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Abstract

Cluster analysis is a popular method for data investigation where
data items are structured into groups called clusters. This analysis
involves two sequential steps, namely cluster formation and cluster
evaluation. In this paper, we propose the tight integration of cluster
formation and cluster evaluation in interactive visual analysis in or-
der to overcome the challenges that relate to the black-box nature of
clustering algorithms. We present our conceptual framework in the
form of an interactive visual environment. In this realization of our
framework, we build upon general concepts such as cluster com-
parison, clustering tendency, cluster stability and cluster coherence.
Additionally, we showcase our framework on the cluster analysis of
mixed lipid bilayers.

CR Categories: I.3.m [Computing Methodologies]: Computer
Graphics—Miscellaneous; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval—Clustering

Keywords: Visual Analysis Models, Visual Knowledge Discov-
ery, Data Clustering, Bioinformatics Visualization.

1 Introduction

Cluster analysis divides data into groups (clusters) where data items
within a group are similar with respect to certain criteria. Usu-
ally, data items are clustered using solely the information which is
available in the data which represents the items and their relations.
Clusters provide the analyst with a grouping structure without pro-
viding any information on why they exist and which properties they
have (e.g., whether the clustering is stable) [Tan et al. 2006]. Con-
ventionally, cluster analysis involves two consecutive steps; cluster
formation and cluster evaluation. Cluster formation is a black-box
operation where the user specifies a clustering algorithm together
with a set of parameters and gets an according clustering. Here, we
refer to clustering as the entire set of clusters. Usually, the forma-
tion step is followed by an evaluation phase where the user decides
whether she is satisfied with the clustering, or not. If the results are
implausible, the process is carried out again with a different param-
eter set and/or algorithm.
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Assessing a clustering’s quality and fine tuning the clustering algo-
rithms are complex tasks due to the following facts [Tan et al. 2006].
Firstly, the relations in the data that eventually lead to a cluster-
ing vary from domain to domain. This makes it hard to generalize
and formalize the definition of what a valid cluster is. Secondly,
clusters do not usually reveal any implicit information on data rela-
tions, making them harder to be interpreted. Thirdly, clustering al-
gorithms are highly dependent on their parameters and often these
parameter sets do not offer a good basis for the analyst to steer the
analysis using her domain knowledge. There is a certain need for
mechanisms to enhance cluster analysis. These mechanisms should
include a stronger utilization of the analyst’s domain knowledge in
cluster analysis together with methods for the interactive analysis
of raw data (together with the clusters). Such mechanisms would
not only lead to more satisfactory clusterings but also provide more
insight into the underlying relations in data. This insight eventually
increases the confidence of the expert on cluster analysis results.

As an illustration of a situation where integration of the expert in
cluster analysis is required, let us assume a demonstrational case
(Fig. 1), where points are scattered on a 2D plane without any
structurally apparent clustering. With a slight change in input pa-

(a) (b)

(c) (d)

Figure 1: Ambiguity in the cluster analysis of a set of 2D points a)
Initial set of points; b),c) Two possible clustering results; d) The re-
sulting clusters obtained by a combination of the original two clus-
terings, where regarding one cluster there is a need to change the
cluster by removing some points (dashed arrow).

rameters, two runs of a clustering algorithm can result in different
clusterings (Fig. 1b,c). After the evaluation phase, the analyst can
reckon that both clusterings are unsatisfactory. However a combi-
nation of both results, which is not necessarily the outcome of any
clustering algorithm, could be a satisfactory clustering (Fig. 1d). In
order to resolve this ambiguity, the analyst needs to steer the cluster
formation process by using a combination of her domain knowledge
and the insight gained throughout the analysis.

In data mining and cluster analysis, research has been done on
computational techniques to achieve successful cluster analysis.
Jain [Jain 2010] provides a detailed and up-to-date description of
the problems and techniques in cluster analysis. A basic and fun-



damental subset of these techniques relate to clustering tendency,
cluster comparison, cluster stability and cluster cohesion. Clus-
tering tendency reveals if there is a non-random structure in the
selected data sample [Smith and Jain 1984]. An apparently struc-
tured sample would lead to a successful clustering much more than
a sample with almost a random structure. Ideally, cluster analysis
begins with the evaluation of the clustering tendency of the inves-
tigated data. Cluster comparison is a clear requirement of cluster
analysis owing to the fact that clustering algorithms are often quite
stochastic and parameter dependent [Jain 2010]. Cluster analysis
does not usually rely on a single result of a particular algorithm.
Analysts make a number of different clusterings with different pa-
rameters (and algorithms). Intuitive and interactive mechanisms to
compare clusters need to be a part of any cluster analysis process.
Cluster stability and cluster cohesion are important criteria to eval-
uate the validity of a cluster. A cluster can be considered stable
when its members are generally clustered together in different clus-
terings [Lange et al. 2004]. Cluster cohesion, on the other hand,
depicts how tight the items are in a single cluster [Tan et al. 2006].
It is possible to observe additional structures in a cluster with low
cohesion. Analysts can reckon that an unstable and/or an incoherent
cluster is not valid and that it requires a refinement. Conventional
cluster analysis employs these techniques separately in the steps of
cluster formation and cluster evaluation in order to achieve high
quality clusterings [Tan et al. 2006]. However, we are not aware of
any solution which integrates these techniques in an interactive and
iterative analysis procedure.

To achieve this, we describe a framework that tightly integrates
cluster formation and cluster evaluation in interactive visual anal-
ysis (IVA). In cluster formation we employ the explorative power
of the human perception to discover subsets of the data with higher
clustering tendency. In cluster evaluation, we utilize the expert’s
domain knowledge to compare and evaluate clusters in terms of
their stability and cohesion.

In this paper, we also realize and present the proposed framework in
the form of an interactive visual environment. In this environment,
we incorporate conventional views as well as two specific views
for the two aforementioned purposes. The conventional views are
scatter plots, histograms and function graphs which are used in link-
ing&brushing operations. The two more special views are a cluster
tendency view to evaluate the suitability of data subsets for cluster-
ing and a parallel cluster view to interact with a number of different
clusterings and to compare them. Importantly, in all the stages of
the analysis, clusters are treated as an additional dimension of the
actual dataset. This approach enables us to tightly integrate clusters
in the IVA cycle.

Keim et al. [Keim et al. 2008] stated that an important task of visual
analytics is to integrate the knowledge, explorative power and cre-
ativity of the human with the computational power of algorithms.
We follow this research goal with the visual exploration and anal-
ysis of clusterings which not only enable experts to discover more
reliable groupings in data but also provide information on why these
groupings exist at all.

2 Related Work

Interactive techniques have proven to help analysts to manually
refine and build clustering results. A hierarchical clustering and
visualization algorithm, H-BLOB, is introduced by Sprenger et
al. [Sprenger et al. 2000]. The authors propose a visual clustering
approach which involves a two-stage procedure, where a hierarchi-
cal clustering is followed by a visualization, using blob objects, to

reveal cluster shapes. Rinzivillo et al. use a visually driven tech-
nique called progressive clustering [Rinzivillo et al. 2008] where
the clustering is done in successive steps using different distance
functions. The authors show that the progressive clustering tech-
nique provides a convenient mechanism, where a user can selec-
tively direct the algorithms to potentially interesting portions of
data. Schreck et al. [Schreck et al. 2008] propose a framework to
interactively monitor and control Kohonen maps to cluster trajec-
tory data. In their paper, they state the importance of integrating the
expert in clustering process to achieve suitable results.

Visualization has generally served as the final step of cluster anal-
ysis where it plays a critical role in enhancing the interpretation
of clusters by enabling comparison and evaluation. Grottel et
al. [Grottel et al. 2007] use interactive visual tools to analyze clus-
ters in molecular dynamics. The authors introduce the concept
of flow groups, which display cluster evolution over time, to val-
idate the quality of clustering results. In a recent study, Rubel et
al. [Rubel et al. 2010] introduce a framework that integrates clus-
tering and visualization for the analysis of 3D gene expression data.
Authors integrated the data clustering for 3D gene expression anal-
ysis into their PointCloudXplore visualization tool. The approach
in this study is application oriented, therefore enables only a lim-
ited utilization. On the contrary, our framework can be applied to
arbitrary multivariate and/or time varying datasets.

In Hierarchical Clustering Explorer [Seo and Shneiderman 2002],
Seo and Shneiderman use an interactive dendogram coupled with
a color mosaic to represent clustering information together with
conventional visualizations. They also include a cluster compari-
son view where the user can compare two clustering results. In a
recent study, Lex et al. introduce MatchMaker [Lex et al. 2010],
where they visualize and compare multiple groups of dimensions.
In their work, they provide a use-case where they use their methods
to compare clusters. We enrich this cluster comparison capability
by mechanisms to compare clusters not only on member items but
also on quality. Vectorized radial visualizations are used in explor-
ing different clustering results by projecting data records on a vec-
torized cluster space [Sharko et al. 2008]. This approach proves to
be useful in validating the clusters when many different clusterings
for the same dataset exist. An interactive dissimilarity matrix, pre-
sented by Bezdek and Hathaway [Bezdek and Hathaway 2002], was
extended to analyze clustering results at different similarity level by
Siirtola [Siirtola 2004]. Sharko et al. [Sharko et al. 2007] use heat
maps called cluster stability matrices to visually analyze and re-
veal most ’stable’ clusters in clustering results. In our approach,
we enhance the cluster comparison capability in the above stud-
ies [Seo and Shneiderman 2002] [Sharko et al. 2008] by using IVA
operations in the parallel cluster view. Moreover, we enhance and
integrate the dissimilarity matrix [Bezdek and Hathaway 2002] vi-
sualizations with cluster comparison plot in an interactive visual
analysis cycle to fill the gap between cluster evaluation and cluster
formation in cluster analysis.

3 Integrating Cluster Formation and Clus-

ter Evaluation

As mentioned in Section 1, our approach integrates cluster forma-
tion and cluster evaluation steps in an interactive visual analysis
environment. Our conceptual framework is realized in an interac-
tive visual analysis environment (Fig. 2) where we employ a view to
explore cluster tendency (cluster tendency view) and a view to com-
pare clusters and utilize them in IVA (parallel cluster view). In our
approach, cluster analysis starts with the cluster formation phase.
The first step in this phase is the exploration of a suitable domain
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Figure 2: An illustration of our framework. Iterative exploration is
performed to find suitable data subsets for clustering (1). Suitable
selections are clustered and stored (2). Analysis continues with the
evaluation phase (3). Evaluation is carried out in an IVA cycle by
comparing clusters with respect to their stability and coherence (4).
Analysis continues by incorporating the insight from the evaluation
phase (5).

for a clustering (Fig. 2-1). Here, the domain refers to brushed items
and a set of dimensions to use in clustering. The selected domains
are evaluated with respect to their tendency for clustering by using
the cluster tendency view. The selected domain is then clustered
using one of the clustering methods and the resulting clusterings
are stored (Fig. 2-2). Cluster analysis continues with the evaluation
phase (Fig. 2-3). This phase is performed using the cluster tendency
view and the parallel cluster view together with conventional visu-
alization support (Fig. 2-4). In this phase, the parallel cluster view
is used to assess cluster stability and to compare clusters. Addition-
ally, when used in conjunction with the cluster tendency view, it
provides a mechanism to discover cluster coherence. Cluster analy-
sis is iteratively continued using the insight gained in the evaluation
phase (Fig. 2-5).

In the realization of our conceptual framework we follow the data
model presented by Konyha et al. [Konyha et al. 2006], which pro-
vides a suitable and flexible language for the analysis of arbitrary
data types. We define the data set of independent variables (items)
as O = {o1, . . . ,on}, where each item has a set of m = p+q depen-
dent values F(oi) = [ f1(oi), . . . , fp(oi),gp+1(oi, t), . . . ,gp+q(oi, t)],
where f represents regular and g represents temporal variables. The
regular variables have a singular value for each oi and temporal
variables change their values over a time interval. We define the
cluster c as c ⊆ O and the clustering C as a set of clusters C ⊆ 2O,
where the following clustering criteria hold:

⋃

c∈C

⊆ O and ∀ca,cb ∈C : ca 6= cb ⇒ ca ∩ cb = /0. (1)

Note that in (1) we do not expect clustering C to include all the
items in O. This is firstly due to the fact that clusterings can be
performed on non-overlapping subsets of the data and secondly that
data can contain outlier items which are not possible to include in a
cluster.

Our conceptual framework is realized in the visual environment
named CIVA (Interactive Visual Cluster Analysis). CIVA incor-
porates different types of conventional visual analysis views: his-
tograms, scatter plots, parallel coordinates, etc. for regular vari-
ables; functions graphs and animated scatter plots for temporal vari-
ables. Function graph displays all g(o, t), with x-axis as time and
y-axis as the function values. For a better overview of temporal

variables, we implement an animated scatter plot where displayed
points move while an internal time variable changes. All of these
views are linked through a brushing mechanism, except the ani-
mated point graph. This brushing mechanism is similar to compos-
ite brushing proposed by Allen and Ward [Martin and Ward 1995].
The result of brushing applied on a view is b ⊆ O, which is then
combined with existing brushes by the boolean operator S being
S ∈ {∪,∩,¬}, where ∪ represents union, ∩ represents intersection
and ¬ represents not operator. Every brush b is combined with the
previous bi by applying the S operator: bi+1 = S(bi,b). In addition
to the existing brushing scheme, we append a brushing operator on
cluster level represented as b = c ∈C. For simplicity, in the follow-
ing we will denote the final set of brushed items as bL. Moreover,
brushes on temporal variables select a time interval in addition to
a list of items. This enables the analyst to concentrate on different
time intervals while doing the analysis.

To demonstrate our framework in the following sections, we em-
ploy the Iris dataset [Fisher 1936], which is extensively used in
data mining literature. The dataset consists of 150 samples from
the three species of Iris flowers (Iris Setosa, Iris Versicolour, and
Iris Virginica), where four features were measured from each sam-
ple, here being our regular variables. The measured features are the
sepal length ( f1), the sepal width ( f2), the petal length ( f3) and the
petal width ( f4). All the figures up-to Section 5 are visualizations
of this dataset.

3.1 Cluster tendency view

An inherent problem in cluster formation is an assessment of cluster
tendencies. Transforming to our IVA viewpoint, the question would
be whether the current selection bL contains any cluster tendencies.
One of the cluster tendency evaluations is based on visualizing the
similarities between items.

To visualize cluster tendencies, we propose Cluster Tendency View
(tendency view), which is based on the dissimilarity matrix visual-
ization approach presented by Bezdek and Hathaway [Bezdek and
Hathaway 2002]. In the dissimilarity matrix, M, every element mi, j

represents dissimilarity measure between the items oi and o j , which
is smaller for more similar items. Here, for every matrix element,
we compute the sum of mutual distances between each pair of vari-
ables. Importantly, the matrix is computed not for every item, but
only for bL, for which we define dissimilarity matrix M as follows:

mi, j =
p

∑
k=1

wk ∗d
(

fk(oi), fk(o j)
)

+

q+p

∑
k=p+1

wk ∗

[

∑
t1
t=t0

d
(

gk(oi, t),gk(o j, t)
)

t1 − t0

]

, (2)

where d(·, ·) is a distance function, wk are weights that are spec-
ified by the user which can emphasize or suppress (zero) certain
variables. Distance functions are essential elements of cluster anal-
ysis and there is a large number of distance functions proposed in
the literature [Shi et al. 2009]. Especially with time dependent vari-
ables, distance function definition should consider domain specific
criteria. In this paper, Euclidean distance is preferred for d(·, ·).
However, our methods are not bound to a specific distance function
and d(·, ·) should be chosen to fulfill domain specific constraints
prior to analysis. Time dependent variables g are computed within
the given time interval [t0, t1]. This time interval is interactively
determined by the logical combination of temporal brushes.

Importantly, on every change of the selection bL or a weight wi,
the dissimilarity matrix M is automatically recomputed and visual-



ized in tendency view. This mechanism enables the tight integra-
tion of tendency view into linked view system. Once the matrix is
computed, it is normalized and visualized in tendency view using a
color transfer function.

Referring back to the Iris dataset, we assign the corresponding
weights equally, i.e., w f1

= w f2
= w f3

= w f4
= 1. Resultant dis-

similarity matrix is shown in Fig. 3 (left). If we like to retrieve
the cluster tendency by emphasizing the contribution of variables
f3 and f4, we can achieve this by increasing w f3

and w f4
com-

pared to w f1
and w f2

(Fig. 3 (right)). In the dissimilarity matrix,
similar items are rendered in saturated red colors, while dissimilar
ones in pale blue colors. Moreover, the matrix is ordered accord-
ing to Ward’s classification procedure, by which we construct new
row and column orderings by iterative minima retrieval [Ward Jr
1963]. Although, the choice of the ordering algorithm can change
the resulting visualization here, they will provide similar results re-
garding the clustering tendency of the selection. Therefore, Ward’s
method is preferred as it is a widely used classification method in
data mining literature.

f

f

3

1

f4

f2

x

x

Figure 3: The dissimilarity matrix with the equal weights w f1
=

w f2
= w f3

=w f4
= 1 (left). To emphasize the contribution of f3 and

f4 variables, we tripled (tripled arrow) the weights of f3 and f4; i.e.,
w f3

= w f4
= 3 (right). For better understanding the corresponding

scatterplots for both variable combinations are shown in the middle.

3.2 Integrated Clustering

Majority of the clustering methods operate on (dis)similarity ma-
trices [Tan et al. 2006] and the expert has to decide on a suitable
distance function with a set of dimensions to construct this matrix
prior to performing clustering. Tendency view provides an inter-
active mechanism to construct, compare and evaluate the M matrix
(2) of the existing selection bL. After discovering an appropriate M,
user can continue with clustering bL. In CIVA, we integrate clus-
tering algorithms and manual grouping techniques operating on M.
For instance, the user can apply k-means or hierarchical cluster-
ing [Tan et al. 2006] algorithms on bL using directly M as a pa-
rameter to the algorithms. Here, we use a more robust implemen-
tation of k-means by utilizing a method called partitioning around
medoids [Kaufman and Rousseeuw 2005]. One additional cluster
formation solution we propose is to employ directly the tendency
view to manually draw groups on the view’s diagonal. Our inten-
tion here is not to replace clustering algorithms, but to allow for
more precise cluster evaluation process. For instance, using the ten-
dency view from Fig. 3 (left) we perform manual clustering where
five groups are formed. We can clearly spot only cluster (5); while
the upper clusters are not that clearly separable and requires further
analysis (Fig. 4). All the clusterings, which are created manually,
algorithmically or on different dimensions of the dataset become a
part of the dataset itself at the end of this phase.

(1)(2)

(3)

(4)

(5)

Figure 4: The interactive cluster formation using the tendency view
and dissimilarity matrix. User draws a set of edges on the matrix
diagonal, where each edge represents a cluster. This allows to create
manual clusterings based on user priorities. Here, we specify five
clusters that can be visually separated from each other.

3.3 Parallel Cluster View

Clusters provide high level information about the internal structure
of the data. In order to analyze the underlying relations in the data,
we incorporate clusters as data dimensions in IVA operations. Ac-
cordingly, we introduce Parallel Cluster Views (cluster view) to ex-
plicitly use clusters in brushing & linking operations. PCV, which
is analogous to parallel sets proposed by Kosara et al. [Kosara et al.
2006], displays a number of different clusterings and enables the
user to make selections at cluster level.

In a cluster view, vertical axes visualize different clusterings Ck,
where k indicates the order of the clustering axis, i.e., for the left-
most axis, k = 0; and each curve between the axes represent a single
data item, oi. All axes contain a set of clusters where each cluster
is represented by a different color. Curves between axis k and k+1
are colored with respect to the colors of the clusters they are mem-
bers of in Ck. This coloring schema improves the comprehension
of membership changes between different clusterings.

Ordering of the items in a cluster is crucial on the perception of
changes in membership relations. The ordering for the curves are
computed by considering the overlapping members between Ck and
Ck+1. Firstly, the items are grouped into branches, where a branch
represents the items ci ∩ c j where ci ∈Ck,c j ∈Ck+1. Secondly, the
curves within a cluster are drawn regarding the cluster’s branches
with the next clustering. Using this methodology, we make sure
that items that share the same cluster in Ck and Ck+1 never overlap
in between two neighboring clusterings.

Cluster view provides an intuitive mechanism to analyze and com-
pare a number of different clusterings. For instance, Fig. 5a dis-
plays three clusterings (C0,1,2) (formed using the weights w f1

=
w f2

= 1 and w f3
= w f4

= 0, Fig. 4) which are: manual grouping
(C0) performed in Fig. 4, k-means clustering with k parameter as 5
(C1) and a hierarchical clustering (C2). As hierarchical clustering
contains a set of levels, the appropriate level to use in the visualiza-
tion is determined interactively by the analyst.

Cluster view is tightly integrated into interactive analysis cycle by
cluster level brushes and linkage to the selection mechanism in all
other views. The user can select any number of clusters using
one of S operators. For instance, in Fig. 5b a cluster lever brush
(b1), highlights the items (arrows) in the other linked views in a fo-
cus+context manner. In the presented configuration of views, we
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Figure 5: a) Parallel cluster view showing three clusterings (C0,1,2), wherein C0 and C1 are composed of five clusters and C2 of three clusters.
Curves represent the item membership relations within the clusterings. Note that clusters (5),(5) and (1) in sequential clusterings from left to
right are identical. b) Cluster brush (b1) is used to select items representing members of cluster (4) in clustering (C0). Brushed items are also
highlighted in the accompanied scatter plot and the histogram that depicts a ratio of selected items per the specie. c) Combining selections on
cluster and object level to analyze items of interest according to their cluster membership. Cluster brush b1 and subsequent application of the
∪ operator with the histogram brush b2 reveals how brushed items are distributed in all clusterings (circles).

select cluster 4 and directly observe all the items, members of clus-
ter 4, in the accompanying histogram and scatter plot. In the his-
togram, ratio of species in selected items can be observed.

Moreover, brushes in other views are linked to the cluster view and
can be combined with cluster level brushes. In Fig. 5c the cluster
level brush (b1) is combined with histogram brush (b2) with the
∪ operation, which selects additional items being members of the
third specie.

4 Cluster Analysis Procedures

In the following, we describe cluster analysis procedures in clus-
ter formation and cluster evaluation phases. Formation phase in-
cludes assessment of cluster tendency, while evaluation phase in-
volves cluster comparison, coherence and stability. These proce-
dures are showcased in CIVA environment.

Cluster formation phase starts with the exploration of a data subset
and/or dimensions suitable for clustering. Tendency view assists
the analyst to evaluate the clustering tendency of the selection be-
fore clustering. In Fig. 6a we see the tendency view of a selection
which is suitable for clustering as it contains apparent structures in
it. However in Fig. 6b, tendency view displays almost a random dis-
tribution which would yield to a less successful clustering. These

(a) (b)

Figure 6: Two tendency views depicting different clustering ten-
dencies. (a) contains apparent structure suitable for clustering. (b)
is not preferable for clustering as no structure is easily visible.

views provide the reasoning to favor a specific selection and/or di-
mension combination. Therefore, in this case (a) is preferred for
clustering.

In the evaluation phase, clusters are visualized and compared to
assess their meaning and validity . Evaluation of a cluster begins
with coherence assessment. Tight cooperation between tendency
view and cluster view in assessing cluster coherence can be seen
in Fig. 7 where two cluster level brushes (to select clusters c0 and
c1) are visualized with their corresponding dissimilarity matrices.
Selected cluster c0 results in a tendency view which depicts sub-

c0

(a)

c1

(b)

Figure 7: Two clusters (c0,1) and their corresponding cluster views.
As c0 contains apparent structures, it requires further refinement.
c1 results in a uniform tendency view and it can be regarded as a
satisfactory cluster.

groups, which means it needs further refinement to get more valid
results. However, tendency in the bottom row indicates that dis-
tances between items in c1 are uniform, meaning that the cluster
can be considered as a valid cluster regarding inter-cluster distances
(i.e., coherence). The analyst can declare c1 as satisfactory and con-



centrate on finding better clusterings for the items in c0.

In cluster analysis, evaluating cluster stability is a critical technique
to validate clusters. In order to demonstrate cluster stability evalu-
ation, we made several clusterings of the same selection using dif-
ferent k parameters (k = 3,7,10,15) for the k-means algorithm. If
the items in a certain cluster tend to stay in the same cluster as k
increases, this cluster can be considered as stable. Cluster labeled
c0 in Fig. 8 is a stable cluster as most of its members stay in the
same cluster in all the clusterings. On the other hand, members of

c0

(a)

c1

(b)

Figure 8: Using cluster views to evaluate cluster stability. Clus-
ter view visualize four clusterings made with k-means algorithm
(k = 3,7,10,15). Cluster c0 is a stable cluster as most of its mem-
bers are in the same cluster in consecutive clusterings. However c1

needs further refinement as its members are spread across different
clusters in later results

c1 are spread among a number of different clusters with k = 15.
Compared to c0, c1 can be regarded as an unsatisfactory cluster as
there is an inconsistency between different runs of the clustering
algorithm.

5 Case study: cluster analysis of mixed

lipid bilayers

To demonstrate the usefulness of our approach, we present a study
of cluster formations in lipid bilayers of biological membranes.
Here, we do not focus on the cluster formation phase, but rather
to showcase the importance of the evaluation phase. Our case study
proved to be beneficial in getting better insight into data, which
then led to new points of discussion on lipid bilayers. Biological
membranes are active players in most biological processes and the
dynamic behavior of the lipids which constitute them is decisive.
In an attempt to understand biological membranes and membrane
proteins, lipid bilayers have been and still are extensively stud-
ied. Molecular dynamics (MD) simulations are utilized as powerful

tools to describe the atomic structure and dynamics of lipid bilay-
ers, since detailed structural data of the most biologically relevant
phases is difficult to obtain experimentally. In particular mixtures
containing more than one lipid type have been studied in order to
understand how different lipid types cluster together and can lead to
inhomogeneity in biological membranes [Broemstrup and Reuter
2010]. Unfortunately, data generated by MD simulations can be
rather tedious to analyze. Moreover, the analysis is nowadays per-
formed on a non-interactive basis thus inactivating the user in the
analysis of, e.g., cluster formation and cluster evaluation. In this
study, we have found our framework to be highly beneficial for lipid
clustering analysis of MD data.

The MD dataset of a mixed lipid bilayer [Broemstrup and Reuter
2010] is constituted of DMPC (dimirystoilphosphatidylcholine)
and DMPG (dimirystoilphosphatidylglycerol) lipids. Each lipid is
represented by one particle, localized at the position of the phos-
phorus atom. The particles (items) undergo stochastic oscillation
movements in x and y directions, and only slight variations along
the z axis, where the number of time steps in our simulation equals
1640. We extend the dimensionality of the dataset by computing the
first derivatives of the movements, x′ and y′. Additionally, the items
have a regular variable representing their categories as mentioned
above; i.e., DMPC and DMPG. The lipids are positioned in two
separated layers along the z axis and computational biologists are
mostly interested in analyzing these lipid layers separately. There-
fore, we limit our analysis to one of the z-layers by brushing the
upper z-layer prior to the analysis.

To perform clustering on different time intervals, we brush the time
intervals; [50,150] , [700,800] and [1540,1640]. These intervals
were clustered separately using hierarchical clustering based on x
and y coordinates. We discovered groups of items, separated at the
beginning, which form a cluster in the middle of the simulation and
separate again at the end of the simulation. In Fig. 9 three ani-
mated scatter plots are shown, which depict the distribution of such
a group (c). These plots display the same items in the x− y plane

c

t0 = 100 t1 = 750 t2 = 1600

Figure 9: Using the cluster view to compare clusterings per-
formed in three distinct time intervals, [50,150] , [700,800], and
[1540,1640]. The analysis reveals a number of groups that are sep-
arate at t0, cluster together at t1 and separate again at t2. Animated
scatter plots justify this claim.

at different time steps (t0 = 100, t1 = 750, t2 = 1600). The scatter
plots visualize how two groups of items at t0, form a single group
at t1, and then separate into smaller groups again at t2. This type of
behavior is extremely important to follow, i.e., whereas groups stay
together once they are formed, and is relevant for the formation of



lipid domains (rafts) in biological membranes. Moreover the abil-
ity of interactively following the composition of the clusters has no
equivalent in the non interactive methods for MD analysis.

In general, computational biologists cluster MD data using only
their x and y coordinates. However, in some cases it would be bene-
ficial to form clusterings according to their velocities, x′ and y′, and
evaluate the results. The same set of lipids is clustered using three
different weight distributions w =

〈

wx,wy,wx′ ,wy′
〉

. Clustering C0

is formed with w = 〈1,1,0,0〉, C1 with w = 〈1,1,1,1〉, and C2 with
w = 〈0,0,1,1〉. In fig. 10, the first clustering is based solely on

C1C0 C2

Figure 10: Using the cluster view to compare clusterings performed
on different dimension subsets. C0 is created on lipid positions, C2

on lipid velocities and C1 on a combination of all these dimensions.
The selected cluster reveals a group of items which constitute a
velocity cluster in addition to their positional cluster. Histogram
displays lipid type distribution.

positions, the second one on a combination of positions and veloci-
ties, and the third one only on velocities. This provides a very clear
image on how much the clusterings differ in their positions with
respect to their velocities. We can easily evaluate whether there is
a correlation between these two types of clusterings by cluster se-
lections. Notably, an interesting outcome of this analysis is when
an equal number of DMPC and DMPG type lipids form a posi-
tional cluster (from C0), these items also have similar velocities.
On the other side, positional clusters containing an unequal number
of different type of lipids do not have the same velocities. Fig. 10
displays one of the clusters discovered in the analysis, by utilizing
the cluster view.

In one clustering procedure of lipid bilayers, we employed only
the last 100 time steps from all 1640 frames to perform clustering
analysis, due to the system stabilization [Broemstrup and Reuter
2010]. The clustering analysis pointed out a new issue that is to
evaluate the influence of ’jumpers’ on the clustering process. Af-
ter the visualization of the derivatives x′ and y′, we found out that
nearly half of all the items exhibit big ’jumps’ at a certain point
of MD simulation. These jumpers correspond to atoms exiting at
one side of the simulation bounding box and entering through the
opposite one, which clamps the atoms along boundaries. Neverthe-
less, usually all the simulated particles are employed for the cluster
analysis. On one hand, the exploited clustering technique [Broem-
strup and Reuter 2010] that is used to analyze the MD simulation,
takes every time step separately. Therefore such particles do not
have to be considered as outliers. On the other hand, when clus-
tering is performed over a time interval, where dissimilarity matrix
summation is involved, these jumpers can cause cluster instability
when jumping from one cluster to another. Once clustering is done,

clusters are analyzed according to the distribution of their items’
categories; i.e., DMPC or DMPG.

We perform a hierarchical clustering wherein the jumpers were in-
cluded. Consequently we have the possibility to evaluate the effect
of jumpers on the clustering by means of the cluster view and other
linked views (Fig. 11). In the figure, the clusterings represent 5

(b )

(b )
3

4

(b )
1

(b )
2

Figure 11: Discovery of jumpers within existing clusterings. The
composed brush bL = (b1 ∪ b2)∩ b3 selects the jumpers that are
displayed in the animated scatter plot. The cluster view depicts
their occurrence in individual clusterings. The cluster containing 4
jumpers was selected (bL ∩ b4) to reveal their position (arrows and
circles) within the cluster. The histogram depicts classification of
the jumpers into DMPC and DMPG classes.

levels of a single hierarchical clustering (bottom left) performed
on the last 100 time steps. The function graphs (top three right)
are used to render derivatives x′ and y′, where we employed brush
bL = (b1∪b2)∩b3 to pick up the jumpers. The third function graph
delimits the selection only to the upper layer for 100 time steps (b3),
where all 1640 time steps are visible. For the better understanding
of the particles’ movements we used an animated scatter plot (top
left), where a user can directly observe the selected items in a fo-
cus+context style in the x− y plane. The selection in the parallel
cluster view reflects the occurrence of jumpers in individual hierar-
chical levels. The jumpers participate more and more on clusterings
as we increase the cluster level, where the lowest cluster represents
non-clustered items. In the animated scatter plot we discover the
relation of jumpers per individual cluster by making bL ∩b4 opera-
tion in the cluster view, which displays the group of jumpers from
the same cluster (arrows and circles, delimited by b4). As one can
clearly see, one of them has radically moved (left circle), while
still being the member of the same cluster. Additionally, the his-
togram (bottom right) depicts the classification of the jumpers into
DMPC and DMPG classes. It can be deduced from the example
that jumpers are not a crucial choice for the smaller clusters; how-
ever when building bigger ones, their presence should be taken into
account.

5.1 Implementation Details

In order to maintain the interactivity of the proposed system, we are
using GPGPU techniques to perform the operations that are com-
putationally expensive. In our framework, the data items and the
selections are passed to GPU as texture maps. The coloring (fo-
cus+context visualization) and selection for all the views is done
on GPU using these textures. One costly operation in our frame-
work is the calculation of the dissimilarity matrix (Equation 2) in



tendency view. Therefore, the computation of these values is done
in the GPU using CUDA. The resulting values are then transferred
to the visualization pipeline through the GPU memory. This mech-
anism ensures that the framework operates at interactive rates.

6 Conclusion

In this paper, we introduce a novel concept for visual cluster anal-
ysis, which tightly integrates cluster formation and cluster evalu-
ation, embedded within interactive visual analysis. In cluster for-
mation we assist the users to explore subsets of the data that are
suitable for clustering. In cluster evaluation, we utilize techniques
from data mining to assess the cluster validity. These techniques
are based on cluster comparison, cluster tendency, cluster coher-
ence, and cluster stability, and they prove to be beneficial in order
to achieve a successful cluster analysis in IVA. Consequently, the
integration of these techniques leads to a better understanding of
the underlying relations in the data.

The realization of our framework, CIVA, enriches the conventional
interactive visual tools with two specific views capable of integrat-
ing clusters into IVA. The cluster tendency view enables the evalua-
tion of the current selection of items for possible clusterings. More-
over, it allows the assessment of the cluster coherence in existing
clusterings. The parallel cluster view provides a visualization of
the item-to-cluster relationship, the evaluation of cluster stability
and coherence, and importantly, the cluster comparison. The clus-
ter view selection mechanism allows to link cluster level selections
with selections made in conventional views.

We demonstrated CIVA in molecular dynamics simulations analy-
sis, where the presented techniques leads to new considerations in
the discussion on lipid bilayers. We performed three cluster anal-
yses, where we studied the influence of velocities, time intervals,
and ’jumpers’ on the simulation and its analysis.

As a future work, we will extend the scalability of the proposed
views. Accordingly, in order to display few thousands of items in
the tendency view, it is required to adapt the dissimilarity matrix
appropriately. This can be achieved by displaying only a certain hi-
erarchical level of dissimilarity matrix instead of the full resolution
rows.

To conclude, with the proposed integration we managed to over-
come the challenges that relate to the black-box nature of cluster-
ing algorithms. Moreover, we believe that our framework provides
more reliable clusterings and when integrated into IVA, these clus-
terings provide even better insight into the underlying relations in
the data.
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