there are many other areas where it has not be found to be suitable. In general, this is 
when there is not enough data, or where the underlying pattern of mortality rates is such 
that no parametric curve can be found which proves satisfactory. In the latter case, the 
problems are usually caused by particular features such as the accident hump or rapid 
changes in mortality rates during infant year, which are difficult to model with a 
parsimonious model. There have been some suggestions for parametric models for 
features such as this, including the model for the whole-of-life by Heligman and Pollard 
(1980), and it is possible that a trans-dimensional Bayesian approach could be used for 
this class of models as well. However, the focus of this paper is on GM formulae 
proposed by Forfar et al. (1988) and we believe that the Bayesian approach will extend 
the number of cases where they prove suitable, as well as providing a less subjective 
method for applying them. We recognize that there are some features which they are not 
able to capture, and therefore this paper looks at the graduation of mortality rates over 
adult years, from approximately 18 upwards. This may include the accident hump, but 
some care will need to be taken to ensure that the fitted rates are suitable.  



 
Alternative approaches that can be used when parametric modeling is not suitable include 
non-parametric graduation such as Whittaker graduation (Whittaker, 1923) (for which 
Verrall, 1993, proposed a Bayesian model, building on Taylor, 1990). These methods 
have the advantage that they can be more flexible and adapt better to local features of the 
data. However, they also suffer from some disadvantages and it cannot be claimed that 
they provide a universal panacea for all graduation problems. In many ways, we believe 
that the use of the trans-dimensional approach in conjunction with parametric models 
provides an ideal combination of the straightforwardness of a mathematical formula 
together with the flexibility which is often required in practice. 
 
The paper is set out as follows. In Section 2, the notation and methodology of the 
graduation methods are outlined. Section 3 contains an introduction to the Bayesian 
methods we use, and Section 4 describes how these can be applied to graduation. Section 
5 contains two examples of the application of the new approach to CMI data in Forfar et 
al. (1988), and Section 6 contains the conclusions. 
 
2. Parametric graduation and Gompertz-Makeham models 
 
In this section, the notation used is defined and the general class of parametric models is 
set out. These models were first defined by Forfar et al. (1988). We assume that data are 
available for a set of (not necessarily consecutive) ages. We denote the age by x, and the 
set of ages for which data are available by IR , where I denotes all the observed data 

which are available. For the sake of notational simplicity, we assume that the age is 
defined as age nearest birthday, although all the methods are trivially adapted to other 
definitions. Then it is assumed that the observed data, I, consist of the number of deaths, 

xd , and the central exposure, CxE , for Ix R∈ . These data are to be used to estimate the 

force of mortality, xµ , over a range of ages which may be larger than IR  (for example, 

estimated values will be produced at any missing ages, and also may be required outside 
the range of IR ). In this paper, we will assume that data are generated by a set of 

independent lives, and will therefore exclude the possibility of duplicate policies, or the 
graduation of data based on amounts of insurance or annuity. The likelihood can 
therefore be written as  
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(see, for example, Macdonald, 1996), which is equivalent to the use of a Poisson 
likelihood function. The force of mortality can be estimated by maximum likelihood 
estimation, with a parametric model for xµ  inserted when carrying parametric 

graduation. Many parametric models have been suggested for xµ , of which two of the 

earliest and simplest are the Gompertz model (Gompertz, 1825) and the Makeham model 
(Makeham, 1859). The Gompertz model is x

x Bcµ = , and the Makeham model is 



x
x A Bcµ = + . While these models are usually too simple to provide satisfactory 

graduations, they do capture some essential properties of the progression of mortality 
rates over much of the range of life. The Gompertz formula models the aging effect, 
which is the dominant effect over (approximately) ages 50 to 90. This is so fundamental 
to the modelling of mortality rates that it is usually used as the base model in some sense, 
even when non-parametric models are employed. The Makeham model contains this 
aging effect, but includes a constant, A, which measures a non-age-dependent background 
mortality rate which is particularly important below the age of 50. Various extensions to 
these two models have been suggested and used, for example by the Continuous 
Mortality Investigation Bureau in the UK in the construction of mortality tables for use in 
the insurance industry. As a part of this process, Forfar et al. (1988) suggested a general 
modelling framework which encompasses the Gompertz and Makeham models, but 
allows a much wider range of models to be fitted. Forfar et al. noticed that many of the 
parametric models which had been suggested for mortality could be expressed in a 
unified way and extended to a wider range of possible models. The advantage of this is 
that it provides a range of models which can be searched through in order to find a 
reasonable graduation. The general model is called a Gompertz-Makeham (GM) formula, 
because it starts from these basic mortality models. The GM formula, of order (r,s) is 
 

 ( ), 1 1

1 1

exp
r r s

r s i i r
i i

i i r

GM x x xα α+− − −
= = +

 = +   ∑ ∑      (2.1) 

 
with the convention that the sums disappear when 0r =  or 0s = . With this notation, the 
Gompertz model is a GM(0,2) and the Makeham model is a GM(1,2). The general 
strategy is to investigate a large range of values of r and s in the GM formula in order to 
find a reasonable graduation. In order to assess whether a graduation is “reasonable”, 
some criteria are needed. There are a number of tests of the fit and smoothness of a 
graduation, but the initial sifting through possible models can be carried out using 
likelihood ratio test. Twice the change in the log-likelihood has (approximately) a  2νχ  

distribution, where the degrees of freedom, ν , are the change in the number of 
parameters (usually 1). The usual approach is to start with a simple model (the Gompertz 
model) and add parameters one at a time, examining the likelihood ratio test statistic to 
see whether it is justifiable to add that parameter. Forfar et al. (1988) contains a number 
of detailed examples of this approach which are very useful in illustrating the overall 
approach.  Each of these examples relates to one of the CMI investigations for the period 
1979 to 1982, and we use the data from Section 15 (widows of life office pensioners) and 
Section 16 (male life office pensioners) of Forfar et al. (1988) in the examples in Section 
5 of this paper. 
 
Before setting out the alternative Bayesian estimation method, it is necessary to consider 
some detailed computational aspects of the GM models. It can be seen that the GM 
formula, (2.1), contains powers of x, which may become very large: for example, 

4x =100,000,000 at age 100. The effect of this is to make the corresponding parameter 
extremely small, which can cause computational issues. To avoid this, it is usual to use a 
transformation of the age, instead of the age itself. This transformation is chosen in order 



to ensure that it stays in the range [ ]1,1− , and this can be achieved by using 
x u

v

−
 instead 

of x, where min max

2

x x
u

+= ,  max min

2

x x
v

−=  and minx  and maxx  are the minimum and 

maximum values, respectively, of Ix R∈ . Finally, the GM formulae are defined in terms 

of Chebycheff polynomials of the first kind, ( )nC x , rather than { }2 31, , , ,x x x  , where 

( )0 1C x = , ( )1C x x=  and ( ) ( ) ( )1 12n n nC x xC x C x+ −= −  for 1n ≥ . The reason for using 

these Chebycheff polynomials is again for computational efficiency, since they form an 
orthonormal basis: for further details of this, see Forfar et al. (1988). Thus, the exact form 
of the GM formula which we use is 
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1 1

exp
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For the rest of this paper, ( ),r sGM x  refers to the form in (2.2) rather than (2.1). This 

parametric formula forms the basis for all the models we use, and the form of the model 
depends on which of the parameters, iα  are non-zero. One difference between the 

approach of Forfar et al (1988) and the approach taken in this paper is that we do not 
insist that the models are nested, since we are not using likelihood ratio tests to search 
through models. This means that we include models where iα  may be 0 for some i r< , 

even though rα  is non-zero.  

 
The specification of the model is completed by distributional assumptions, which, as 
stated above, are equivalent to the assumption that  
 
 ~xd independent Poisson with mean C

x xE µ  

 
where ( ),r s

x GM xµ = . 

 
The Bayesian approach uses models in the form of (2.2), assumes that they are all equally 
likely (a priori) and estimates the posterior probability for each of them given the data. 
This entails assessing a total of 2r s+  models, of varying dimension and calculating the 
posterior probability for each of these. This is done using MCMC methods, and since the 
number of parameters is not the same for each model, it also entails using reversible jump 
methods, as described in Section 3. 
 
3. Trans-dimensional models and Markov chain Monte Carlo methods 
 
In this section, we give a very brief overview of the Bayesian techniques which are used 
to in the new graduation method. There are many books and papers on this methodology, 
including the books by Congdon (2006) and Gelman et al. (1995). We do not provide the 
detailed algorithms, but Johansen et al. (2010) provides an excellent introduction together 



with many more technical details than is appropriate here. The application of the methods 
uses the software winBUGS, and the web page for the BUGS project contains links to 
many on-line resources (http://www.mrcbsu.cam.ac.uk/bugs).  
 
At the basis of the Bayesian modeling is Bayes’ theorem, where all parameters are 
assumed to be unknown random variables. Thus, the distribution of the observed data, I ,  
is denoted by ( )| ,f I Mθ  and depends on the unknown parameters θ  for a specific 

model M. It is assumed that M belongs to a class of models, MS . The model and model 

parameters are assigned prior distributions, ( )f M  and ( )|f Mθ , and the posterior 

distribution is given by ( ) ( ) ( ) ( ), | | , |f M I f I M f M f Mθ θ θ∝ . It can be seen from 

this that parameter uncertainty is included through the prior distribution of the parameters 
(conditional on the model); and also model uncertainty is included through the prior 
distribution for M. It is the inclusion of the prior distribution for M which is the new 
feature of this paper, and it is this which requires the use of the methods set out in Section 
3.1. Note that it is assumed that a GM formula is appropriate for the data, although the 
values of r and s are not known. Thus, the model uncertainty included in this paper is 
within the family of GM models.  
 
For graduation purposes, we require the posterior distribution of the mortality rates, xµ , 

given the data I. A more limited aim would be to choose a model first, and then derive the 
posterior distribution of xµ , conditional on the model M and the data I:  

 

 ( ) ( ) ( )| , | , | ,x xf M I f M f M I dµ µ θ θ θ= ∫ .   (3.1) 

 
Note that this is a standard Bayesian analysis, which can be used to estimate the 
parameters for a particular model. The more complete problem is not to condition on M, 
which then enables us to include inference about the models in MS . This is addressed in 

Section 3.1, and this will give the posterior probability of each model M, given the data, 
I. In this way, model uncertainty (within MS ) is summarised in these posterior 

probabilities. It is possible to take into account this model uncertainty when producing 
graduated mortality rates in two ways. Either we can choose the most likely model (a 
posteriori), maxM , and base the graduation on this, or we can estimate xµ  using a 

weighted average of all models, using the posterior probabilities for each model as the 
weight. In other words, the choice is between 
 
 ( )max| ,xf M Iµ       (3.2) 

 
and  ( ) ( )| , |

M

x
M S

f M I P M Iµ
∈∑ .     (3.3) 

 
We believe that (3.3) is preferable, since it usually the case that there if not one particular 
model which clearly has the highest posterior probability. It is sometimes the case that 



one model does indeed dominate, and we could then use (3.2). However, it is also the 
case that this model will then dominate the sum in (3.3) and hence the graduated 
mortality rates. If it is desired that the graduated rates should follow precisely a 
parametric curve, then (3.2) should be used, and it will be necessary to go through a 
similar of model choice as for classical estimation methods (as in Forfar et al., 1988). 
However, we believe that the added flexibility of leaving all models in the estimation, 
albeit with possibly very small posterior probabilities in (3.3) is very useful in the context 
of graduation. Also, it is often the case that there are a number of models whose posterior 
probabilities are quite similar and it may be difficult to decide which model is the best 
one to use when using (3.2). This is certainly true in Forfar et al. (1988), much of which 
is devoted to deciding which single model should be used to produce the graduated 
values. For example, Section 16.2 considers the “Choice of Order of Formula” for the 
male life offices pensioners data. A total of 15 models are considered, of which the ( )1,3GM x  and ( )1,5GM x are identified as the best candidates, based on a battery of tests 

and consideration of the shape and smoothness of the graduated values. We replace this 
process with the Bayesian fitting procedure described in the following section. 
 
3.1 Reversible Jump MCMC 
 
In this section, we extend (3.1) so that the model uncertainty is also included. This, the 
posterior distribution of |x Iµ , taking into account model uncertainty as well as 

parameter uncertainty, can be written as 
 

 ( ) ( ) ( ) ( )| | , , | ,x xf I f M f M I d Mµ µ θ θ θ= ∫  

 
and in some cases this distribution may be obtained in exact terms, straightforwardly. 
However, in most cases it is not possible to obtain the posterior distribution in closed 
form, for example when the model is unknown and the parameter vector is high 
dimensional, or complex. In these cases, simulation methods can be highly effective and 
the recent advances in Bayesian methodology use simulation based on Markov chains: 
the so-called Markov chain Monte Carlo methods. In MCMC methods, a Markov chain 

( ) ( )( ){ }
1

,b b

b
M θ ∞

=  is generated whose equilibrium distribution is the required posterior 

distribution, ( ), |f M Iθ . The distribution for any required quantity can then be 

approximated by a Monte Carlo average. In this case, an estimate of the mortality rate 
can be obtained as 
 

 ( ) ( ) ( )( )
1

1
| | ,

N
B ta B ta

x x
a

f I f M
N

µ µ θ+ +
=

≈ ∑     (3.4) 

 
where B is the “burn-in” (a number of iterations of the Markov chain before it converges 
to the equilibrium distribution) and t is a thinning variable (which is often chosen as 1). 
The MCMC methodology provides a general framework of generating the Markov chain, 
and there are a number of different algorithms that can be used, such as Gibbs sampling 



(Geman and Geman, 1984, and Gelfand and Smith, 1990) and the Metropolis-Hastings 
algorithm (Metropolis et al., 1953 and Hastings, 1970). For more details of these 
algorithms, see Johansen et al. (2010). The basic idea of MCMC methods is to simulate a 
sequence of values in such a way that they converge to the required posterior distribution. 
This is then extended to allow jumps between different models by the use of reversible 
jump MCMC methods. The term “reversible jump” refers to a technical property of the 
sampling procedure that ensures that it converges to the required posterior distribution. 

Given the current state, ( ) ( )( ),b bM θ , a subsequent state ( ),M θ  is drawn from some 

proposal distribution π  and is either accepted or rejected, so that the next state is 
( ) ( )( )1 1,b bM θ+ + , where 

 

 ( ) ( )( ) ( )
( ) ( )( )1 1

,
,

,
b b

b b

M
M
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M

M

θ
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For variable dimension models, the sampling procedure has to be designed quite carefully 
to ensure convergence. This involves an extension to the Metropolis-Hastings algorithm, 
which leads to a sampling procedure known as the reversible jump algorithm, and which 
was proposed by Green (1995).  
 
3.2 Trans-dimensional models in BUGS 
 
Bayesian models which allow for model uncertainty where the number of parameters is 
one of the unknown quantities are often referred to as “trans-dimensional” models. It is 
possible to construct computer programmes separately from first principles for each 
application, but winBUGS is freely available and has been designed to be “flexible 
software for the Bayesian analysis of complex statistical models using Markov chain 
Monte Carlo (MCMC) methods”. Hence, the applications in this paper make use of 
winBUGS, together with the RJMCMC add-ons which are also available from the BUGS 
project web site. There is also a useful User Manual available (“winBUGS  Jump 
Interface: User Manual”). This allows us to apply the type of models described above, in 
which the structure of the model itself is unknown. There are two main classes of models 
that can be used within winBUGS, one of which will be used in this paper (see Lunn et 
al., 2009 for more details). This is described in this section, in general terms, with the 
application to graduation specified in Section 4.  Lunn et al. (2009) define the trans-
dimensional model in terms of an unknown number of “entities of interest”, which, in 
graduation, will be parameters in the GM formula (ie iα  in 2.2).  The number of “entities 

of interest” (parameters) is denoted by k, and the prior distribution for k is specified so 
that all values of k are equally likely (a priori) up to a maximum value of Q. This means 
that each parameter is either included or excluded, so that binomial distribution is the 

appropriate prior for k, with parameters Q and 
1

2
. The parameters  in the model are 

denoted by 1 2 1, , , kη η η + , and it should be noted that the first one, which is an intercept 

term, is always present and is not included in the set of parameters which may, or may 



not be included in the model. Note that for a ( ),r sGM x  formula, as given by equation 

(2.2), we will use two of these models: one for 1

1

r
i

i
i

xα −
=∑  and the other for 

1

1

exp
r s

i r
i

i r

xα+ − −
= +

   ∑ . In the first, the parameters 1 2 1, , , kη η η +  will refer to 1 2, , , rα α α , 

and in the second, they will refer to 1 2, , ,r r r sα α α+ + + . Hence, we use the general notation 

at the moment, and define the parameter vector ψ  which can be used in the model for the 
mean of the data:   
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.    (3.5) 

 θ  represents the current configuration of the model: in other words , θ  changes as 
particular parameters are included or excluded from the model. This, it can be seen that it 
is of dimension k to match the number of parameters currently included in the model. The 
design matrix can be chosen to match the models which are to be fitted. For the models 
which we use (the GM models), each ijz  will be 0 or 1, and further details of this are 

given in Section 4. In this way, it will be seen that the distributions of the parameters in 
the GM model, iα , can be obtained from the sampled values of ψ .  

 
Since there are two choices to make when fitting a GM model, we will use more than one 
of these trans-dimensional models in the application to graduation. Thus, the two terms in 

(2.2),  1
1

r

i i
i

x u
C

v
α −=

−   ∑  and 1
1

exp
r s

i i r
i r

x u
C

v
α+

− −= +
 −      ∑  are treated separately. These will 

then be combined in the mean, as specified in equation (2.1), and in this way the 
RJMCMC methods will allow us to consider graduations where the number of parameters 
in each of these terms is unknown. This is explained in more detail in Section 4, and in 
this section, we consider just a single trans-dimensional model of the form of (3.5).  
 
The distinctive aspect of (3.5) is that the value of k can be varied within the model, so 
that parameters can be included or excluded within the sampling procedures. The 
posterior distribution for k is a part of the output, giving an indication of how many 
parameters should be included. More importantly, the output also gives information on 
which parameters these are. Note that it is possible that the Bayesian model will indicate 
that any set of parameters can be included – there is no restriction on them being 
consecutive parameters. This is in contrast with the conventional use of GM models (as 
implied by equation 3.4) where the choice of r and s implies that all parameters, from 1α  

to rα  (inclusive) and from 1rα +  to r sα +  (inclusive), are included. The prior distributions 



of the parameters, 1 2 1, , , kη η η + , is set by default in winBUGS, such that they are 

independently normally distributed and 
 
 [ ]1E mη = , [ ]1 1Var η τ=  

 0jE η  =  , jVar ηη τ  =  , ( 2,3, , 1j k= + ). 

 
The values of m, 1τ  and ητ  are part of the prior specification, and will usually be chosen 

so that the distributions are non-informative. 
 
 
4. Trans-dimensional models for graduation 
 
In this section, we specify a trans-dimensional modelling framework which we believe is 
suitable for many graduations. In particular, this framework should be suitable for 
graduations of mortality rates over adult ages, although it may not capture all the features 
that may be present at young ages. Since a GM model has two components, 

1
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x u
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v
α −=

−   ∑  and 1
1

exp
r s

i i r
i r

x u
C

v
α+

− −= +
 −      ∑ , each of these will be modelled by a 

separate trans-dimensional model. Before specifying these in detail, we first consider the 
range of GM models which should be included in the overall framework. It should be 
noted that, in general, a GM model is non-linear. If 0r =  or 0s =  then the model is 
linear, but this is unlikely to occur in practice. In particular, the Gompertz term will 
always be needed, which means that the minimum value of s that should be considered is 
2. Also, the Makeham term is often needed (1r = ), and may also be necessary to 
consider higher values of r in order to capture the progression of mortality rates at 

younger ages. The terms in 1
1

r

i i
i

x u
C

v
α −=

−   ∑  have to be more carefully handled, since 

they can cause the model to produce negative values for the mortality rates. However, it 
is unlikely that values of r higher than 3 will be needed since the higher terms in 

1
1

exp
r s

i i r
i r

x u
C

v
α+

− −= +
 −      ∑  usually capture shape of the mortality curve satisfactorily. For 

these reasons, the most complicated model we include is the ( )3,6GM x . The trans-

dimensional modelling approach will allow each parameter to be included or excluded, 
and we believe that this provides a sufficiently flexible framework for most graduations. 
The trans-dimensional models will be specified in terms of the maximal model: 
 

 ( ) 3 9
3,6

1 1
1 4

expi i i i r
i i

x u x u
GM x C C

v v
α α− − −==

−  −    =+         ∑ ∑ .   (4.1) 

 
 The parameter vector is ( )1 2 9, , ,α α α  and, since the Gompertz term is always needed, 

4α  and 5α  are always included. Also, it is very often the case that the Makeham formula 



is the least complicated that can be considered, and so we also always include 1α , 

although its posterior distribution can have a mean of 0 if it is not really needed. This 
leaves 6 other parameters, ( )2 3,α α  and ( )6 7 8 9, , ,α α α α , which can be included or 

excluded, making a total of 64 different models in the trans-dimensional framework. 
Each of the two sets of parameters, ( )2 3,α α  and ( )6 7 8 9, , ,α α α α , will be modelled using 

a separate trans-dimensional model of the format of (3.5), and we specify these below. As 
can be seen from (3.5), the first parameter in ψ  is always included in the model, and we 

therefore specify models for ( )1 2 3, ,α α α  and ( )5 6 7 8 9, , , ,α α α α α , leaving the prior 

distribution for the remaining parameter, 4α , to be specified separately. 

 
We define (1)ψ  and (2)ψ  as follows 
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αψ
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ψ αψ
αψ
αψ

                = =               

     (4.3) 

 
Hence  
 
 (1)

1 1α ψ= , (1) (1)
2 2 1α ψ ψ= − , (1) (1)

3 3 1α ψ ψ= −  

 
and (2)

5 1α ψ= , (2) (2)
4 1i iα ψ ψ−= − ( 6,7,8,9i = ). 

 
As mentioned in Section 3.2, the prior distribution for the number of parameters included 

is chosen such that all models are equally likely (a priori). In other words, ( )(1) 22P M −=  

for the first trans-dimensional component, and ( )(2) 42P M −=  for the second. The prior 

distributions of the optional parameters, conditional on ( )jM  ( 1,2j = ), is set by default 
such that they are independently normally distributed. It is possible to specify the model 
in winBUGS such that all parameters have the same prior mean and variance, or such that 
the first parameter has a different mean and variance. For the first trans-dimensional 
model, (4.2), we give all the parameters the same mean and variance, but for the second, 
(4.3), we give the first parameter a different prior mean and variance in order to 
accommodate the second Gompertz parameter. We have found that the most efficient 



way to proceed is to first fit a simple Gompertz model to the data, and use the maximum 
likelihood estimates of the parameters as the prior means. In summary, the prior 
distributions are specified as follows (with all parameters being independent, a priori). 
 
 ( )1 2 3, , ~α α α  independent normal with mean 0 and variance 2

1σ  

 
 ( )4 1~ ,N a Lα , ( )5 2~ ,N a Lα ,  

 
where 1 2,a a  are the maximum likelihood estimates of the parameters in the simple 

Gompertz model and L is a value which is large enough that these prior distributions are 
non-informative (in the examples, we use L = 10,000), 
 
 ( )6 7 8 9, , , ~α α α α  independent normal with mean 0 and variance 2

2σ  

 
 2 2

1 2, ~σ σ− −  independent ( )0.001,0.001Γ . 

  
Finally, it is necessary to place some basic restrictions on the values of the parameters ( )1 2 3, ,α α α , in order to ensure that the values of the mortality rates, xµ , should all be 

positive. Clearly, negative values are not practically justifiable, and they may cause the 
programme to crash when it tries to calculate ( )ln xµ  in the log-likelihood. Thus, we 

place restrictions to ensure that 
3
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 −      ∑  will be close to zero at low ages. Firstly, we ensure that 

1 0α > , as a basic requirement of a sensible GM model. Secondly, we note that the 

second derivative of 
3

1
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α −=

−   ∑  should be positive, to reflect the expected shape of 

this contribution to the mortality rates at low ages: this is expected to be convex. Hence, 
the second restriction is 3 0α > . Finally, the value of 2α  is restricted so that 

3
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α −=

−  >  ∑  when 1
x u

v

− = − . This means that 1 2 3 0α α α− + >  and hence the 

final restriction is 2 1 3α α α< + . In the MCMC algorithms in winBUGS, it is 

straightforward to ensure that these restrictions are not violated by simply replacing the 
sampled value when it is not satisfactory. Thus, for example, negative values of 1α  and 

3α  are replaced by 0.



5. Examples 
 
We illustrate the application of the automatic graduation method using two sets of data, 
which are taken from Forfar et al. (1988). It should be emphasized that the same 
programme is used for each data set, and the differences in the results are entirely due to 
the differing natures of the data themselves. It will be seen that this graduation method 
deals satisfactorily with the data in each case, without the need for any intervention from 
the graduator, and it is for this reason that we call this an “automatic” graduation method. 
 
In all cases, we used an initial burn-in of 50,000 iterations (these are values which are 
discarded), and found that the models had converged. In general, we would expect that 
50,000 burn-in iterations would be sufficient for convergence, but it is always 
recommended that this is checked (see, for example, Johansen et al., 2010, for tools to 
monitor convergence). After this, we ran 50,000 iterations and used these for the results. 
Thus, in equation (3.4), B = 50,000, N = 50,000 and t = 1. 
 
5.1 Example 1 
The data for the first example are taken from table 15.5 of Forfar et al. (1988), and 
consist of data from the CMI relating to the numbers of deaths for Pensioners’ widows 
over the calendar years 1979-82, grouped by age nearest birthday. Forfar et al. (1988) 
concluded that a satisfactory graduation for xµ  could be provided by the simple 

Gompertz model, ( )0,2GM x . Note that Forfar et al. (1988) used 70u =  and 50v = , 

whereas we use min max 62.5
2

x x
u

+= = ,  max min 45.5
2

x x
v

−= = . Hence, the parameter 

estimates cannot be directly compared, although it is straightforward to make a simple 
conversion to obtain corresponding values. Since Forfar et al. (1988) concluded that a 
Gompertz model provided a satisfactory graduation, this example provides a test of 
whether the new graduation method is able to come to a similar conclusion: in effect, we 
would expect the Bayesian model to tell us that none of the optional parameters is 
required. As was explained in Section 4, we always start from the Makeham model, and 
we would therefore also expect that the posterior mean of 1α  should be close to 0. We 

would also expect 2α  and 3α  not to be needed in the model. However, since we use a 

separate trans-dimensional model for this part of the GM formula, the Bayesian model 
treats them separately and indicates that they should be included in the model. This is of 
no great concern, since the parameter estimates themselves are extremely small: in effect 
the trans-dimensional model is assuming that all the parameters are very small and, 
relative to this, they are all of the same magnitude and should therefore be included. The 
estimates of these parameters are shown in Table 1. 
 



 
Parameter Estimate 

1α  0.000012466 

2α  0.000047652 

3α  0.000063398 
 
Table 1: Estimates of the parameters in the first part of the GM formula for the data from 
Example 1 of Forfar et al. (1988). 
 
 
It can be seen that these parameter estimates are so small will have no evident effect on 
the graduated values whether or not they are included in the model.  
 
The second trans-dimensional model indicates that none of the optional parameters in 
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 −      ∑  should be included, leaving just 4α  and 5α  in the model. The 

conclusion from this is that the basic Gompertz model, 4 5expx

x u
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µ α α −  = +       is 

indeed most likely to provide a suitable graduation for these data. As noted in Section 3, 
we could either base inferences about the mortality rates on the most likely model or we 
can use a weighted average of all models, with the most likely models getting the most 
weight: see (3.2) and (3.3). In this paper, we use (3.3) and base the estimates of the 
mortality rates on the means of their posterior distributions. Table 2 shows the estimates 

of the parameters in 1
1

exp
r s

i i r
i r

x u
C

v
α+

− −= +
 −      ∑ . 

 
  

Parameter Estimate 

4α  -4.1908 

5α  3.8792 

6α  -0.0191 

7α  -0.0194 

8α  -0.0212 

9α  -0.0293 
Table 2: Estimates of the parameters in the second part of the GM formula for the data 
from Example 1 of Forfar et al. (1988). 
 
For comparison purposes, the estimates of 4α  and 5α  using 70u =  and 50v = would be 

–3.55139 and 4.26291, compared with –3.553013 and 4.316579 in Forfar et al. (1988). 
Alternatively, the maximum likelihood estimates of the parameters of the Gompertz 



model using  62.5u =  and 45.5v =  are –4.2005 and 3.9281, which can be compared 
with the estimates of 4α  and 5α  in Table 1. 
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Figure 1. Crude mortality rates, together with graduated rates from Forfar et al. (solid 
line) and from the Bayesian model (dashed line) using the posterior weights to average 
over all models, for the data from Example 1. 
 
Figure shows the results of the graduation (plotted on the log scale), together with the 
Gompertz curve fitted by Forfar et al. (1988). The graduated rates for the Bayesian model 
are obtained by averaging over the models using the posterior probabilities in (3.3), 
which explains why they do not follow exactly a straight line. We believe that this is the 
best way to proceed in general, and it can be seen that the new automatic graduation 
method has produced graduated values which are very close to those which were deemed 
to be suitable in Forfar et al.  
 
To test the fit of the graduation, the same tests can be applied as in Forfar et al. (1988). 
The number of parameters is not completely determined in the Bayesian method, 
although it would be reasonable to assume that it is close to 2, since the only significant 
parameters which were indicated should be included are 4α  and 5α . The 2χ  goodness-

of-fit test statistic is 37.22. This compares favourably with the value in Forfar et al.,  
38.29, but this is probably simply due to the fact that the Bayesian model mixes in (with 
very low weights) some models with more parameters and therefore achieves a slightly 
better fit. All the other tests are satisfactory, and we do not repeat them here (the 
complete test results for Example 2 are shown below). 
 



To conclude, this example has shown that the Bayesian model has produced graduated 
values which are very close to those of the Gompertz model, without the need for any 
input or model choice. 
 
5.2 Example 2 
This example considers a case which is not as straightforward as example 1, and uses the 
CMI data from table 16.5 of Forfar et al. (1988). These data come from the mortality 
experience of male pensioners over the calendar years 1967-70, and Forfar et al. 
concluded, after considering a number of different possible models, that a GM(1,3) 
model was most suitable for graduating these data. For comparison purposes, the fitted 
GM(1,3) model in Forfar et al. was 
 

2
63.5 63.5

0.00557291 exp 5.4677 6.007755 1.3219 2 1
44.5 44.5x

x xµ   − −   = + − + − −            
. 

 
For this example, the Bayesian model suggests that a different model is more appropriate, 
and Table 3 shows that parameter estimates. 
 

Parameter Estimate 

1α  0.000000497 

2α  -0.017374 

3α  0.00048041 

4α  -3.9033 

5α  3.6430 

6α  0.038876 

7α  -0.43482 

8α  0.12235 

9α  0.0120953 
 
Table 3: Estimates of the parameters for the Bayesian model, for the data from Example 2 
of Forfar et al. (1988). 
 
The posterior probabilities for the models in the first part of the GM formula are shown in 
Table 4. The 0’s and 1’s in the first column refer to whether 2α  and 3α  should be 

included ( 1α  is always included, as explained in Section 4).  



 
Model structure Posterior probability Parameters  

00 0.35552 1α   

01 0.3072 1α , 3α   

10 0.1752 1α , 2α   

11 0.16208 1α , 2α , 3α   

 
Table 4. Posterior probabilities for the set of possible models for the first part of the GM 
formula 
 
Table 4 shows that, although the model structure 00 (with just 1α ) is the most likely 

model (concurring with the choice of the GM(1,3) in Forfar et al. (1988), there are also 
reasonable posterior probabilities for the other models. Table 5 shows the marginal 
probabilities that each parameter should be included. When the fitted mortality rates are 
calculated using the weighted average of these models, the effect of these probabilities 
will be seen at early ages. 
 

Parameter Marginal probability 

2α  0.33728 

3α  0.46928 
 
Table 5. Marginal posterior probabilities for the parameters in the first part of the GM 
formula. 
 
Similarly, Tables 6 and 7 show the corresponding posterior probabilities for the second 
part of the GM formula. 
 

Model 
structure Posterior probability 

 
Parameters 

 

0110 0.27892 4α , 5α , 7α , 8α   

0100 0.27736 4α , 5α , 7α   

1110 0.21612 4α , 5α , 6α , 7α , 8α   

1100 0.08314 4α , 5α , 6α , 7α   

0111 0.04944 4α , 5α , 7α , 8α , 9α   

1111 0.04078 4α , 5α , 6α , 7α , 8α , 9α   

0101 0.03856 4α , 5α , 7α , 9α   

1101 0.01568 4α , 5α , 6α , 7α , 9α   

 
Table 6. Posterior probabilities for the set of possible models for the second part of the 
GM formula 



 
Parameter Marginal probability 

6α  0.35572 

7α  1 

8α  0.58526 

9α  0.14446 
Table 7. Marginal posterior probabilities for the parameters in the second part of the GM 
formula. 
 
The model fitted by Forfar et al.,  a GM(1,3) corresponds to the model structure 1000, 
with just 6α  being included. It is interesting to note that the Bayesian model disagrees 

with this, concluding that the parameter which definitely needs to be included is 7α  (with 

a reasonably large posterior marginal probability for 8α  and 6α ). Since the GM models 

of Forfar et al. only allow nested models, the only model structures they would consider 
in this framework are 1000, 1100, 1110 and 1111. Again, it is interesting to note that the 
two most likely models from the Bayesian model are not in this set. Of course, the 
judgment over which approach gives the better graduation will depend on the fitted 
mortality rates. For this example, in contrast to example 1, there are some significant 
differences between the results, in terms of the parameters and the models, from the 
conventional GM approach and those from the Bayesian approach. However, it can be 
seen from Figure 2 that the graduated values are remarkably similar, except at extreme 
ages. The 2χ  goodness-of-fit test statistic value for the graduated values from the 
Bayesian method is, as in Example 1, smaller than that of the GM(1,3): 53.03 compared 
with 54.72. It can be argued that the Bayesian model is mixing in graduations with more 
than 4 parameters, and that its goodness-of-fit should be better because of this.  
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Figure 2. Crude mortality rates, together with graduated rates from Forfar et al. (solid 
line) and from the Bayesian model (dashed line), for the data from Example 2. 
 
 
It is difficult to make the kind of judgments in terms of the number of parameters to use 
as in Forfar et al. Their argument was that if a graduation had too many parameters, then 
its properties would be unsatisfactory in terms of its shape and “sheaf” (how wide the 
confidence intervals are around the graduated values). Figure 3 shows the graduated 
mortality rates, together with the 95% confidence bands from the posterior distribution 
for Bayesian method. As can be seen, this graduation is certainly satisfactory in terms of 
its sheaf. A comparison with Figure 16.2 of Forfar et al. shows that this sheaf is similarly 
tight, although some of the characteristics are different. In particular, the Bayesian model 
is less confident about the mortality rates at high ages: this is probably due to the fact that 
the Bayesian model includes some model uncertainty. 
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Figure 3. Crude and graduated mortality rates, together with the 95% sheaf for the results 
of the Bayesian model. 
 
All of the usual tests of the graduation can be applied. For example, we can compare the 
results of the tests for the Bayesian graduation with those in Table 16.3 of Forfar et al. 
 
Comparison of total actual deaths (A) and total expected (E): 
 Forfar et al Bayesian Model 
Total A–E 1.00 –0.93 
Ratio A/E 100.00 100.00 
 
Signs Test: 
 Forfar et al Bayesian Model 
Number of + 23 22 
Number of – 24 25 
P(pos) 0.5000 0.3854 
 
Runs test: 
 Forfar et al Bayesian Model 
Number of Runs 29 29 
P(runs) 0.9304 0.9304 
 
The results of the Kolmogorov-Smirnov test are the same for both, with a maximum 
deviation of 0.0019. Figure 4 shows the auto-correlations for the residuals from the 



Bayesian model, together with the 95% confidence limits. It can be seen from this that 
none of the autocorrelations is significant.  
 

Lag

A
C

F

0 5 10 15

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : Residuals

 
Figure 4. Autocorrelations of the residuals from the Bayesian model for the data from 
Example 2. 
 
Overall, the conclusions from the tests are that the graduated values from the Bayesian 
model provide a satisfactory fit to the data. 
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Figure 7. Crude mortality rates and graduated rates for the(???) population data, from age 
18 upwards. 
 
 
 
 
 
 
 
6 Conclusions 
 
This paper has proposed a new method for graduating mortality data, which we believe to 
be suitable for data over adult ages. The method has the great advantage that it is 
relatively automatic: in most cases, the results can simply be taken as they stand without 
any further adjustment. 
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