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Abstract

In this paper we develop a full stochastic cash flow model of out-
standing liabilities for the model developed in Verrall, Nielsen and
Jessen (2010). This model is based on the simple triangular data
available in most non-life insurance companies. By using more data,
it is expected that the method will have less volatility than the cel-
ebrated chain ladder method. Eventually, our method will lead to
lower solvency requirements for those insurance companies that de-
cide to collect counts data and replace their conventional chain ladder
method.

1 Introduction

While non-life insurance companies often base their reserves on a simple
method, such as a chain-ladder estimate for either paid data or incurred
data, Verrall, Nielsen and Jessen (2010) recently pointed out that a model
combining a classical paid triangle with another triangle of the same format
containing the number of reported claims has the advantage of making a
clear split between the RBNS reserve and the IBNR reserve. In this paper
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we consider the distributional properties of this model and compare it with
the chain ladder model. It is to be expected that the additional information
of the count triangle should lower the volatility of estimated reserves: when
more information is available, the predictions should be better. We also note
that the RBNS forecasts use the actual numbers of claims, and can therefore
be considered to be based on a conditional model of the claim amounts, given
the numbers of claims. On the other hand, the IBNR forecasts require, by
definition, forecasts of the numbers of claims. We also examine in more detail
some of the estimation issues associated with the model developed by Verrall,
Nielsen and Jessen (2010).

The model of Verrall, Nielsen and Jessen (2010) separates the reporting
delay from the payment delay from reporting to payment: the reporting
delay is observed in the reported counts triangle and the delay observed in
the paid triangle is a mixture of the reporting delay and the payment delay.
The payment delay and the claims severity are estimated from a conditional
model of the paid triangle given the counts triangle. In this paper, we exploit
this new method in order to split the full stochastic cash flow into one cash
flow related to the RBNS reserve and another related to the IBNR reserve.
The RBNS reserve is predicted without modelling the counts but instead
exploiting the fact that the reported counts give an advance warning of future
payments. The IBNR reserve is constructed by first predicting the reported
number of claims and then applying the same conditional model for payments
given counts as outlined above. Thus, in this paper we construct bootstrap
estimates of the predictive distributions total reserve and its split into RBNS
and the IBNR reserves.

Recent related methods are also discussed in Pinheiro, Andrade e Silva
and Centeno (2003) and Björkwall, Hössjer and Ohlsson (2009a). It is worth
noting though, that these bootstrap methods are aimed at predicting the
claims distribution for models which use just the aggregate claims data, and
one can therefore expect them to generate higher solvency requirements than
the approach of this paper that takes full advantage of the extra information
provided by the reported number of claims. Another related idea for com-
bining the reported counts and the paid triangles is the separation method of
Taylor (1977). Here the idea is to predict the incurred counts from the count
triangle using a chain ladder model and then to apply these predictions in
the construction of the reserves. This approach is somewhat similar to the
construction of the IBNR reserve in the cash flow but more model depen-
dent than the RBNS reserve of the cash flow model which is constructed
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conditionally on the counts data. Recently, Björkwall, Hössjer and Ohlsson
(2009b) have constructed conditional bootstrap estimators for such a sepa-
ration method.

Section 6 contains the explanation of the bootstrap method for the model
of Verrall, Nielsen and Jessen (2010). In sections 3,4 and 5 we summarise the
model and explain some alterations in the set-up and estimation methods.
The aim of this is to make the bootstrapping procedure as straightforward
as possible to implement. It should be noted that the underlying structure
of the model and the basic philosophy of the approach remain the same. In
section 7, we consider some simulation studies which are designed to illustrate
how the model behaves in general.

2 The data

This paper uses the same motor data as Verrall, Nielsen and Jessen (2010),
which originates from the general insurer RSA and is based on a portfolio of
motor third party liability policies. These data typically have long settlement
delays, and the cashflow model in this paper is aimed at improved stochastic
modelling of data of this type. The data available consists of two incremental
run-off triangles of dimension m = 10, one for reported counts, Nij, and one
for aggregated payments, Xij, where i = 1, . . . ,m denotes the accident year
and j = 0, . . . ,m − 1 is the development year. Collectively, we have data
N = {Nij, (i, j) ∈ I} and X = {Xij, (i, j) ∈ I} where I is the triangular
index set

I = {i = 1, . . . ,m, j = 0, . . . ,m− 1 with i+ j = 1, . . . ,m}.

The data are shown in Tables 1 and 2, respectively. The data for the ag-
gregate paid claims have been inflation corrected using an inflation index
depending on the calendar year i+ j. This adjustment was carried out using
an external economic inflation index before the data were supplied to the
authors. It is not known when the payments aggregated as Xij were first
reported.

3 The statistical model

As set out in Verrall, Nielsen and Jessen (2010), the statistical model has two
ingredients: a conditional model for payments given incurred counts along
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i \ j 0 1 2 3 4 5 6 7 8 9
1 6238 831 49 7 1 1 2 1 2 3
2 7773 1381 23 4 1 3 1 1 3
3 10306 1093 17 5 2 0 2 2
4 9639 995 17 6 1 5 4
5 9511 1386 39 4 6 5
6 10023 1342 31 16 9
7 9834 1424 59 24
8 10899 1503 84
9 11954 1704
10 10989

Table 1: Run-off triangle of number of reported claims, Nij

i \ j 0 1 2 3 4 5 6 7 8 9
1 451288 339519 333371 144988 93243 45511 25217 20406 31482 1729
2 448627 512882 168467 130674 56044 33397 56071 26522 14346
3 693574 497737 202272 120753 125046 37154 27608 17864
4 652043 546406 244474 200896 106802 106753 63688
5 566082 503970 217838 145181 165519 91313
6 606606 562543 227374 153551 132743
7 536976 472525 154205 150564
8 554833 590880 300964
9 537238 701111
10 684944

Table 2: Run-off triangle of aggregated payments, Xij

with a model for incurred counts. In this section, we give a summary of the
model and describe a number of differences in the set-up and estimation which
simplify Verrall, Nielsen and Jessen (2010) without making any significant
changes to the overall structure.

3.1 The conditional model for payments given counts

The key feature of the cash flow model of Verrall, Nielsen and Jessen (2010) is
to identify the payment delay through a conditional model for the payments
X given the reported counts N . The reported claims from accident year i
and development year j will be paid with some delay, and those paid with
delay k are denoted by Npaid

ijk (k = 0, 1, . . . , d). Here d denotes the maximum
delay in paying a claim which has been reported, which in the context of
the estimation in this paper is defined to be such that d ≤ m − 1. While
we recognise that delays greater than m− 1 could be envisaged in practice,
this would require other estimation methods which are beyond the scope of
this paper. Also, it would simplify the model to put d = m − 1, but we
have found that it is often better to set d < m − 1 in practice, as discussed
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in section 4.2. The overall, but latent, number of payments in development
year j is therefore

Npaid
ij =

min(j,d)∑

k=0

Npaid
i,j−k,k. (1)

The observed aggregate payment in development year j is then

Xij =

N
paid
ij∑

k=1

Y
(k)
ij (2)

where Y
(k)
ij denotes an individual claim payment.

We assume that the delays are independent of the counts, and are as-
sumed to take the values 0, 1, . . . , d with probabilities p0, p1, . . . , pd, where∑d

k=0 pk = 1. In principle, these probabilities could depend on accident
year and development year, but in this paper we refrain from this further
complication.

As in Verrall, Nielsen and Jessen (2010), it is assumed that the indi-
vidual payments are independent of delays and counts and are identically
distributed with expectation µ and variance σ2. While we recognise that this
assumption may be unrealistic, we leave possible extensions to other models
for future work. The methodology is quite flexible about the distribution for
individual payments. Verrall, Nielsen and Jessen (2010) used a mixed-type
distribution which allowed for the possibility of zero claims, and we use this
set-up in section 4.2 when examining the delay distribution. In section 6,
we illustrate the bootstrap procedures using a simpler assumption that the
payments are gamma distributed (with no allowance for the possibility of
zero claims). In practice, additional external information may be available
on (for instance) the frequency of zero claims and negative claims as well as
on the tail behaviour of the claims.

The conditional expectation and variance of claims given the reported
counts were computed in Verrall, Nielsen and Jessen (2010):

mij(N) = E(Xij | N) =

min(j,d)∑

k=0

Ni,j−k µpk, (3)

vij(N) = Var(Xij | N) =

min(j,d)∑

k=0

Ni,j−k {σ
2pk + µ2pk (1 − pk )}. (4)
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These formulas are used for the estimation of the parameters, and the con-
ditional expectation (3) is used to calculate a point forecasts of the RBNS
reserve (using the incurred counts) and of the IBNR reserve (using predicted
counts).

3.2 The model for counts

The model for the counts N will be used for predicting the IBNR counts
while it has no bearing on the predictions of the RBNS reserve. For the
data in Table 1 a standard Poisson chain-ladder model seems reasonable. A
generalisation could be to include a calendar effect as in Zehnwirth (1994) and
the recent analysis in Kuang, Nielsen and Nielsen (2008a,b, 2010). Bryden
and Verrall (2009) also discuss calendar year effects in the context of the
chain-ladder technique.

The variables Nij are therefore assumed to be independently Poisson di-
stributed with expectation

log{E(Nij)} = µij = αi + βj,

so that αi is an accident year parameter and βj is a development year param-
eter. The maximum likelihood analysis leads to the standard chain ladder
analysis as shown by Kremer (1985), for example. Recently Kuang, Nielsen
and Nielsen (2009) have revisited the maximum likelihood analysis and shown
that the row sums and development factors of the chain ladder analysis are
maximum likelihood estimators for the parameters.

4 Estimation

In this section, we summarise the estimation of the parameters, based on the
theory of Verrall, Nielsen and Jessen (2010). We start by reviewing chain
ladder estimation for the incurred counts. This is followed by a discussion
of the estimation for the delay parameters ψk = µpk. Finally, estimators for
the individual payment parameters µ and σ2 are given.

4.1 Chain ladder estimation of the model for counts

The model for the counts N is a standard Poisson chain ladder model for
which maximum likelihood analysis was given by Kremer (1985). The row

6



sums and the development factors,

Ri =
m−i∑

k=0

Nik, Fℓ =

∑m−ℓ

i=1

∑ℓ

j=0Nij
∑m−ℓ

i=1

∑ℓ−1
j=0Nij

, 1 ≤ ℓ ≤ m− 1, (5)

are maximum likelihood estimators for the parameters ρi = E(Ri) and the
development factors, Φℓ, see Kuang, Nielsen and Nielsen (2009).

The fitted values are denoted by N̂ij, and for use later we define the ratios

B̂j = N̂ij/N̂i0 =





(Fj − 1)
∏j−1

k=1 Fk j ≥ 2,
F1 − 1 j = 1,
1 j = 0,

(6)

which do not depend on the row index i, see also Kuang, Nielsen and Nielsen
(2009, eq. 14).

4.2 Estimating the delay and payment means

Considering next the triangle of paid claims, the delay parameters and the
payment mean are estimated from the conditional model for the payments X
given incurred counts N as in Verrall, Nielsen and Jessen (2010). The idea is
to estimate the parameters through a Poisson regression of payments X on
incurred counts N using the conditional mean function mij(N) = E(Xij | N)
given in (3). The parameters ψk = µpk are then estimated by maximising
the pseudo likelihood

ℓpseudo(ψ;X,N) =
∑

i,j∈I

{Xij log mij(N) − mij(N)}. (7)

Based on the estimators ψ̂k, k = 0, . . . , d the mean of the claims distribution
and the delay probabilities are estimated by

µ̂ =
d∑

k=0

ψ̂k p̂k = ψ̂k/µ̂. (8)

Table 3, first row of first panel, reports the estimates for the data in section
2.

It can immediately be seen that there is a numerical difficulty here, since
it is possible that not all values, p̂k (or equivalently ψ̂k), are positive. In
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p̂0 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9 µ̂

N .361 .286 .113 .084 .066 .035 .026 .012 .018 -.001 163.53
.361 .286 .112 .084 .065 .035 .026 .012 .017 163.69

N̂ .361 .287 .112 .085 .066 .035 .026 .012 .018 -.001 163.43
.361 .287 .112 .084 .066 .035 .026 .012 .018 0 163.62

Table 3: Pseudo likelihood estimators of the delay probabilities pk based
on data in Tables 1, 2. Panel 1 uses actual counts with maximal delay of
d = m − 1 = 9 and d = m − 2 = 8, respectively. Panel 2 uses predicted
counts and the analytic formula (in Row 2 the last entry is replaced by zero).

p9 1.3e-6 5.4e-3 0.018
P(p̂9 < 0) 72% 33% 10%

Table 4: The frequency of zero estimates of p9 is simulated for different
values of p9 using 1000 repetitions. The delay probabilities in the first column
were chosen as p=(0.360,0.288,0.111,0.083,0.066,0.035,0.025,0.013,0.016,1.3e-
6). In the second column the last p9 was substituted by 5.4e− 3 and p8 was
slightly modified so the pk’s sum to one. Finally, the third column considers
p=(0.182,0.164,0.145,0.127,0.109,0.091,0.073,0.055,0.036,0.018). The claims
distribution considered in the three cases was a gamma (with mean µ =
204.91 and variance σ2 = 2589440) mixed with 20% zeros. The counts were
kept fixed as in Table 1.

practice, this may arise since the delay probabilities will tend to tail off so
that for instance pm−1 will be close to zero, with the result that the estimate
may be negative in some cases. One response is to impose the restriction
that the maximal delay is shorter, for instance d = m − 2. Table 3, second
row of first panel, reports the estimates for the motor data, and it can be
seen that, for this particular data set, there is not much difference between
the results. The relative differences are largest, up to 5%, for the longest
delays, but in absolute terms the differences are modest, up to 0.1%.

We investigated the chance of negative estimates by simulation, and Table
4 reports the simulated probability that the analytic estimator of the longest
delay ψ9 is negative for different values of ψ9. The probability of negative
estimates was similar using other estimation methods but varies considerably
with ψ9. This indicates that the possibility of negative estimates will typically
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be an issue in practice.
One approach to deal with negative delay estimates would be to use

a constrained optimization routine to ensure that all estimators are non-
negative. Having the subsequent bootstrap in mind we suggest a pragmatic
estimator, which is numerically less intensive. If the sum of absolute values
of negative ψ̂k is less than 1% of the sum of absolute values of all ψ̂k then
the negative estimates are replaced by zero. If the sum of negative estimates
is larger than this threshold it may be useful to investigate whether the paid
data have special features such as many zeros.

4.3 Analytic estimation of delay parameters

Again keeping the bootstrap procedure in mind, we suggest an analytic esti-
mator of the delay parameters as a numerically less costly alternative to the
above iterative procedure. In this, we depart from Verrall, Nielsen and Jessen
(2010). While the above estimation procedure conditions on the actual count
data the idea of the alternative is to exploit a possible chain ladder structure
for the counts data. We expect this to work well as long as the counts data
do not deviate much from the chain ladder model, by for instance having a
significant calendar effect. This analytic method only works when d = m−1,
which is what is assumed in this section. In practice, it is necessary to check
for negative delay parameter values and set these to zero, as discussed at the
end of section 4.2.

Thus, the proposal is to replace the observed counts N in the pseudo
likelihood (7) by the fitted counts N̂ from a chain ladder model. In general,
information can be lost in a regression model when replacing regressors by
predicted regressors. However, this loss will be small when the difference
N−N̂ is small, which is not an unreasonable assumption in a Poisson context
where expectation equals variance. Moreover, the count data come from
aggregation over many policies which should improve their precision. In this
paper, we use the analytical method for all our calculations because it makes
our extensive simulation study of the numerically complex bootstrapping
procedure possible.

Recalling that the ratios B̂j = N̂ij/N̂i0 do not depend on the row index
i (see (6)) the conditional expectation evaluated at the predictor has chain
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ladder structure:

mij(N̂) =

j∑

k=0

N̂i,j−kψk = N̂i0ζj where ζj =

j∑

k=0

B̂j−kψk.

Evaluating the pseudo log likelihood (7) at N̂ therefore gives

ℓpseudo(ψ;X, N̂) =
∑

i,j∈I

Xij log(N̂i0) +
m−1∑

j=1

{log(ζj)

m−j∑

i=1

Xij − ζj

m−j∑

i=1

N̂i0}.

This pseudo log likelihood has its maximum at

ζ̂j =

∑m−j

i=1 Xij∑m−j

i=1 N̂i0

. (9)

The estimators for the parameters ψk then solve the linear system



ζ̂0
...
...

ζ̂m−1




=




B̂0 0 · · · 0

B̂1 B̂0
. . . 0

...
. . . . . . 0

B̂m−1 · · · B̂1 B̂0







ψ̂0
...
...

ψ̂m−1



. (10)

The second panel of Table 3 shows delay estimates using, first, the an-
alytic estimator as it is, and, secondly, in combination with the pragmatic
rule to deal with negative estimates. For this particular data set there is not
much difference between any of the reported estimates.

4.4 Estimating the claims variance

The claims variance can be estimated by inserting the estimators ψ̂k in the
conditional expectation (3) to get m̂ij(N) =

∑min(j,d)
k=0 Ni,j−kψ̂k and comput-

ing the over-dispersion statistic

ϕ̂ =
1

df

∑

i,j∈I

{Xij − m̂ij(N)}2

m̂ij(N)
. (11)

Here, the degrees of freedom are df = n − q where n = m(m + 1)/2 is the
dimension of X and q = d+ 1 is the number of estimated delay parameters.
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This statistic could be viewed as an estimator of

ϕ =
1

n

∑

i,j∈I

vij(N)

mij(N)
=
σ2 + µ2

µ
−
µ

n

∑

i,j∈I

∑min(j,d)
k=0 Ni,j−kp

2
k∑min(j,d)

k=0 Ni,j−kpk

, (12)

recalling the expressions for the conditional mean and variance of Xij given
N in (3), (4). A consistency argument could possibly be made in which the
number of rows was increased in the index set I while the number of columns
is kept fixed. The variance estimator implied by (11), (12) is

σ̂2 = µ̂ϕ̂− µ̂2 +
µ̂2

n

∑

i,j∈I

∑min(j,d)
k=0 Ni,j−kp̂

2
k∑min(j,d)

k=0 Ni,j−kp̂k

. (13)

This estimator is slightly different from the variance estimator σ̂2
V NJ = µ̂ϕ̂−

µ̂2 given in Verrall, Nielsen and Jessen (2010). However, if ϕ is much larger
than µ as for the present data set the difference between the two variance
estimators is modest.

4.5 Summary of estimates for motor data

Table 5 gives an overview of the estimates from the motor data. The esti-
mates ψ̂k are obtained from the last row of Table 3, that is by the analytic
estimator combined with the zero rule of thumb. The sum of these estima-
tors is µ̂. The estimates p̂k are computed as ψ̂k/µ̂, and the variance σ̂2 is
obtained using (13).

5 Point forecasts of the reserves

Point forecasts of the reported but not settled (RBNS) reserve and the in-
curred but not reported (IBNR) reserve can now be constructed along the
lines of Verrall, Nielsen and Jessen (2010). As a benchmark for comparison
purposes, we also consider the chain ladder reserve, and discuss the construc-
tion of this first in section 5.1.

5.1 Point forecasts of the chain ladder reserve

Forecasting using the chain ladder technique assumes that the aggregated
payment triangle X indexed by the upper triangle I has a chain ladder
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structure, which is extrapolated to the lower triangle of payments indexed
by

J1 = {i = 1, . . . ,m, j = 0, . . . ,m− 1 where i+ j = m+ 1, . . . , 2m− 1}.

The index sets I and J1 are illustrated in Figure 1.

Figure 1: Index sets for reserves.

The cash flow predicted by the chain ladder is shown in the last column
of Table 6. The cash flow by calendar year is computed by summing the
point forecasts X̃ij along the diagonals of J1. Table 6 also shows the RBNS
and IBNR forecasts which are discussed in further detail below. Note that
while the chain ladder forecast is comparable to that of the sum of the RBNS
and IBNR forecasts, it is indeed somewhat smaller. This is in contrast to
our simulated results below, where the median of the sum of the RBNS and
IBNR reserves estimated by the method of this paper is more or less the
same as that of the classical chain ladder reserve. Therefore, it appears that
it is the particular sample at hand that causes this difference, and it is not a
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general feature of the new method. Similar conclusions were noted in Verrall,
Nielsen and Jessen (2010).

5.2 Point forecasts of the RBNS reserve

Forecasting the RBNS reserve by the cash flow model assumes that the pay-
ments relating to the incurred counts are delayed as described in §3.1. These
forecasts vary over the index set J1 as well as the index set

J2 = {i = 1, . . . ,m; j = m, . . . 2m− 2 where i+ j = m+ 1, . . . , 2m− 1},

illustrated in Figure 1.
The point forecasts are constructed from the conditional expectation

mij(N) in (3). Recognising that the counts are only available in the up-

per triangle I and inserting the estimates ψ̂ℓ gives the point forecasts

m̃ij(N) =

min(j,d)∑

k=j−m+i

Ni,j−kψ̂k, (14)

over the index set J1∪J2. The RBNS cash flow by calendar year is computed
by summing the point forecasts along the diagonals of J1 ∪ J2.

Point forecasts of the RBNS cash flow by calendar year for the motor
data are shown in the first column of Table 6. Note that the cash flow for
calendar year 19 is zero as the last delay parameter ψ9 is set to zero.

5.3 Point forecasts of the IBNR reserve

The IBNR forecasts are constructed in two stages. First, predictions of the
incurred but not reported counts, Ñij are computed over the index set J1.
Secondly, these predictions are inserted in the expression m̃ij(N) to get the
IBNR point forecasts

m̃ij(Ñ) =

min(d,j−m+i−1)∑

k=max(0,j−m+1)

Ñi,j−kψ̂k. (15)

Due to the delay, these point forecasts run over the index sets J1, J2 as well
as the index set

J3 = {i = 1, . . . ,m; j = m, . . . , 2m− 2 where i+ j = 2m, . . . , 3m− 2},
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illustrated in Figure 1.
The IBNR cash flow is shown in the last column of Table 6. The cash

flow by calendar year is computed by summing the point forecasts along the
diagonals of J1 ∪ J2 ∪ J3. As the last delay parameter ψ9 is set to zero the
cash flow for calendar year 28 is zero.

6 Bootstrapping the predictive distribution

including parameter uncertainty

In this section, we explain the bootstrapping procedure which can be applied
to the model set out above. It should be noted that the term ’bootstrapping’
can be used to cover a wide range of approaches. For example, it is sometimes
used in connection with procedures that just simulate the process distribu-
tion. However, it is more common (especially in the actuarial literature) to
use it when the estimation error is also included, and this is the context in
which it is used in this paper. For completeness, we will also mention the
former case in section 6.2, but all the results will include the estimation error.
A further distinction in bootstrapping methodology is between parametric
and non-parametric bootstrapping. Again, in the actuarial literature, it is
more common to encounter non-parametric bootstrapping, where (for exam-
ple) the residuals of the model are resampled. However, it is possible also
to use parametric bootstrapping, and the choice may depend on the partic-
ular properties of the model being considered. In the case of the model in
this paper, parametric bootstrapping is more appropriate and is used in the
remainder of this section. The results of this parametric bootstrapping esti-
mation procedure are compared with non-parametric bootstrapping applied
to the chain-ladder technique in section 6.3. In section 7, a simulation study
compares the conditional bootstrapping method with the classical uncondi-
tional chain ladder method.

6.1 The predictive distribution

We first introduce some notation for the predictive distributions of the RBNS
and IBNR reserves, which will be estimated by bootstrapping.

The reported counts Nij are indexed over I. Their distribution is denoted
NI(ω) and is Poisson distributed with mean given in terms of the population
version ω of the row sums Ri and development parameters Fℓ.
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The distribution of the aggregated claims Xij over I ∪ J1 ∪ J2 arising
from the incurred counts Nij is denoted Xij(θ,N), where θ = (p, µ, σ2). This
distribution is constructed sequentially. Given the incurred counts, the paid
counts Npaid

ij are defined over the set I ∪ J1 ∪ J2 through the formula (1).
The individual claims distribution (or the severity distribution) is assumed
to be a gamma distribution with mean µ and variance σ2. Therefore, the
shape parameter is λ = µ2/σ2, the scale parameter is κ = σ2/µ, and the
density is

f(y) =
1

γ(λ)κλ
yλ−1 exp(−y/κ) for y > 0.

Note that the possibility of zero claims is excluded, in contrast to assumption
in Verrall, Nielsen and Jessen (2010). Given the count Npaid

ij , the aggregate

claims Xij are then gamma distributed with shape Npaid
ij λ and scale κ.

The RBNS reserve is the sum over J1∪J2 of the aggregate claims arising
from the reported counts N , that is m̃ij(N) as given in (14).

The IBNR reserve arises from the incurred but not reported counts Ñij

over the lower triangle J1. These are Poisson distributed distributed in a
similar way to the reported counts, and in accordance with the notation
above, their distribution is denoted NJ1

(ρ,Φ). The aggregated claims over

J1 ∪ J2 ∪ J3 arising from the predicted counts Ñ , m̃ij(Ñ) as given in (15),
will then have a mixture distribution Xij{θ,NJ1

(ω)}.
The total reserve is found by adding the RBNS and the IBNR reserves.

6.2 Bootstrap predictive distribution of RBNS and IBNR

cash flow

The predictive reserve distributions will be estimated using a parametric
bootstrapping procedure. As mentioned above, the term ‘bootstrapping’ is
sometimes used to describe the situation where the unknown parameters
are simply replaced by the estimated parameters (ignoring the estimation
uncertainty). This would give the bootstrap estimators

RBNS(θ̂, N), IBNR{θ̂,NJ1
(ω̂)}, Total{θ̂, N,NJ1

(ω̂)}. (16)

The more usual bootstrapping procedure, taking parameter uncertainty
into account, is defined as follows.

The delay and severity parameters θ = (p, µ, σ2) are estimated using the
conditional model of aggregrated paymentsX given reported counts N , while
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the chain ladder parameters ω are estimated using the model for the reported
counts N . For the bootstrap, this can be replicated by considering these two
distributions varying independently in spaces Θ and Ω say. The conditional
distribution given N of the estimators of the delay and severity parameters
is denoted Dθ(θ

∗;N) while the distribution of the estimators of the chain
ladder parameters is denoted Cω(ω∗). Hence the bootstrap distributions of
the reserves are the mixtures

RBNSmix(θ,N) =

∫

θ∗∈Θ

RBNS(θ∗, N)dDθ(θ
∗;N), (17)

IBNRmix{θ,NJ1
(ω)}

=

∫

(θ∗,ω∗)∈(Θ,Ω)

IBNR{θ∗,NJ1
(ω∗)}dCω(ω∗)dDθ(θ

∗;N), (18)

Totalmix{θ,N,NJ1
(ω)}

=

∫

(θ∗,ω∗)∈(Θ,Ω)

Total{θ∗, N,NJ1
(ω∗)}dCω(ω∗)dDθ(θ

∗;N). (19)

These bootstrap distributions are evaluated at the estimated parameters giv-
ing the bootstrap estimators

RBNSmix(θ̂, N), IBNRmix{θ̂,NJ1
(ω̂)}, Totalmix{θ̂, N,NJ1

(ω̂)}. (20)

As the integral (17), (18), (19) cannot be calculated exactly they are ap-
proximated by simulation by drawing 999 repetitions of the independent
distributions Cω(ω∗) Dθ(θ

∗;N). In each repetition the integrand is evaluated
as in (16).

To implement the above bootstrap approximations we define the following
bootstrap algorithms for the RBNS and IBNR cash-flows.

Algorithm RBNS

Step 1. Estimation of the parameters and distributions. From the original data
(N ,X) estimate the parameters in the model by θ̂ = (p̂, µ̂, σ̂2) through
(10) and (8). The delay distribution is estimated by a multinomial dis-
tribution with probability parameter p̂. The distribution of the individ-
ual payments is estimated by a gamma with shape parameter λ̂ = µ̂2/σ̂2

and scale parameter κ̂ = σ̂2/µ̂.

Step 2. Bootstrapping the data. Keep the same counts N but generate new
bootstrapped aggregated payments X∗ = {X∗

ij, (i, j) ∈ I} as follows:
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• Simulate the delay: from eachNij in I generate the number of paid

claims, N∗paid
ij , by (1) from the Multinomial distribution estimated

at Step 1.

• Get the bootstrapped aggregated payments, X∗
ij, from a gamma

distribution with shape parameter N∗paid
ij λ̂ and scale parameter κ̂,

for each (i, j) ∈ I.

Step 3. Bootstrapping the parameters. From the bootstrap data, (N,X∗), get

θ∗ = (p∗, µ∗, σ2∗), calculated in the same way as θ̂ but with the boot-
strap data generated at Step 2.

Step 4. Bootstrapping the RBNS predictions.

• Simulate the delay from the Multinomial distribution with boot-
strapped probability parameter p∗ (as in Step 2). Calculate the
number of RBNS claims trough (1) and denote these values by
N∗rbns

ij , with (i, j) ∈ J1 ∪ J2.

• Get the bootstrapped RBNS predictions, m∗
ij(N), from a gamma

distribution with shape parameter N∗rbns
ij λ∗ and scale parameter

κ∗. Here λ∗ = µ∗2/σ2∗ and κ∗ = σ2∗/µ∗.

Step 5. Monte Carlo approximation. Repeat steps 2-4 B times and get the
empirical bootstrap distribution of the RBNS reserve, m̃ij(N), from

the bootstrapped {m
∗(b)
ij (N), b = 1, . . . , B}, for each (i, j) ∈ J1 ∪ J2.

Algorithm IBNR

Step 1. Estimation of the parameters and distributions. Estimate θ as in Step
1 of Algorithm RBNS, above. Estimate ω using chain ladder, through
(5) and (6).

Step 2. Bootstrapping the data. Get new bootstrapped data (N∗, X∗) as fol-
lows:

• The countsN∗ are simulated from Poisson distributions with mean
parameters given in terms of ω̂ from the original observed reported
counts N .
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• The bootstrapped aggregated payments X∗ are simulated exactly
as was described in Step 2 of the algorithm RBNS above.

Step 3. Bootstrapping the parameters. From the bootstrap data, (N,X∗), get
θ∗ = (π∗, µ∗, σ2∗), and ω∗ = (ρ∗,Φ∗) calculated in the same way as

(θ̂, ω̂), but with the bootstrapped data generated at Step 2. Calculate
the bootstrapped count parameters, ω∗, by (5) using N∗, and get the
bootstrapped predictions in the lower triangle N∗

J1
(ω∗).

Step 4. Bootstrapping the IBNR predictions.

• For each entry N∗
ij in N∗

J1
(ω∗), simulate the delay from a Multi-

nomial distribution with bootstrapped probability parameter p∗.
Calculate the number of IBNR claims trough (1) and denote these
values by N∗ibnr

ij , for each (i, j) ∈ J1 ∪ J2 ∪ J3.

• Get the bootstrapped IBNR predictions, m∗
ij(N

∗
J1

(ω∗)), from a
gamma distribution with shape parameter N∗ibnr

ij λ∗ and scale pa-
rameter κ∗, exactly as in algorithm RBNS.

Step 5. Monte Carlo approximation. Repeat steps 2-4 B times and get the
empirical bootstrap distribution of the IBNR reserve, m̃ij(N), from the

bootstrapped {m
∗(b)
ij (N), b = 1, . . . , B}, for each (i, j) ∈ J1 ∪ J2 ∪ J3.

An intuitive representation of the above bootstrap algorithms are given
in Figures 2 and 3.

Considering the motor data, the summary statistics from the RBNS and
IBNR cash-flows, estimated by the just presented bootstrap method are re-
ported in Table 7.

6.3 A comparison with bootstrap estimation for the

chain ladder technique

For the chain ladder model, bootstrap methods have been considered in Eng-
land and Verrall (1999), England (2002) and Pinheiro, Andrade e Silva and
Centeno (2003), amongst others. These methods are nonparametric boot-
strapping using the residuals in a GLM framework, and a key issue for
nonparametric bootstraps is the proper definition of the residuals for boot-
strapping. Since the methods consider resampling with replacement, it is
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Figure 2: Bootstrapping scheme to approximate the RBNS predictive distri-
bution

necessary to ensure that these residuals are independent and identically dis-
tributed. This contrasts with the bootstrap method described above, which
is a parametric bootstrap exploiting an assumed distributional form and
defining the resampling scheme from the parametric distributions. Other
parametric bootstrap methods have been considered recently by Björkwall,
Hössjer and Ohlsson (2009a, 2009b).

For comparison purposes with the results from the model described in
this paper, we consider the bootstrap approach for estimating derive the
predictive distribution of chain ladder forecasts described in England and
Verrall (1999) with the modification suggested by England (2002). This con-
structs the predictive bootstrap distribution by resampling with replacement
from the Pearson residuals and then simulating the process distribution us-
ing a gamma distribution (or an overdispersed Poisson) with the parameters
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Figure 3: Bootstrapping scheme to approximate the IBNR predictive distri-
bution

estimated from the empirical bootstrap distribution from the first stage.
Table 7 reports results from the England and Verrall (1999) and England

(2002) bootstrap method using an R package of Gesmann (2009), together
with the results from the new method. The resulting reserves are similar
to the chain ladder estimate of outstanding claims (3,315,779). Hence, as
also noted in Verrall, Nielsen and Jessen (2010), for this data set the new
method does not imply a change in the estimation of the total outstanding
claims. We would note, however, that the new model includes a tail, whereas
this would have to be added separately for the chain ladder model (thereby
increasing the estimate of outstanding claims). The new model is able to
generate full cash flows split into two parts, one for the RBNS reserve and
one for the IBNR reserve. We also see that the volatility (as measured by
the prediction error) is also similar to that from the bootstrap distribution
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for the chain ladder method. Again, we note that the new model includes
the tail and we would expect that the prediction error for the chain ladder
model would increase once this is taken into account. Also shown are some
percentiles of the bootstrap estimates of the predicitive distributions for the
new model and the chain ladder model. In order to assess the performance of
the new model, the following section contains a simulation study to compare
the results with the classical chain ladder.

7 Simulation study

In order to study the performance of the model described in this paper, in
comparison with the standard chain ladder technique, this section considers a
simulation study and examines the reserve estimates and capital requirements
based on each approach. We generate the data using the assumptions of the
new model, but (since the assumptions are deliberately free of any specific
structure in terms of the shape of the run-off) we do not believe that this
has any affect on the conclusions reached.

7.1 The simulation settings

A scenario for the simulations close to that described in section 6 has been
constructed. We consider data triangles with dimension k = 10, and generate
999 data sets using the following distribution specifications:

1. The reported counts Nij are defined over a square matrix (with dimen-
sion m = 10) with the upper triangle being exactly the data entries
in Table 1, and the lower triangle completed by generating the entries
from a Poisson model with the chain ladder parameters.

2. The delay is generated from a multinomial distribution with probability
parameters pk estimated from the empirical study in section 5.

3. The individual payments are generated from a gamma distribution with
first two moments, µ = 163.6158 and σ2 = 2070821 (estimated again
from the empirical study).

4. A new triangle of aggregated payments is formed from the data gener-
ated in step 3, to which the new method and the classical chain ladder
method are applied.
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7.2 Distribution forecasts

We study the performance of the new bootstrap method (described through
algorithms in Section 6.2) in estimating the predictive distribution. Also
we make comparisons with the results achieved by applying the standard
bootstrap method to the chain ladder method. As in the empirical study in
Section 6, we fix the number of bootstrap samples to be B = 999 for all the
bootstrap methods.

In order to assess the performance of the new method, we require the
”actual” predictive distribution, which we simulate using steps 1–4 of the
simulations described above. This was done as follows: for each of the 999
simulated data sets we estimate the parameters in the model. These esti-
mates are used to produce the RBNS and IBNR reserves, and from these 999
reserves we calculate the desired quantile of the distribution. This process
is repeated 999 times and the simulated ”actual” quantiles are defined as by
taking the average of the 999 resulting quantiles.

Table 8 shows the distribution forecasts for the total reserve. The boot-
strap chain ladder method of England and Verrall (2002) and England (2002),
as implemented by Gesmann (2009) gives higher tail quantiles implying
higher levels of solvency requirements when using this method. One can
consider the trade-off between accepting these extra solvency requirements
based on the simple unconditional chain ladder method and rather than
collecting the triangle data of reported claims and implementing the more
complicated model considered in this paper.

In Table 9 simulations of the medians of the full cash flow are presented for
the bootstrap forecast distribution for the new model and for the chain ladder
model. The two methods produce almost identical results for the median and
it is therefore the distributional properties only that define the difference
between these models. They produce almost the same best estimates of
reserves. Table 10 gives a breakdown of distribution forecasts for the RBNS
and IBNR method and we can see that almost all the upwards bias comes
from the RBNS reserve. The chain ladder method does not give such an
RBNS/IBNR split and we see the ability to make this split as one of the
advances of the new approach. When comparing Table 6 and Table 10 it can
be seen that the relative volatility of the IBNR part of the reserve is much
bigger than the volatility of the RBNS reserve. This is because of the RBNS
is conditional on known counts, whereas the counts of the IBNR contain
volatility, and have to be estimated before the final IBNR reserve can be
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predicted.

8 Conclusions

This paper has examined the properties of the claims reserving method pro-
posed by Verrall, Nielsen and Jessen (2010), and has shown how the full
predictive distribution may be obtained using bootstrap methods. In this
paper, the structure of the model is identical to Verrall, Nielsen and Jessen
(2010) although the detailed assumptions differ in some respects. We believe
that this general approach has a great deal to offer: it is essentially as simple
to apply as methods such as the chain-ladder technique, but it uses a little
more data. We believe that by adding the information regarding the claim
counts, much better estimates should be obtained (in general) for the out-
standing liabilities and for the predictive distributions. Although the results
for the set of data used in this paper did not show any great improvements
over the standard chain ladder results, we believe that the general approach
has a lot of potential for further development and improvement. We also
believe that the coherent approach to the underlying mechanism generating
the data, the split between RBNS and IBNR reserves, and the natural and
consistent inclusion of the tail in the forecasts are specific advantages of this
methods over the ad hoc approach of the chain ladder technique.
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k Rk Fk ζ̂k ψ̂k p̂k

0 59.0 59.0 0.361
1 7135 1.135291 54.9 46.9 0.287
2 9190 1.003790 24.9 18.3 0.112
3 11427 1.000917 16.6 13.8 0.084
4 10667 1.000329 12.8 10.7 0.066
5 10951 1.000284 7.27 5.70 0.035
6 11421 1.000234 5.13 4.26 0.026
7 11341 1.000144 2.67 2.02 0.012
8 12486 1.000306 3.21 2.87 0.018
9 13658 1.000421 0.28 0 0
10 10989

µ̂ = 163.62
ϕ̂ = 12793.19
σ̂2 = 2070821 = 1439.02

σ̂2
V NJ = 2066398 = 1437.52

Table 5: Estimates for motor data. Rk and Fk are row sums and development
factors for count data in Table 1 computed as in (5). ψ̂k, p̂k, µ̂ are delay
parameters estimated as described in §4.2 using the analytic method with
a negative ψ̂9 replaced by zero. ϕ̂ and σ̂2 are computed as in (12), (13).
σ̂2

V NJ = µ̂ϕ̂− µ̂2.
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Future Calendar Year RBNS IBNR RBNS+IBNR CL
1 11 1307 93 1399 1354
2 12 720 78 798 754
3 13 494 34 529 489
4 14 323 26 349 318
5 15 188 20 208 185
6 16 117 12 130 115
7 17 65 9 74 63
8 18 37 5 42 36
9 19 0 6 6 2
10 20 1 1
11 21 0.6 0.6
12 22 0.4 0.4
13 23 0.2 0.2
14 24 0.1 0.1
15 25 0.07 0.07
16 26 0.04 0.04
17 27 0.02 0.02
18 28 0 0

Total 3251 287 3538 3316

Table 6: Point forecasts of cashflow by calendar year, in thousands.
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Bootstrap predictive distribution
RBNS IBNR Total BCL

mean 3134 274 3408 3314
pe 327 60 340 345
1% 2464 148 2714 2588
5% 2646 183 2895 2780
50% 3105 272 3390 3287
95% 3722 378 4002 3911
99% 3987 435 4275 4061

Table 7: Distribution forecasts of RBNS, IBNR and total reserve, in thou-
sands. The three first column give the summary of the distribution from the
proposed bootstrap method which takes into account the uncertainty of the
parameters. The last column provides the results for the total reserve for the
bootstrap method of England and Verrall (1999) and England (2002).
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Future Actual Cashflow Bootstrap CL Bootstrap
95% 99% 95% 99% 95% 99%

1 1649 1759 1659 1776 1709 1847
2 992 1085 1001 1094 1018 1115
3 686 765 698 778 707 789
4 482 550 492 562 494 564
5 319 375 326 386 323 381
6 226 276 231 284 224 274
7 157 203 161 210 150 193
8 112 154 117 163 103 140
9 41 76 48 87 24 41
10 9 23 10 25 0 0
11 3 14 3 13 0 0
12 0.8 10 1.4 9 0 0
13 0.2 7 0.4 5 0 0
14 0 3 0.1 3 0 0
15 0 0.8 0 1 0 0
16 0 0.1 0 0.4 0 0
17 0 0 0 0.1 0 0
18 0 0 0 0 0 0

Table 8: Simulation of distribution forecasts of total reserve by calendar year:
95%, 99% quantiles over 999 repetitions. Column 2-3 give actual numbers;
Column 4-5 cash flow bootstrap using analytic delay estimation and tak-
ing into account the uncertainty parameters; Column 6-7 bootstrap Chain
Ladder.
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Future Actual Cashflow Bootstrap CL Bootstrap
1 1396 1406 1400
2 793 802 799
3 523 530 528
4 343 350 345
5 203 209 204
6 124 129 124
7 69 74 68
8 38 42 36
9 4 7 3
10 0 0 0

Table 9: Simulation of distribution forecasts of total reserve by calendar
year: Medians (50%) over 999 repetitions. Column 2 gives actual numbers;
Column 3 cashflow bootstrap using analytic delay estimation and taking into
account the uncertainty parameters; Column 4 Chain Ladder bootstrap.
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RBNS IBNR
Future Actual Bootstrap Actual Bootstrap

95% 99% 95% 99% 95% 99% 95% 99%
1 1551 1655 1559 1673 155 194 155 192
2 906 993 916 1005 137 175 136 170
3 649 724 660 738 74 102 74 101
4 454 519 463 531 60 86 60 85
5 296 351 303 362 52 76 51 75
6 212 261 216 270 37 60 36 57
7 146 192 150 199 31 54 30 50
8 105 147 110 156 21 41 21 39
9 27 67 35 77 24 45 23 42
10 0 0 0 0 9 23 10 25
11 0 0 0 4 3 14 3 13
12 0 0 0 3 0.8 10 1 9
13 0 0 0 0.5 0.2 7 0.4 6
14 0 0 0 0.1 0 3 0.1 3
15 0 0 0 0 0 0.7 0 1
16 0 0 0 0 0 0.1 0 0.4
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0

Table 10: Simulation of distribution forecasts of RBNS/IBNR reserves by
calendar year: 95% and 99% quantiles over 999 repetitions. Column 2-5 give
RBNS reserve Column 6-9 give IBNR reserve Column 2-3 & 6-7 give actual
numbers; Column 4-5 & 8-9 give cashflow bootstrap using analytic delay
estimation and taking into account the uncertainty parameters.
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