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Abstract

This paper presents a new method of graduation which uses parametric formuleass toge
with Bayesia reversible jump Markov chain Monte Carlo methods. The aim is to

provide a method which can be applied to a wide range of data, and which does not
require a lot of adjustment or modification. The method also does not require one
particular parametric formula to be selected: instead, the graduated values are a weighted
average of the values fronrange of formulae. In this way, the new method can be seen

as an automatic graduation methwaaich we believe that in many casesn be applied

without any adjustments and provide satisfactory graduated values.
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1. Introduction

Many methods have been proposed for graduating mortality data in order to provide
smoother values which can be used in practice. Paiameidels, using maximum

likelihood or weighted least squares estimateme very useful when there is sufficient

data. Forfar, McCutcheon and Wilkie (1988) provides a comprehensive introduction to
the use of parametric models for graduation, with a particular emphasisdardta

tables. Forfar et al. defined a family of models which are sufficiently broad to be able to
provide satisfactory results in many cases, which they called “Goridakkeham

formulae”. When classical estimation methods are use@donpertzMakeham (GM)

formula, it is necessary to fit a wide range of formula and search throughdtisse

one particular curve which provides a satisfactory graduation. The idea of thisspaper

use GM formulae, but to replace the classical esitomavith a Bayesian method which

does not require the process of searching through a range of candidate maleisfyo i

the best one to use. Instead, the Bayesian method calculates the posterior fyr&drabili
each model and produces graduated values based on these. In effect, the gradeated valu
are a weighted average of the values from each GM formula, where the weights are the
posterior probabilities for each GM formulathere is one GM formula which is clearly

the “best” model to use, then the posterior probability should be close to 1, and the
graduated values will be close to those from that formula. While this can happen in
certain circumstances, it is more likely that there is some doubt about which model is the
best one (as can be seen freome of the examples in Forfar e).ain this case, the new
method in this paper has some advantages since it does not require a single éobbeula t
chosen. Instead, the graduated values are a weighted average of the values from the
whole range of GMdrmulae using the posterior probabilities as the weights. In this way,
we believe that this new method may havierther advantage over the classical

estimation methods, since it is more flexible as well as automatic. It is more flexible since
it can usea combination of GM formulae, and we believe that this flexibility means that

it is possible that the method could be applied to a wider range of data than the
straightforward GM formulag-dowever, it is unlikely that the method will prove to be
appropria¢ for all situationsfor example, it would not be appropriate for application to
population data over the complete life span since there are some features such as the
accident hump and infant mortality rates which cannot be modelled by any GMdormul
Thus, we believe that the method will work whenever GM formulae can be used, and it is
also possible that the Bayesian estimation method will extend the range of circumstances
when they can be applied.

There have been a number of applicationBafesian métods to the €timation of
mortality rates These includefor exampleKimeldorf and Jones (198, Broffit (1988)

and Carlin (1992) which used conventional Bayesian analysis. Markov chain Monte
Carlo (MCMC) methods have been applied to graduation by Scollnik (200 Neves

and Migon (2007). Scollnik (2001) provides an excellent introduction to the use of
MCMC methods, with an example of the application to graduation. Neves and Migon
(2007) appliehierarchical dynamic mode(§&amerman and Migon, 1993) to graduation.
Also, Czado, Delwarde and Denuit (2005) apply Bayesian estimation to Poisson log
bilinear regression for mortality forecasting, using MCMC methods.



In this paper, use reversible jump Markov chain Monte Carlo methods, which are an
extension of the MCMC methodology applied to graduation in the actuarialrerat
The reversible jump algorithms allow us to consider cases where the dimentsien of
parameter vector is unknown: it is not known, a priori, how many parameters are
appropriate for agrticular regression. We use the generic reversible jump
implementation irthe package winBUGS (Lunn et al., 2000).

Bayesian methods have been transformed by the use of Markov chain@Géolate
(MCMC) methods: see, for example Gilksal.(1996). For example, these methods have
enabled statisticians to apply complex Bayesian models to a veryamge of
applications. For specific examples, Congdon (2006) is a wide-ranging book. As
mentioned above, Skollnik (2001) provides an excellent introductionagitiarial
examples, and we would also recommend Johansen et al.(2010) for details of the
algorithms themselve#n important extension is the use of reversible jump MCMC
(RIMCMC) methods (Green, 1995), which allow the analysis of trans-dimensional
models. The key idea of this is to extend the range of models so that the number of
variables is also unknown. In the context of parametric models for graduation, we can
therefore apply a set of models and allow the Bayesian estimation processdteindi
(through the posterior distributions) which are the most appropriate for the destés T

all part of the model, and it is not necessary to make subjective decisions about how
many parameters to use for the graduation. In faetmodel can be used so that the
graduated values are weighted averages of values from a number of dEsremddels,
with the weights chosen according to the posterior probability for each modest In t
way, it is possible to add some flexibility to the family of GM models, whelyenable
them tobe used when conventional estimation fails: in other words, when the parametric
models are abandoned in favour of a pamametric approach (for example). The
approachwe usds implemented withimwvinBUGS, using the RIMCMC procedures
outlined in Lunnret al.(2009).

While parametric graduation has proved to be very successful in a number of contexts,
there are many other areas where it has not be found to be suitable. In gesesal, thi
when there is not enough data, or where the underpattgrn of mortality rates is such
that no parametric curve can be found which proves satisfactory. In the latter case, the
problems are usually caused by particular features such as the accidemrhapmg
changes in mortality rates during infant yesinjch are difficult to model with a
parsimonious model. There have been some suggestions for parametric models for
features such as this, including the model for the wholdeoby Heligman and Pollard
(1980), and it is possible that a trans-dimensional Bayesian approach could be used for
this class of models as well. However, the focus of this paper is on GM formulae
proposed by Forfat al.(1988) and we believe that the Bayesian approach will extend
the number of cases where they prove suitable, as well as pro&itiing subjective

method for applying them. We recognize that there are some features whiehnetimey

able to capture, and therefore this paper looks at the graduation of mortality rates over
adult years, from approximately 18 upwards. This may include the accident hump, but
some care will need to be taken to ensure that the fitted rates are suitable.



Alternative approaches that can be used when parametric modeling is not suitable include
non-parametric graduation such as Whittakedgegion (Whittaker, 1923for which

Verrall, 1993, proposed a Bayesian model, building on Taylor, 1990). These methods
have the advantage that they can be more flexible and adapt better to local features of the
data. However, they also suffer from some disadvantages and it cannot be diaimed t

they provide a universal panacea for all graduation problems. In many walyslieve

that the use of the trans-dimensional approach in conjunction with parametric models
provides an ideal combination of the ggt#forwardness of a mathematical formula

together with the flexibility which is often required in practice.

The paper is set out as follows.Section2, the notation and methodology of the
graduation methods are outlined. Section 3 contains an introduction to the Bayesian
methods we use, ar®kctiond describes how these can be applied to gradu&emwtion

5 contains two examples of the application of the new approach to CMI data in Forfar et
al. (1988), and Section 6 contains the conclusions.

2. Parametric graduation and Gompertz-M akeham models

In this section, the notation used is defined and the general class of parametrecisnodel
set out. These models were first defined by Fatal. (1988). We assume that data are
available for a set of (notecessarily casecutive) ages. We denote the age,and the

set of ages for which data are availableRyy wherel denotes all the observed data

which are availableFor the sake of notational simplicity, we assume that thésag
defined as age nearest birthday, although all the methods are triviallg@tapther
definitions. Then it is assumed that the obsedetd |, consist of the number of deaths,

d, , and the central exposurg; , for xe R . These data are to be used to estimate the
force of mortality, ., , over a range of ages which may be larger tRalfor example,

estimated values will be proded at any missing ages, and also may be required outside
the range ofR ). In this paper, we will assume that data are generated by a set of

independent lives, and will therefore exclude the possibility of duplicate policiée
graduation of dathased oramounts of insurance or annuity. The likelihood can
therefore be written as

C
L| oC H;Ll)((jxe_EX#X
xeR

(see, for example, Macdonald, 1996), which is equivalent to the use of a Poisson
likelihood function.The force of mdality can be estimated by maximum likelihood
estimation, with a parametric model fo inserted when carrying parametric
graduation. Manyarametrianodels have been suggested fqr of which two of the
earliest angimplest arehe Gompertz model (Gompert825) and the Makeham model
(Makeham, 1859). The Gompertz modelis= Bc*, and the Makeham model is



u, = A+ Bc*. While these models are usually too simple to pi®eatisfactory

graduations, they do capture some essential properties of the progression lgfymorta
rates over much of the range of life. The Gompertz formula models the agicty effe
which is the dominant effect over (approximately) ages 50 to 90. This is so fundamental
to the modelling of mortality rates thaistusually used as the base model in some sense,
even when nomparametric models are employed. The Makeham model contains this
aging effect, but includes a constalitwhich measures a n@ge-dependent background
mortality rate which is particularly important below tlgeaf 50. Various extensions to
these two models have been suggested and used, for example by the Continuous
Mortality Investigation Bureau in the UK in the construction of rtadity tables for use in

the insurance industry. As a part of this process, Fetfak(1988) suggested a general
modelling framework which encompasses the Gompertz and Makeham models, but
allows a much wider range of models to be fitfeokfaret al.noticed that rany ofthe
parametric models which hden suggested for mortality colid expressed in a

unified way and extended to a wider range of possible models. The advantage of this is
that it provides a range of models which can be searchedgythmowrder to find a
reasonable graduation. The general model is called a Goripa@kezham (GM) formula,
because it starts from these basic mortality models. The GM formula, of ggjles (

GM™*(x)=> o X"+ exp( Do x“"lj (2.1)
i=1 + ¥ 1

with the convention @ the sums disappear wher: 0 or s=0. With this notation, the
Gompertz model is a GM(0,2) and the Makeham model is a GM{lh2general
strategy is to investigatelarge range ofalues ofr andsin theGM formula in ordeto
find a reasonable graduatidn order to assess whether a graduation is “reasonable”,
some criteria are needebhere are a number of tests of the fit and smoothness of a
graduation, but the initial sifting through possible models can be carried out using

likelihood ratio test. Twice the change in the-ldglihood has (approximately) g’

distribution, where the degrees of freedomare the change in the number of

parameters (uglly 1). The usual approach is tars with a simple model (the Gompertz
model) and add parameters ona #éime, examining the likelihood ratio test statistic to

see whether it is justifiable to add that parameter. Fetfal.(1988) contains a number

of detailed examplesf this approackwhich are very usefuh illustratingthe overall

approach Each of these examples relates to one of the CMI investigations for the period
1979 to 1982, and we use the data from Section 15 (widows of life office pensioners) and
Section 16 (male life office pensioners) of Forfar et al. (1988) in the exam@esiion

5 of this paper.

Before setting out the alternative Bayesian estimation method, it is necessary to consider
some detailed computational aspects ofGiv models.t can be seen that the GM

formula, (2.1), contains powers xfwhich may become very large: for example,
x*=100,000,000 at age 100. The effect of this is to make the corresponding parameter
extremely small, which caraase computational issues. To avoid this, it is usual ta use
transformation of the age, instead of the age itsélf ransformation ishosen in order



to ensure that stays in the rangp-1,1], and this can be achieved b)'vnxgsﬂ instead
v

X — X .
of x, where u= Ko & Xina , V= X‘“axz ™ and x.,, and x_, are the minimum and

2
maximum values, respectively, afe R . Findly, the GM formulae are defined in terms

of Chebycheff polynomials of the first kin@, (x) rather than{l,x,x2 X } , Where

C,(x)=1, C,(x)=x andC,, (x) =2xC,(x)-C,_,(x) for n>1. The reason for using

these Chebycheff polynomials is again for computational efficiency, giegegorm an
orthonornal basis: for further details of this, see Fodtal.(1988). Thus, the exact form
of the GM formula which & use is

r+s

GM " (x) :{1: aici_l(ﬂj exp( 3 aiCi_r_l(X;qu (2.2)

\

¥ 1

For the rest of this papeGM r'S(x) refers to the form in (2.2) rather than (2.1). This

parametric formula forms tHeasis for all the models we use, and the form of the model
depends on hich of the parametersy, are norzero. One difference between the
approach of Forfar et al (1988) and the approach taken in this paper is that we do not
insist that the models are nested, since we are not using likelihoodkesisidat search
through models. This means that we include models wiaeneay be O for some<r,

even thoughy, is nonzero.

The specification of the model is completed by distributional assumptions, which, as
stated above, are equivalent to the assumption that

d, ~independent Poisson with me&y u,
where 1, =GM "*(x).

The Bayesian approach uses models in the forfB.2J, assumes that they are all equally
likely (a priori) and estimates the posterior probability for each of thigen the data.

This entails assessing a total2f* models, of varying dimension and calculating the
posterior probability for each of these. This is done using MCMC methods, and since the
number of parameters is not the same for each model, it also entails usindpleyergd
methods, as described$ection3.

3. Trans-dimensional models and M arkov chain Monte Carlo methods

In this section, we give a very brief overview of the Bayesian techniques whicsed

to in the new graduation method. There are many books and papers on this methodology,
including the books by Congdon (2006) and Gelmiaal.(1995).We b not provide the
detailed algorithms, but Johansen et al. (2010) provides an excellent introductionrtogethe



with many more technical details than is appropriate. fidre application of the methods
uses the software winBUGS, and the web page for the BUGS project contains links to
many online resources (http://www.mrcbsu.cam.ac.uk/bugs).

At the basis of th®ayesian modeling is Bayateorem, wherall parameters are
assumed to be unknown random variables. Thus, the distribution of the observed data,

is denoted byf (I |9,M) and depends on the unknown paramefkfsr a specific
modelM. It is assumd thatM belongs ta class of modelsS,, . The model and model
parameters are assignetbp distributions, f (M) and f (¢|M ), and the posterior
distribution is given byf (,M |1 )oc f (1 |0,M)f (6 [M)f(M). It can be seen from

this that parameter uncertainty is included through the prior distribution of @ @iars
(conditional on the model); and also model uncertainty is included through the prior
distribution forM. It is the inclusion of the prior distribution f&t which is the new

feature of this paper, and it is this which requires the use of the methods set otibm Sec
3.1. Note that it is assumed that a GM formula is appropriate for the data, altheugh t
values ofr ands are not known. Thus, the model uncertainty included in this paper is
within the family of GM moéils.

For graduation purposes, we require the posterior distribution of the mortagy #at

given the datd. A more limited aim would be to choose a model first, and then derive the
posterior distribution ofu, , conditional on the mod&l and the dat&:

f (e IM )= (s, 1M .0) T (0 M 1)do. (3.1)

Note that this is a standard Bayesian analysis, which can be used to estimate the
parameters for a particular model.€efimore complete problem is not to condition\bn
which then enables us to include inference about the modg|s.iThis is addressed in
Section 3.1, and this will give the posterior probability of each mddeiven the data,
l. In this way, model uncertainty (withi§, ) is summarised in these posterior
probabilities. It is possible to take irdocountthis model uncertainty when producing
graduated mortality rates two ways. Either we can choose the mlistly model (a
posteriori), M ..., and base the graduation on this, or we can estimatesing a

weighted average of all models, using the posterior probabilities for each asatiel
weight. In other words, the choice is between

VAL (3.2)
and > f(u M, 1)P(M[I). (3.3)
MeSy,

We believe that (3.3) is preferable, since it usually the case that ther@rfenparticular
model which clearly has the highest posterior probability. It is sometimes thénahse t



one model does indeed dominate, and we could then use (3.2). However, it is also the
case that this model wilhen dominate the sum in (3.3) and hence the graduated
mortality rates. If it is desired that the graduated rates should follow precisely a
parametric curve, then (3.2) should be used, and it will be necessary to go through a
similar of model choice as for classical estimation methods (as in lebdhar1988).
However, we believe that the added flexibility of leaving all models in the d&imma

albeit with possibly very small posterior probabilities in (3.3) is very usefilia context

of graduation. Also, it is often the case that there are a number of models whose posterior
probabilities are quite similar and it may be difficult to decivhich model is the best

one to use when using (3.2). This is certainly true in Fetfat.(1988), much of which

is devoted to deciding which single model should be used to produce the graduated
values.For example, Section 16.2 considers the “Chofd@rder of Formula” for the

male life offices pensioners data. A total of 15 models are considered, of hich t

GM**(x) andGM **(x)are identified as the best candidates, based on a battery of tests

and consideration of the shape and smoothness of the graduated values. We replace this
process with the Bayesian fitting procedure described in the following section.

3.1 Reversible Jump MCMC

In this section, we extend (3.1) so that the model uncertainty is also includedh@&his, t
posterior distribution ofy, |1, taking into account model uncertainty as well as

parameter uncertaintgan be written as
1) =]f(4IM.0)f(OM [1)d(M p)

and in some casdéiis distributionmay be obtained in exact ternssraightforwardly.
However,in most cases it isot possible to obtain the posterior distribution in closed
form, for exampleavhenthe model is unknown and the parameter vastbrgh
dimensional, or complex. In these cases, simulation methods carhbedifgctive and
the recent advancés Bayesian methodology use simulation based on Markov chains:
the saecalledMarkov chain Monte Carlo methods. In MCMC methods, a Markov chain

{(M ) g®) )}w is generateavhose equilibrium distributiois the requirechosterior
b=1

distribution f (9, M |1 ) The distribution for any required quantity can then be

approximatedy aMonte Carlo averagén this case, an estimate of the mortality rate
can be obtained as

qu | | i f (,UX |M (B+ta) ,9(B+ta)) (34)
a1

L
N

whereB is the “burn-in” (a number of iterations of the Markov chain before it converges
to the equilibrium distribution) ands a thinning variable (which is often chosen as 1).
The MCMC methodology providesgeneral framework of generatitige Markov chain,
and there are a number of different algorithms that can be used, such as Gibirgysampl



(Geman and Geman, 1984, and Gelfand and Smith, 1990) and the Metkgsilisgs
algorithm (Metropolis et al., 1953 and Hastings, 1970). For mordsetahese

algorithms, see Johansen et al. (2010). The basic idea of MCMC methods is to amulate
sequence of values in such a way that they converge to the required posterioridistribut
Thisis then extended to allow jumps between different modeteduse of reversible

jump MCMC methods. The term “reversible jump” refers to a technical property of the
sampling procedure that ensures that it converges to the required postermirtitistr

Given the currenstate (M (b),ﬁ(b)) , a subsequent stafé/,) is drawn from some

proposal distributionz and is either accepted or rejected, so that the nextstate
(M (b”),e(b*l)) , where

(M(bﬂ)’e(bﬂ)){ (M.0) if (M, 6) is accepte:

(M(b),e(b)) if (M, 0) is rejected

Forvariable dimension model)e sampling procedure has to be designed quite carefully
to ensure convergence. This involves an extension to the Metréjastgigs algorithm

which leads to a sampling procedure known as the reversible jump algorithm, and which
was proposed by Green (1995).

3.2 Trans-dimensional modelsin BUGS

Bayesian models which allow for model uncertainty where the number of paranset
one of the unknown quantities are often referred to as “ttamensional” modelst is
possible to construct computer programmes separately from first prinfpkssch
application, butvinBUGS is freely available and has been designed tddsalile

software for the Bayesian analysis of complex statistical modelg Markov chain

Monte Carlo (MCMC) methods”. Hence, the applications in this paper make use of
winBUGS, togethewith the RIMCMC adéns which are also available from the BUGS
project web site. There is also a useful User Manual available (“winBU@sp

Interface: User Manual”). Tidallows us to apply the type of models described above, in
which the structure of the model itself is unknowhere are two main classes of models
that can be used within winBUGS, one of which will be used in this gaper_unret

al., 2009for more details)This is described in this sectiaon,general termswith the
application to graduation specified$®ction4. Lunnet al.(2009) definghe trans
dimensional model in terms of an unknowmber of “entities of intes#”, which, in
graduation, willbe parameteris the GM formula (iee; in 2.2). The number ofehtities

of interest” (parameteyss denoted bk, and the prior distribution fdcis specified so
that all values ok are equally likely (a prioriyip to a maximum value &. Thismeans
that each parameter is eithecluded or excluded, so thainomial distributions the

appropriategorior for k, with parameterg and%. Theparametersan the modehre

denoted byy,,7,,...,1,,,, and it should be noted that the first one, which imaarcept
term, is always present and is not included in the set of parameters whiabr mmay;



not be included in the modélote that for aGM r'S(x) formula, as given by equation

(2.2), we will use two of these models: one Er“i X and the other for
i=1

1A

r+s .
exp( D« x"r‘lj . In the first, the parameterg,n,,...,n,,, Will refer to o, ,,... .«

i=r+1
and in the second, they will refertg.,, ¢, .,,...,c, .. Hence, we use the geral notation

at the moment, and define the parameter vagtavhich can be used in the model for the
mean of the data:

v, 1 Zip e Ly, m

1
T L T e [ (3.5)
l//l 1 Z|5u1 Zlgk nk+1

0 represents the current configuration of the model: in other watdshanges as

particular parameters are included or excluded from the model.ifl¢as, be seen that it

is of dimensiork to match the number of parameters currently included in the midudel.
designmatrix can be chosen to match the models which are to be fitted. For the models

which we usetbe GM models)eachz, will be 0 or 1, and further details of this are

given in Section 4. In this way, it will be seen ttrag distrbutions of the parameters in
the GM model,¢;, can be obtained from the sampled valueg of

Since there are two choices to make when fitting a GM model, we withose than one
of these translimensimal models in the application to graduation. Thhe two terms in

I+S

(2.2), > aC, (ﬂj and exp{ > aicl_,_l[ﬂn are treated separateljhese will
i-1 v \Y

i=r+1
then be combined in the mean, as specified in equation (2.1), and in thiseway
RJIJMCMC methods will allow us to consider graduations where the number of parameter
in each of thestermsis unknown. This is explained in more detaiSection4, and in
this section, we consider just a single trans-dimensional model of the form of (3.5).

The distinctive aspect ¢8.5) is that the value d&fcan be varied within the model, so

that parameters can be included or excluded within the sampling proc&thees.
posterior distribution fok is a part of the output, giving an indication of hownya
parameters should be included. More importantly, the output also gives information on
which parameters these aNote that it is possible that the Bayesian model will indicate
thatany set of parameters can be includdtere is no restriction on them being
consecutive parameters. This is in contrast with the conventional use of GM Ifasdels
implied by equation 3.4) where the choice ahdsimplies that all parameters, from

to ¢, (inclusive) androm ¢, , to ¢, . (inclusive), are included. The prior distributions

r+1 r+s



of the parametersy,,n,,...,n,.,, is set by defauih winBUGS,such that they are
independently normally distributed and

E[m]=m,Var[n]=1,
Eln |=0Var[n |=z,,(j=23... k+1.

The values ofn, 7, andz, are part of the prior specificatioand will usually be chosen
so that the distributions are non-informative.

4. Trans-dimensional models for graduation

In this section, we specify a tradsnensional modelling framework which we believe is
suitable for many graduations. In particular, this framework should be suitable for
graduations of mortality rates over adult ages, although it may not capttire fatures
that may be present at young ages. Since a GM model has two components,

Zaici—l(¥j and exp( > aiCi_r_l(¥D , each of these will be modelled by a

i=1

separate trandimensional model. Before specifying these in detail, we first consider the
range of GM models which should be included in the overall framework. It should be
noted that, in general, a GM model is dowar. If r =0 or s=0 then the model is

linear, but this is unlikely to occur in practice. In particular, the Gompertz term will
always be needed, which means that the minimum valsiéhat should be cadered is

2. Also, the Makeham term is often needeé (), and may also be necessary to

consider higher values ofin order to capture the progression of mortality rates at

i=r+1

younger ages. The termsEoziC,_1 (ﬂj have to be more carefully handled, since
i=1 \Y
they can cause the model to produce negative values for the mortality rates. KHaweve
is unlikely that values af higher than 3 will be needathce the higher terms in

exp( Z aC . (HD usually capturshape of the mortality curve satisfactorily. For
v

i=r+1
these reasons, the most complicated model we include GWé(x). The trans-

dimensional modelling approach will allow each parameter to be included or excluded,
and we believe that thiprovides a sufficiently flexible framework for most graduations.
The transdimensional models will be specified in terms of the maximal model:

Vv

GM 3’G(X) =+ZS: aC (%) exp(iaig_r_l (ﬂjj : (4.1)

The parameter vector {84, a,....,a,) and, since the Gopertz term is always needed,
a, and e, are always includedhlso, it is very often the case that the Makeham formula



is the least complicated that can be considered, and so we also always in¢lude
although its posterior distribution can have a mean of O if it is not really needed. This
leaves 6other parameterge,, ;) and(ag, o, a4,a,), Which can be included or

excluded making a total of 64 different models in the trans-dimensional framework.
Each of the two sets of parametd(is,,a;) and(a;,a;,a4.a,), will be modelled using

a separate trardimensional model of the format of (3.8nd we specify these belois
can be seen froif8.5), the first parameter iy is always included in the model, and we

therefore specify models fdey, a,,a;) and(a,, aq, a,,04,2,), leaving the prior
distribution for the remainmparameterg,, to be specified separately.

We definey® andy® as follows

@)

W, 1 0 O\,
P =y |=|1 1 0| a, (4.2)
wP (1 0 1a,
@) (1 0 0 0 0\fa
w1 111 0 0 0| a
and y@=yP =1 0 1 0 0| a (4.3)
w1 11 0 0 1 0| a
w®) (1 0 0 0 Yla,
Hence

— 1, — D @ — D ]
G =Y =Yy~ G =Y Y,

and aS :l//l(2)’ ai :V/i(—zéz_l//l(Z)(i :6’7!8’9)'

As mentioned irSection3.2, the prior distribution for the number of parameters included
is chosen such that all models are equally likely (a priori). In other WBr(dﬁ,(l)) =27

for the first trangdimensional component, arRI(M (2)) =2 for the second. The prior

distributionsof the optional parametersonditional onM ) ( j =1,2), is set by default

such that they are independently normally distribulteid possible to specifhe model

in winBUGS such that all parameters have the same prior mean and varmaudd) that
the first parameter has a different mean and varidraethe first translimensional

model, (4.2), we give all the parameters the same mean and variance, but fooride sec
(4.3), we give the first parameted#ferent priormean and variare in order to
accommodate the second Gompertz parameter. We have found that the most efficient



way to proceed is to first fit a simple Gompertz model to the data, and use the maximum
likelihood estimates of the parameters as the prior means. In sumineapyidr
distributions are specified as follows (with all parameters being indepemdambri).

(e, a,,a5) ~ independent normal with mean 0 and variaage

a,~N(a,L), as~N(a,L),

where a,,a, are the maximum likelihood estimates of the parameters in the simple

Gompertz model and is a vale which is large enough that these prior distributions are
non4informative(in the examples, we use= 10,000),

(@, a7,a4,a,) ~ independent normal with mean 0 and variaage
o,?,0,° ~ independent"(0.001,0.00}.

Finally, it is necessary to place some basic restrictions on the values of the parameters
(e, a,,023), in order to ensure that the values of the mortality ratesshould all be
positive. Clearly, negative values are not practically justifiable, andntlaggause the
programme to crash wheniies to calculatén(yx) in the log-likelihood. Thus, we

3 _
place restrictions to ensure thE aC (uj >0 at low ages, noting that
i-1 A

r+s
exp( Z aC_ r_l( vuj] will be close to zero at low ages. Firstly, we ensure that

i=r+1

a, >0, as a basic requirement of a sensible GM model. Secondly, we note that the

. 3 -u
second derivative oEa C 1( j should be positive, to reflect the expected shape of

i=1 \Y
this contribution to the mortality rates at low agéss ts expected to be convex. Hence,
the second restriction i8, > 0. Finally, the value ot, is restricted so that

Za,C, 1( j> 0 when2=2 = _1. This means that, —a, + o, >0 and hence the
v

flnal restriction ise, < o, + ;. In the MCMC algorithms in winBUGS, it is

straightforward to ensure that these restrictions are not violated by simply replacing the

sampled value when it is not satisfactory. §hor example, negative values @f and

o, are replaced by 0.



5. Examples

We illustrate the application of the automatic graduation method wgngdts of data,

which are taken from Forfat al.(1988). It should be emphasized that the same
programme is used for each data set, and the differences in the results are entirely due to
the differing natures of the data themselves. It will be seen that this graduation method
deals satisfactorily withhie data in each case, without the need for any intervention from
the graduator, and it is for this reason that we call this an “automataiigfian method.

In all cases, we used an initial beimof 50,000 iterations (these are values which are
discarad), and found that the models had converged. In general, we would expect that
50,000 burn-in iterations would be sufficient for convergence, but it is always
recommended that this is checksde, for example, Johansen et al., 2010, for tools to
monitor @nvergence)After this, we ran 50,000 iterations and used these for the results.
Thus, in equation (3.4B = 50,000N = 50,000 and = 1.

5.1 Example 1

The data for the first example are taken from table 15.5 of Forfar(#08B), and
consist of da from the CMIrelating to the numbers of deaths for Pensioners’ widows
over the calendar years 1979-82, grouped by age nearest birthdayeFalf@r988)
concluded that a satisfactory graduation fQrcould be provided by th&mple

Gompertz modelGM °?(x) . Note that Forfaet al.(1988) usedi =70 andv=>50,

X

whereas we use = W =625, v= @ = 45.5. Hence, the parameter

estimates @nnot be directly compared, although it is straightforward to make a simple
conversion to obtain corresponding values. Since Fetfalk.(1988) concluded that a
Gompertz model provided a satisfactory graduatias,ekample provides a test of
whether tle new graduation method is able to come to a similar conclusion: in effect, we
would expect the Bayesian model to tell us that none ajjgtienal parameters is
required.As was explained in Sectigh we always start from the Makeham model, and
we wouldtherefore also expect that the posterior meas,adhould be close to Ove

would also expectr, and a; not to be needed in the model. However, since we use a

separate trandimensional model for this part of the GM formula, the Bayesian model
treats them separately and indicates that they should be included in the modsloThis i

no great concern, since the parameter estimates themselves are extremely small: in effect
the transdimensional model is assuming that all the parameters are very small and,
relative to this, they are all of the same magnitaideé should therefore be included. The
estimates of these parameters are shown in Table 1.



Parameter Estimate

o 0.000012466
&, 0.000047652
a3 0.000063398

Table 1: Estimates of the parameters in the fiastof the GM formula for the data from
Example 1 of Forfaet al.(1988).

It can be seen thate¢se parametestimats are so smalvill have no evidengffect on
the graduated values whether or not they are included in the model.

The second trans-dimensional model indicates that none of the optional parameters in

exp aC_ x-u should be included, leaving juat, and «. in the model. The
:E: i~i-r-1 éig 5
v

i=r+1

conclusion from this is that the basic Gompertz moggk: exp(oc4 +a; (HD IS
v

indeed most likely to provide a suitable graduation for that® Als noted inSection3,

we could either base inferences about the mortality rates on the most lday on we

can use a weighted average of all models, with the most likely models getting the most
weight: see (3.2) and (3.3). In this paper, we 8s®) @nd base the estimates of the
mortality rates on the means of their posterior distributions. Table 2 shows the estimates

of the parameters iaxp( Z aC_, (ﬂn :
v

i=r+1

Parameter Estimate

a, -4.1908
s 3.8792
s -0.0191
&7 -0.0194
g -0.0212
Oy -0.0293

Table2: Estimates of the parameters in the second part of the GM formula for the data
from Example 1 of Forfaet al.(1988).

For comparison purposes, the estimatea 0énd o, usingu =70 andv=>50would be

—3.55139 and 4.26291, compared with —3.553013 and 4.316579 in étcafg1988).
Alternatively, the maximum likelihood estimates of the parameters of the Gompertz



model usingu =62.5 andv =45.5 are—4.2005 and 3.9281, which can be compared
with the estimges of ¢, and ¢, in Table 1.

log(mortality rate)

20 40 60 80 100

age

Figure 1. Crude mortality rates, together with graduated rates from Ebehfsolid
line) and from the Bayesian model (dashed lusg)g the posterior weights to average
over all models, for the data from Example 1.

Figure shows the results of the graduation (plotted on the log scale), togithiirew

Gompertz curve fitted by Forfat al.(1988).The graduated rates for the Bayesiaodel

are obtained by averaging over the models using the posterior probabilities in (3.3),

which explains why they do not follow exactly a straight line. We believe that this is the
best way to proceed in general, and it can be seeththaew automatigraduation

method has produced graduated values which are very close to those which were deemed
to be suitable in Forfar et al.

To test the fit of the graduation, the same tests can be applied as in Forfér388)l.
The number of parameters is not completely determined in the Bayesian method,
although it would be reasonable to assume that it is close to 2, since the only significa

parameters which were indicated should be included:ar@nd o, . The y* goodness-

of-fit test statistic is 37.22. This compares favourably with the value in Fedréd,

38.29, but this is probably simply due to the fact that the Bayesian model mixesin (wit
very low weights) some models withore parameters and therefore achieves a slightly
better fit.All the other tests are satisfactory, and we do not repeat them here (the
complete test results for Example 2 are shown below).



To conclude, this example has shown that the Bayesian model has produced graduated
values which are very close to those of the Gompertz model, without the need for any
input or model choice.

5.2 Example 2

This example considers a case which is not as straightforward as example 1, and uses the
CMI data from table 16.5f¢-orfaret al.(1988). These data come from the mortality
experience of male pensioners over the calendar yearsr09@nd Forfaet al.

concluded, after considering a number of different possible models, that a GM(1,3)

model was most suitable for grading these datdor comparison purposes, the fitted
GM(1,3) model in Forfaet al. was

44.5

2
11, =0.0055729% exEF 5.4677 6.007{5@%} 1.3%1%52_(&5} Dl

For this example, the Bayesian model suggests that a different model is moreiatgyrop
and Table 3 shows that parameter estimates.

Parameter Estimate

* 0.000000497
a; -0.017374
a3 0.00048041
2 -3.9033

s 3.6430

g 0.038876
& -0.43482
g 0.12235

g 0.0120953

Table 3: Estimates of the parameters for the Bayesian model, for the datax@omle 2
of Forfaret al.(1988).

The posterior probabilities for the models in the first part of the GM formuldharvensin
Table 4. The 0’s and 1's in the first column refer to whetheand «, should be

included (¢, is always included, as ebgined inSection4).



Model structure  Posterior probability =~ Parameters

00 0.35552 o
01 0.3072 )
10 0.1752 o, &,
11 0.16208 A, 0y, O

Table 4. Posterior probabilities for the set of possible models for the firsifghe GM
formula

Table 4 shows that, although the maostelicture OQwith just ¢, ) is the most likely

model (concurring with the choice of the GM(1,3) in Forfar et al. (1,388)e are also
reasonable posterior probabilities for the other models. Table 5 shows theainargin
probabilities that each parameshould be included. When the fitted mortality rates are
calculated using the weighted average of these models, the effect of these probabilities
will be seen at early ages.

Parameter Marginal probability
&, 0.33728
a3 0.46928

Table 5. Marginal posterior probabilities for the parameters in the firsoptore GM
formula.

Similarly, Tables 6 and 7 show the corresponding posterior probabilities for the second
part of the GM formula.

Model

structure Posterior probability Parameters
0110 0.27892 Uyr s, 07,04
0100 0.27736 Gy, 05,0y
1110 0.21612 Uys U5, U U7, 0y
1100 0.08314 Uyr G5, O, O
0111 0.04944 Uys U5, 07,05, Uy
1111 0.04078 Uyrs, 0 U7, 0y, Qg
0101 0.03856 Uyr U5, 07,0y
1101 0.01568 Uyr s, U, 07,0y

Table 6. Posterior probabilities for the set of possible models for the second part of t
GM formula



Parameter  Marginal probability

s 0.35572
2y 1

Oy 0.58526
Oy 0.14446

Table 7. Marginal posterior probabilities for the parameters in the second parGithe
formula.

The model fitted by Forfaet al., a GM(1,3) corresponds to the model structure 1000,
with just , being included. It is interesting to note that the Bayesian model disagrees

with this, concluding that the parameter which definitely needs to be included\sth
a reasonably large posterior marginal probabilitydgrand ¢ ). Since the GM models

of Forfaret al.only allow nested models, the only model structures they would consider
in this framework are 1000, 1100, 1110 and 1111. Again, it is interesting to note that the
two most likely models from the Bayesian model are not in thiOéeourse, the

judgment over which approach gives the better graduation will depend on the fitted
mortality ratesFor this example, in contrast to example 1, there are some significant
differences between the results, in terms of the parameters and the rfinoatetbe
conventional GMapproachand those from thedyesiarapproachHowever, it can be

seen from Figure 2 that the graduated values are remarkably similar, except at extreme

ages. They® goodness-ofit test statistic value for thgraduated values from the

Bayesian method is, &3 Example 1smaler than that of the GM(1,3): 53.03 compared
with 54.72. It can be argued that the Bayesian model is mixing in graduations with more
than 4 parameters, and that its goodreédg-should be better because of this.
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Figure 2. Crude mortality rates, together with graduated rates from Ebehfsolid
line) and from the Bayesian model (dashed line), for the data from Example 2.

It is difficult to make the kind of judgments in terms of the numbgasdmeterso use
as in Fofar et al. Their argument was that if a graduation had too many pararnisters
its properties would be unsatisfactory in terms of its shape and “sheaf” (lueive
confidence intervals are around the graduated valbieg).e 3 shows the graduated
mortality rates, together with the 95% confidence bands from the posteridrutish

for Bayesian method. As can be seen, this graduation is certainly satisfad¢trmns of
its sheaf A comparison with Figure 16.2 of Forfar al.shows that this sheaf is similarly
tight, although some of the characteristics are different. In particaéaBayesian model
is less confident about the mortality rates at high ages: this is probably dudact thet
the Bayesian model includes some model uncertainty.



mortality rate
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Figure 3 Crude and graduated mortality rates, together with the 95% sheaf foruhe res
of the Bayesian model.

All of the usual tests of the graduation can be applied. For example, wencparedhe
results of the tests for the Bayesian graduation with those in Table 16.3 ofdt@ffar

Comparison of total actual deaths (A) and total expected (E):

Forfar et al Bayesian Model
Total A-E 1.00 —-0.93
Ratio A/E 100.00 100.00
Signs Test:

Forfar et al Bayesian Model
Number of + 23 22
Number of — 24 25
P(pos) 0.5000 0.3854
Runs test:

Forfar et al Bayesian Model
Number of Runs 29 29
P(runs) 0.9304 0.9304

The results of the Kolmogord8mirnov test are the same for both, with a maximum
deviation of 0.0019. Figure 4 shows the auto-correlations for the residuals from the



Bayesian model, together with the 95% confidence limits. It can be seen from this tha
none of the autocorrelations is significant.

Series : Residuals

0.8 1.0
|

0.6
|

ACF
0.4

0.2

0.0

-0.2
|

Lag

Figure 4. Autocorrelations of the residuals from the Bayesian model for thiratata
Example 2.

Overall, the conclusions from the tests are that the graduated values from the Bayesian
model provide a satisfactory fit to the data.
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Figure 7. Crude mortality rates and graduated rates for the(???) pmpdiia, from age
18 upwards.

6 Conclusions

This paper has proposed a new method for graduating mortality data, which we lmelieve t
be suitable for data over adult ages. The method has theaduaaitage that it is

relatively automatic: in most cases, the results can simply be taken as they stand without
any further adjustment.
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