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Brushing Dimensions —
A Dual Visual Analysis Model for High-dimensional Data

Cagatay Turkay, Student Member, IEEE, Peter Filzmoser, and Helwig Hauser, Member, IEEE

Abstract— In many application fields, data analysts have to deal with datasets that contain many expressions per item. The effective
analysis of such multivariate datasets is dependent on the user’s ability to understand both the intrinsic dimensionality of the dataset
as well as the distribution of the dependent values with respect to the dimensions. In this paper, we propose a visualization model that
enables the joint interactive visual analysis of multivariate datasets with respect to their dimensions as well as with respect to the actual
data values. We describe a dual setting of visualization and interaction in items space and in dimensions space. The visualization of

items is linked to the visualization of dimensions with brushing and

focus+context visualization. With this approach, the user is able

to jointly study the structure of the dimensions space as well as the distribution of data items with respect to the dimensions. Even
though the proposed visualization model is general, we demonstrate its application in the context of a DNA microarray data analysis.

Index Terms—Interactive visual analysis, High-dimensional data analysis.
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The rapid development of increasingly powerful computerd the

improving methods for data acquisition lead steadily to enchal-

lenging datasets with respect to their analysis. On the wlee the

large number of items in datasets is challenging. On ther ctide,

the increased complexity of datasets, in particular in seahlarger
numbers of expressions (dimensions) per item, is posinghhigter-

esting questions. Both challenges have been addresseaifgryears
in statistics research, data mining, machine learning, \asuhliza-

tion. With respect to related visualization research, angarticular
with respect to recent activities in visual analytics, a esbow skewed
picture appears. There is ample work on items-based visiiln

approaches, where the data items in a dataset are repic:sathter

explicitly or implicitly in the visualization. On the corgry, there is
much less work, which addresses the dimensions as first-obgkcts
of the visualization. Understanding a dataset’s dimerssibowever,
such as its intrinsic dimensionality, for example, is oftdso impor-
tant for an effective analysis of the data. Accordingly, we a press-
ing need to also support this task (understanding the dilmensf a
dataset) with means of interactive visual analysis.

In the context of this paper, dimensions are considered astana
of dependent and independent variables. An example woudddaes
dataset about a number of cars (as the items), each of whiich as-
sociated with several values, such as gas mileage, prigineesize,
i.e., the dimensions in this data. Analysts often use naiigte sta-
tistical analysis (MVA) techniques, for example, prindipamponent
analysis (PCA), linear discriminant analysis (LDA), clistg, etc., to
understand the underlying relations between the dimessio the
data items [20]. However, as the dimension count gets |aayet
noisy values in dimensions (e.g., outliers) influence th@esented
information, the output of these methods becomes hardertéopiret
and occasionally less reliable [1].

Also it is often so that high-dimensional datasets come witlim-
ber of dimensions which are more important in order to expthe
underlying phenomena than others. Datasets are also affarigted
with dimensions which are derived from each other or whiahnycao
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additional information about the phenomenon being expldbet are
included for other reasons, e.g., their own absolute scHlg)e refer
to the cars dataset again, examples of derived dimensiahg e the
price of the same car in different currencies. Analysts &enofor ex-
ample, interested in discovering timrinsic dimensionalityf the data
which corresponds to the minimum number of dimensions wbarh
explain the relations in the data [21]. Accordingly, mudtilate statis-
tical analysis is often preceded bylanension reductiophase where
the main goal is to create a lower dimensional space [20Ftiiaton-
tains the essential information from the original datas@he of the
most popular methods for dimension reduction is principahponent
analysis (PCA). PCA can be used to create a lower-dimerigiepee-
sentation of the data that still captures most of the vadam¢he data.
However, the resulting dimensions are usually difficulttteipret. In
this respect, there are studies in statistics researchpimira the inter-
pretability of the results by filtering the dimensions priorPCA [7].
These studies try to create sparse representations ofgaircompo-
nents by identifying and leaving out “redundant” dimensidhat do
not contribute to the overall variance of the dataset [7].

Another important consideration in most of the MVA methoss i

their assumptions on the underlying data distributiongouRy MVA
methods such as PCA or regression analysis, for instansemas
that the data are normally distributed with respect to tigirensions.
However, many of the high-dimensional datasets in praéitéo ful-
fill this assumption, for instance, due to outliers. Hangllof outliers
and observing the descriptive statistics of dimensionssgess their
normality is crucial when considering the reliability of M\fesults.
This aspect of MVA is, therefore, subject to many studieseuritie
name of “robustness” in statistics. Such studies try to owerthe
resistance of analysis methods to outliers and try to maémm tless
dependent on the distribution of dimensions [8].

There are several application fields where the relationsdmi the
items are at least as important as the relation between itiendions,
such as DNA microarray data analysis [6]. In such areas, sdstthat
operate on items and dimensions at the same time are of grteatial
interest. Most of the existing MVA methods, however, operither
on items or on the dimensions and the joint interpretationhete
separate results is not always straight forward. Accolgirigere is a
need for methods that enable the joint analysis of items andrtsions
in such datasets, also by considering the effects of dirneabty and
variable distributions.

Interactive visual analysis has been used extensively soalize
high-dimensional data and MVA results [10]. The common apph
in the visual analysis of high-dimensional data is to vimgaihe items
as opposed to different dimensions in linked views and tgstighe
discovery of relations between expressions by means ofaictien.



This approach also provides an aid to derive hypotheses @inth
trinsic dimensionality of the data. Unless supported by Mdals,
however, interactive methods alone fail to provide a comensive in-
sight on the data, especially as the dimension count gegerland as
the relations between the dimensions become more complexor&
“fruitful” analysis requires the integration of computatal tools in the
visual analysis cycle as suggested, for example, by Keinh §23.
Moreover, an interactive visual analysis solution shoutb &nable
the exploration of the dimensionality of the data by considgthe
“redundancy” and “robustness” constraints throughoutheysis.

MDSteer [35], Williams and Munzner present a steerable igiaien-
sional scaling computation where it is possible to steeati@ysis to
the areas which are interesting for the user.

A number of different statistical tools have been integtaitgo
visualization systems. Guo et al. [14] enable the intevactixplo-
ration of multivariate model parameters. They visualize thodel
space together with the data to reveal the trends in the Gatsink et
al. [13] use a query-driven visualization with a statistiesed frame-
work. They utilize query distributions to estimate trendsl eatures.
Correa et al. [4] consider the uncertainties that ariseemnéinsform-

In this paper, we now present a visual analysis model wheze ting the data. These uncertainties are integrated in thahzstion to

analysis of items and dimensions is carried out in two linkpdces,
namely items spaceand dimensions space We utilize the current
knowledge about the interactive visual analysis of datast¢o also
enable the interactive visual analysis of data dimensibnsur model,
we suggest a setting of linked views, where the analystaotsrwith
the items in items space, e.gy brushing itemsand with the dimen-
sions in dimensions space, fhy brushing dimensionsFirstly, our
model aims to provide more insight with respect to thiinsic di-
mensionalityof the dataset based on interactions in both spaces.
selecting useful combinations of dimensions and leavingredun-
dant ones, the analyst can improve the MVA results accortinpgior
knowledge and interpretation. Secondly, by interactinthle data
items, the analyst has the opportunity to relate data ssibedtiVA
results. With such interactions, the analyst can modifydist¢ribu-
tion of items, e.g., by removing outliers, and observe thenge with
respect to MVA results.

In the following, we first exemplify our approach in the coritef
an illustrative example (after having discussed relatedkjydefore
we then present a model for a dual visual analysis of highedsional
data. We describe how the data analysis is performed throagk-
formations and how brushing and focus+context visualirais inte-
grated in the model. Specifically, the contribution of théper are:

e anovel method for the joint and linked analysis of items ainakah-
sions of high-dimensional data,

e aformal model which describes the transformations, bngsbper-
ations, and focus+context visualizations in the dual aislframe-
work, and

support the interpretation of statistical analysis result

There are a number of studies where the joint analysis ofittates
and dimensions have been investigated. In the Rank-byifesfiame-
work [29], Seo and Shneiderman rank the relations betwemerti
sions according to user-defined statistical features. Utieas present
how a joint analysis framework is useful to steer certaitistaal pro-
cesses. However, their approach is limited to computat@nshe
whole dataset. In our model, we enable the interactive eafm
BMd comparison of statistical features under differensstibelections.
Moreover, we treat dimensions as any other data item anérésem
with visual entities in the proposed dimensions space. Theessful
utilization of joint analysis of two different spaces in thentext of
parameter space navigation is presented by Berger et allfj3in-
other study, Andrienko et al. [2] describes how a dual anslsheme
is utilized in spatio-temporal datasets. Their approaciolires the
dual analysis of spatio-temporal datasets over spatiallsliions and
temporal variations. Unlike our model, their approach iscsfic to
spatio-temporal datasets. In our model, we utilize a sindileal anal-
ysis idea for the general case of high-dimensional datasets

Another important related work is the Value and RelationR)a
display by Yang et al. [37]. In this work, the authors repreghe di-
mensions with glyphs, which are projected to a 2D layoutgisiuilti-
dimensional scaling. In this work, the actual data itemscalg rep-
resented through glyphs and the interactive analysis ofdtegether
with dimensions is not possible.

Another important study in relation to our model is by Keheg¢r
al. [22], where the authors compute statistical moments fitee data
and plot data aggregates as opposed to these moments. rinwdinkj
a set of scatterplots and transformations between themedieed.

e a set of procedures and guidelines to preform such a duahlvisTheir framework provides mechanisms to explore trends auliccs

analysis of high-dimensional data.

2 RELATED WORK

Interactive visual methods have been used extensivelyeimtialysis
of high-dimensional data. An overview of related studieavigilable

in aggregated datasets. This framework displays the bsméfitsing
statistics in the visual analysis of data aggregates tegetfth data
items. In our work, we define a more general model which opsrat
on high-dimensional data using statistical analysis ndshogether
with statistics computations. With our model, we extenddheent

in surveys by Wong and Bergeron [36] and by Fuchs and Hausgr [1approach to the visual analysis of high-dimensional dath thie idea

Coordinated multiple views have proven to provide insigi ihigh-
dimensional datasets by means of linking and brushing ins/ighich
display different aspects of the same data [30]. Examplesuoh
approaches are realized in the XmdvTool [33], Polaris [3tid in
ComVis [26]. Many efforts have been made to explore muliatar
data with visualization. Janicke et al. [17] propose theshing of
multivariate data after a projection to an attribute spab&kwcan be
visualized in a 2D view. In cross-filtered views [34], Weaeerables
the exploration of relations between dimensions by crdssifig data
values from different views.

In order to cope with the complexities as induced by a higluen-n
ber of dimensions, dimension reduction methods have béegrated
into the visual analysis pipeline. In VHDR [38], Yang et atogp
dimensions in a hierarchy and create lower-dimensionalespasing
representative dimensions. Their method also providesroymities
to manually reduce dimensions. Jeong et al. [18] providet afse-
teraction mechanisms that operate on PCA results. Withficatbns
of the parameters of PCA, itis possible to observe changbeiRCA
results.

of a joint and linked analysis of data items and dimensions.

Throughout this paper, we utilize a number of multivariatisti-
cal analysis methods such as principal component anaR€i8) and
linear discriminant analysis (LDA). PCA is a popular, unsiyised
dimension reduction method that is widely used in multatistatis-
tical analysis [20]. The goal of PCA is to create a lower-disienal
projection of an originally high-dimensional dataset whreserving
as much of the variance in the data as possible. PCA creates an
thogonal coordinate system where the axes are called paihcom-
ponents PC). ThesePCs are all linear combinations of the original
dimensions where the weights are referred to asahdings LDA is
a supervised dimension reduction method that finds a lireabma-
tion of the original dimensions by considering class laff20§. LDA
attempts to maximize the class discrimination while redgdhe di-
mensionality of the data. LDA is used as a classifier or as @xigion
reduction method. One important point is that both methadsime
the data to be normally distributed.

In addition to PCA and LDA, we also make use of certain descrip
tive statistics, namely the meap)( the standard deviatioro{, the

Visual analysis methods have been used jointly with a nurober skewnessdgkew, the kurtosis Kurt) and interquartile-range (IQRM

computational methods. Fuchs et al. [11] integrated macleiarning
with interactive visual analysis to support hypothesisegation. In

can be estimated by the average of the values in the dasahe stan-
dard measure of variabilitgkewindicates if a distribution is centered,
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Fig. 1. An illustrative example for a joint visual analysis of items and dimensions of the “Boston Housing Prices” dataset. Three scatterplots are set
up first: a) $;: house prices (MV) vs. crime rate (CR), b) $: the first two principal components (PC1 vs. PC2), c) S3: mean (u) vs. standard deviation
(o) values for all the dimensions of the data. d) The main trend in the data is selected in ;. e€) y and o values are re-computed for the selected
items and changes are visualized in S3. f) Dimensions that deviate less are selected for a re-computation of the PCA. g) PCA results (before and
after) are visualized in a F+C style.

or not, whilekurt indicates the peakedness of a distribution EQ&
is a robust statistics that also describes the variance ist@bdition.

pered line to ease their identification. In Figure 1-e, wetkaewhile
the values for some of the dimensions changed prominemihyesof
them are not much affected by the selection. A simple firgrpre-
tation of the resulting visualization is that the dimensidnat did not
deviate so much due to the selection, possibly can be casside be
less sensitive to non-standard values of MV and CR. We thiettse
the most “stable” dimensions & and PCA is applied automatically
using only the dimensions selected in Figure 1-f. We thefeptall
the items to the newly computed principal components and e
resulting values t&. Through a focus+context visualization of the
two different projections of the items B, we can clearly see that the
projection results changed dramatically (Figure 1-g). Ateiesting
split into two groups with respect to the new PC1, for exampda be
observed. In such an explorative setting, the analysis maglways
converge to the mathematically best-possible result. Kewéhrough
the selection of suitable statistics and the use of intesatirushing,
the analysis leads to both additional insight on the dataesults that
are easier to interpret. Guidelines for a robust analysisgss are
g_rovided in Section 6.

* The above presented short illustration brings up new oppitits
for the analysis of high-dimensional data. Such a dual Visnalysis
of both items and dimensions leads to a novel perspectiveakirlg
at high-dimensional data. In the following section, we fatize this
dual analysis idea in the form of a model by defining the uryitegl
linking&brushing and focus+context (F+C) visualizatioechanisms.

3 AN ILLUSTRATIVE DUAL ANALYSIS EXAMPLE

Before we present our more formal model further below, we €ies
scribe an illustrative example where a visual analysis td dams is
carried out together with a visual analysis of the dimersi@ur aim
here is not to already provide a comprehensive guide, bafdornally
demonstrate the basics of our dual analysis model.

As also generally in this paper, we assume that our datasete c
in a tabular form withn items (rows)x; € Q (set of items), each of
which with values inm dimensions (columngjy € A (set of dimen-
sions). In the following, we denote tHé" value of thejth item as
Xj k. For thisfirstillustration, we study the well-known ‘Bostbdleigh-
borhood Housing Prices’ dataset [16]. This dataset contaiiorma-
tion gathered by the U.S Census Service to understand tagorel
between housing prices and other factors in the area of Bobtas-
sachusetts. It consists of 506 samptgsnd 14 dimensions (i.e.,
|Q| =506, |A| = 14). Some of the dimensions that we refer to later ar
‘median value of owner-occupied homes’ (MV),‘crime ratetbwn’
(CR), ‘proportion of houses built before 1940’ (AG) and ‘postion
of lower status of the population’ (LS).

In our analysis, we utilize PCA to understand the intrinsioeh-
sionality of this dataset. To reduce the effects of outl@rPCA, we
analyze the data to determine outlier-free dimensions. Yvepare
PCA results based on all dimensions and those computed fpsen

lected dimensions, in order to achieve a better interpoetaif the 4 THE DUAL ANALYSIS MODEL

analysis results.

To enable the comparability of dimensions, the analysissstéth a
normalization of the dimensions. To normalize the dimemsiave ap-
ply linear scaling to the unit interval in this case. We thetireate the
mean (1) and standard deviatiow] of all the columns (dimensions),
in order to get a first impression of the included data digtitms. We

Analysts are often faced with high-dimensional data whicimes in a
tabular form where items are rows and dimensions are colurfms
conventional visual analysis approaches that involve iplaltcoor-

dinated views, items are visualized using visualizatioks scatter-
plots, histograms or parallel coordinates. In such vigatitbns, the
items are plotted in the views as opposed to the dimensioribeof

apply PCA to all the dimensions and project the data onto teetfio  data. The visual analysis of data items is often carried sintgulink-
principal componentsRC1, PC2). We continue with the visualization ing&brushing and focus+context visualization. Our dualsl analy-
of the items in a scatterpl& (Figure 1-a) with axes CR and MV and sis concept builds upon these conventional practices aubpes the

another scatterpld, (Figure 1-b) with axe®C1 andPC2. Addition-
ally, we plot theu and o values of all dimensions in a scatterpt
(Figure 1-c).

We then start the interactive analysis by brushing (selgit sub-

visual analysis of data in two linked spaces, nameliféms space,|
and indimensions space .DWith items space we refer to a visual-
ization domain where each visual entity in a visualizatiorresponds
to a data item. In the dimensions space, however, each \asii&y

set of items inS;. This brush leaves out the larger values of MV andepresents a dimension of the data. To illustrate, if wealiza the
CR and selects the items which (roughly) amount to the maindtr housing data in both of the spaces, using scatterplots,rd ipoikems
in the data (Figure 1-d). As a next step, theand o values are es- space corresponds to a single house, whereas in the dimersgiace,
timated (automatically) for the selected items and serfizsto As a  a single point represents a dimension, crime rate by towingbance.
result,S; gets updated to show the dimensions’ statistics with réspdy separating the visual analysis space into two, we provjgertu-
to both the items selection as well as with respect to all efitams nities for the joint and parallel analysis of items and disiens.
(Figure 1-e). Theu ando values corresponding to the selected subset A conceptual sketch of our model is depicted in Figure 2. Here
are highlighted (with orange color), while the originaland o val- items space includes the visualizations of MVA results lisas a
ues (corresponding to the entire dataset) are presenteteasnce (in  projection on principal components). The analyst itemyjivper-
gray). The two points in the scatterplot which corresponthéosame forms item and dimension selections in order to observe liaages
dimension (entire dataset vs. selected subset) are catheith a ta- in dimension statistics as well as MVA results. The dualitythie
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Fig. 2. The dual analysis model sketched. Visual analysis is per-
formed over two spaces, items space and dimensions space. Visual
entities correspond to items in items space and dimensions in dimen-
sions space. Analysis advances iteratively by selecting items and di-
mensions. The interactions enable the joint and linked exploration of
dimension statistics and multivariate analysis (MVA) results.

model is achieved by linking the visualizations in the twasgs.
In order to fully accomplish this link, we formulaterushing and

: Items Dimensions
: Space : __ Space
Initial | : LTi(PCA) ©  2.T(o.u)
Setup “eR| L. PC?,‘ o v.
: MV PC1 H
Update .
MVA Resuilts Jehltems
6.7, :A?v B, 1 Q>
O,
. Iterative
. Analysis
u
Brush Update
Dimensions: Statistics:
5.B,:A—A' AT Q' >

Fig. 3. ltems space views both visualize normalized dimensions, e.g.,
CR or MV in housing data, and derived dimensions, e.g., PCA results

fOCUS+COﬂt€Xl\/ISU&|IZ&IIOI’] mechar"sms, as We“ as tranSfOI‘matIOI’]SCl or PC2. Dimensions space views visualize dimensions as opposed

which are needed to establish the relation between the tacesp

4.1 Data Transformations

The iterative analysis of items and dimensions is at the obreur

model. During a typical iteration, the focus of the analysieves

from one space to the other. In order to achieve the transitie-

tween items and dimensions space, our model requires a setaf
transformations.

From dimensions space D to items space I: The basis for the
first type of transformations relates to the MVA methods thaer-
ate on the dimension&. Such methods are here denoted foyWe
generalize transformationsto operations that createnew data di-
mensions when applied. In the illustrative example in $ec8, PCA

to statistics, such as p or g. Here, the initial setup is done by computing
PCs (1), u and o (2). Brushes from items space (3) triggers F+C vi-
sualizations in dimensions space by going through transformations (4).
Similarly, brushes from dimensions space (5) updates the MVA result vi-
sualization through transformations (6). This interactive loop continues
iteratively by modifying the selections on both sides.

aggregation of data items. Here, we mainly consider sigisss. If
we considew ass, the result of the transformation are thevalues for
each and every dimension in the data. InfHéteration of the analysis
the transformation which computgsew values per dimension using

is an example of such ah transformation. Throughout the iteratives s defined asT, (s) : Q' 2 0 whereQ' = {Xet1,---s Xerg} With any

analysis loop, thé" transformation of data throughis defined as:
TH(F) L. Al wherei = {dgi1, .., de1 } with any da being a full

new columrd, = {X1 a,...,Xna} ' andc= z{;}) |AY. Note that, in these
transformations, all the items are projected onto the nemedsions

Xa being a full new rowxa = {Xa1,....Xam} ande= z{;&mt\. Here,
Q' C Q represents a selection of items. In the course of the asalysi
the analyst can makeof these transformations where she produces
the final set of computed valug™ = {Q°,...,Q%}. To generalize,

andA’ C A represents a selection of dimensions of the data before figgarding the set of possibgefunctions or statistics, it is possible to
transformation. At a certain point in the iterative loop,astithe ana- Consider descriptive statistics such as mean, varianeyress, kur-
lyst have madey of these transformations, the final set of dimension@SiS and more elaborate values like statistical test t®sul robust
is denoted ad*™ = {A, ... AV} with A® = A, i.e., the original data €stmates. . . . .

dimensions. The selection of dimensions and itemsQ)’ is formulated through

Although we exemplify PCA as oné method, it can also be any & degree-of-interesti6i) mechanism. Similar to fuzzy set definitions,

other MVA tool which creates a mapping of the original dirmens. It
is possible to consider methods like multidimensionalisgalMDS)
and factor analysis (which are other dimension reductiohrtgues),
clustering (which maps the data items to class labels), & (which
maps the data items to known classes) [20].

As an initial transformation, which usually precedes tlatistical
analysis as well as the visualization, we normalize thes#atso that
values in all the dimensions are quantitative and comparabrmal-
ization also ensures that all of our dimensions are suitédl&isu-
alization in a scatterplot, histogram, etc. Moreover, ralipation is
an essential step for most of the multivariate analysisgs®ses [27].
This normalization step is denoted witd(N) whereN is a normal-
ization method, such as linear normalization to the uniérival or
z-standardization [27]. The results B (N) is denoted witia! where

|at] =14].

we defined’ = (A,doip) and Q' = (Q,doig) wheredoiy and doig

are mappings to define selection degrees. In the case ofybsear
lections, where an item is either selected or not, selestame de-
fined asdoig : Q — {0,1}. In the case of continuoudoi values,
where items are selected to a certain degree, selectiondeéired
asdoig : Q — [0,1]. Such a continuous selection mechanism can be
achieved through smooth brushes [5]. The addition of smnikhes
brings the possibility of weighing the dimensions prior tdimension
reduction operation, for instance.

4.2 Brushing & Focus+Context Visualization

The conventional visualization of high-dimensional dataitems
space is achieved by plotting the items with respect to tliginal
dimensions and the derived dimensions, X, The visualizations
in dimensions space, however, visualize dimensidras opposed to

From | to D: We use transformatiorssto iterate from items space the statistics computed Bl (s)" operations, i.e. Q. We denote the
to dimensions space. Examplessafan be descriptive statistics or anviews in items space with; and views in dimensions space with.
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Fig. 4. Focus+context visualizations in scatterplots of two different PCA
results (a) and of two sets of statistics g, u (b). The recomputed values
are in focus after the selection, and the values from before the selection
are provided as context. Depending on the point count, two different
styles are employed (with and without lines).

It is worthwhile to mention that the columns of our datasettaeated
as rows in dimensions space. Accordingly, our approach tsanbe
thought of as transposing the dataset and performing thahéaly-
sis using a different perspective in dimensions space difltistrative
example in Section 3; andS, are examples of) andS; is an exam-
ple of \p.

We follow the conventional linking&brushing mechanismveeén
the views that are in the same space; i.e., when certain iit@@¥
are brushed, the same items are highlighted in oéhemusing a fo-
cus+context visualization and the same mechanism wores@isps.
In order to define the links between views from different gzaave
extend this mechanism by handling the brushes througtf thed s
transformations. The transitions between the two spacadllastra-
tions for the associated F+C visualizations scheme arstiidlted in
Figure 3.

A brush inV; is defined a8 : Q — Q' whereQ' C Q. In order to
transferB, to dimensions space, brushed itefsare transformed by
Ti(s)" using the currens. The resulting value®™ update visualiza-
tions in dimensions space. An example of such a brushingatipar
can be seen in Figure 1-d,e. Heeeand u values (i.e.s transforma-
tions) are re-computed for the selected item&;irand the computa-
tions updatess.

A brush inVp is defined a8p : A — A with A" C A. Bp is trans-
ferred to items space by going through the transformafigff)'.

(@) (b)
Fig. 5. The proposed dual analysis extended to parallel coordinates
plots (PCP). a) PCP from items space visualizing items over the first
three principal components. b) PCP from dimensions space visualizing
g, kurt, skewand IQR values for the dimensions.

4.3 Extensions to the Model

It is possible to extend the proposed dual analysis methadstoin-
corporate different visualization techniques, e.g., raoordinates
plots (PCP). While lines in a PCP represent data items insitgpace,
they represent dimensions in dimensions space. Accosdiaggs of a
PCP in items space are the original dimensions of the daaasthey
correspond to differer®™ in dimensions space. An example of these
dual PCPs can be seen in Figure 5. In order to visualize thatomvs
and employ our dual focus+context approach in a PCP, coriymara
visualization methods, like Temporal Parallel Coordisdf9] can be
utilized. Another possible extension is to employ glyphshesvisual
entities in dimensions space [37]. One can think of glypheneteach
visual channel represent differe@t™ values.

In its current state, the model is designed for datasetsctivae in
a 2D tabular form. However, it is possible to extend the mad&D
data tables, e.qg., to datasets where the third dimensiamés tn the
dual analysis of such datasets, visualizations in itemsespge con-
ventional visualizations of temporal data, i.e., each data is repre-
sented by a curve over time in a function plot. In dimensiqrecs,
however, each curve represents a dimension over time. Vierpes
transformations on each temporal dimension and visudiieedsults
in a function plot in dimensions space. In Figure 6, this na@i$m is
illustrated. Here, we visualize measurements from a wedatiation
in Bergen, Norway. The dataset contains daily measuremsuath
as temperature, pressure, precipitation, for all the yieatiween 2000

And, the resultingA/ updateV;s accordingly. An example for this and 2010. In Figure 6-a, each curve represents the temperatiues
type of operation can be seen in Figure 1-f,g. Here, the déines are for one year. On the other side, in dimensions space, we denepu
selected irS3 and the selection of dimensions is an input to the PChalues for each dimension over time. And the result is a cfowveach

operation.

In a typical F+C visualization, the common interpretatidriozus
are the selected items and the context is the rest. In our lnwde
slightly extend this definition of F+C visualization. Forsd context
are two different visualizations of the same items, thatcamputed
using different subsets of the dataset. The results of teransfor-

dimension plotted against values as seen in Figure 6-b.

5 PROTOTYPE IMPLEMENTATION OF THE MODEL

We implemented our model in an interactive visual analysigren-
ment where we enable linking&brushing and focus+contestiaiiza-

mation (f or s) is set as the focus and those of the preceding one as the

context. Notice that each point in a scatterplot is drawrcéywbnce

with the old and once with the new value. Here, we follow a $emp % . o

strategy to show the results. If the point count is large, Ve¢ fo-
cus and context in different colors (Figure 4-a). If the paount is
small, we additionally connect the related points with aetag line
(Figure 4-b). Although this simple solution is adequateillostrative
purposes in this paper, one should think of more intelligeays to
achieve comparative visualizations, e.g., differencevsig4].

One important point to mention, also, is that, in the F+C aisu
izations of the first type of views, the focus is computed asaay*
evaluation”, i.e., the focus of a view, is linked to a brusk &ns com-
puted automatically as the brush moves. This approach isssaty
for the sake of interactivity in the model. Additionallyetltontext of
the views can be updated at any point throughout the analy¥ith
such an extension, it is possible to compare the statistidsaaalysis
results of any different item-dimension subsets.

Temporal Data Item Temporal Data Dimension
<

Ly aln s oM

Time Time

@ (b)
Fig. 6. A dual analysis of temporal data. a) An items space visualization
of daily average-temperature values from a weather station in Bergen,
Norway. b) A dimensions space visualization where each curve corre-
sponds to a dimension. The values are ¢ values that are computed for
each time-step.



Table 1. Possible multivariate statistical tools (f transformations) and
corresponding statistics s for the dual analysis setting

Analysis f s

Dimension reduction PCA, MDS
(unsupervised)

loadings, mean, variance, me-
dian, skewness, kurtosis, IQR

Dimension reduction LDA, SVM
(supervised)

variance, information theory

Finding groupsindata  Clustering mean, variance, med@R, |

tions of data in scatterplots and other views. We implentenie
types of scatterplots, with two types of F+C visualizatian,already
discussed above. Our aim with the prototype implementascio
showcase the utilization of the system using simple vigatibn solu-
tions.

Our implementation utilizes composite brushing, as pregosy
Allen and Ward [25], as the underlying brushing mechanism.
this mechanism, each brush is combined with existing brishe

6.2 The Analysis Process

In the following, we provide a task-based guideline to cauy an
analysis in the proposed dual framework:

e To understand the relations between dimensions: A subseto$
are selected first. As a result, the changesvalues in dimensions
space reveal the correlation between dimensions with cespéhe
selections. Larger deviations #nwvalues indicate a higher correla-
tion.

e To explore the dimensions that determine the main trendeootit-
liers in the data: Items that correspond to the main trenditirens
are selected in a lower-dimensional projection of the d&tevia-
tions in dimensions space reveal such dimensions.

e To leave out/select dimensions: Dimensions are evaluatéstins
of the information they contain through the use of cergsénich as
g, principal component loadings and entropy.

We follow these guidelines and go through the steps of alddtanal-
ysis process that is similar to the one we presented earl®ection 3.

In this analysis, we aim to explore the relation between dsians
land find lower-dimensional representations of the data tvel@ew
hypotheses. Hence, we set PCA to be our nfeamda, 1, skew and,

a Boolean operatoop with op € {U,Nn, =}, whereU represents the kurt to bes transformations.

union, N represents the intersection andepresents the not operator.

To ensure an easier utilization of different types of viethg, visual-
ization space is physically divided into two, one to shownisespace
and the other one for dimensions space. Additionally, tduthe a
wider range of MVA tools into the system, we integrate Bstatisti-
cal computation package into our system [32].

6 DUAL ANALYSIS PROCEDURES

The dual analysis process provides a number of opportariiti¢he
visual analysis of high-dimensional data. Here, we proddguide
for selecting and using the transformations and visuadinatin the
proposed dual setting.

6.1 Selecting Transformations

Depending on the type and the goal of the analysis, the arddyer-
mines the multivariate statistical analysis tools andsttas to utilize.
The selected tools and statistics then correspond to theftnanations
in our model. In Table 1 we provide a non-exhaustive list aghowon

The analysis starts with the normalization st@,ﬁ)( where the data
is scaled, for example, to the unit interval and followed bg tom-
putation ofo, u, kurt and skewvalues for all the dimensions using
all the items. Additionally, we perform PCA on the data usifighe
dimensions.

In the next part of the analysis, we try to understand theiczlsa
between dimensions. The changes in basic descriptivetatat{such

asu ando) due to brushes in items space are easy to interpret and pro-

vide information on the correlations between dimensioniser&fore
in this step, we choosg and o as the visualization axes in dimen-
sions space. We visualize the items in a scatterplot witls & vs.
AG (V) and dimensions in a scatterplot pivs. o (V).

We select the areas with old housed/fhin Figure 7-a. In dimen-
sions space (ih’,g), we observe hovo and u values deviate after the
brushing operation. Here, we see tbatalues for LS dropped signif-
icantly, this is due to the fact that the selection of high A@ues is
sampling the lower population (LS) dimension unevenly. YWeripret
this observation as follows:

High values of AG are related to very low values of LS, while/lo

MVA tools f and statisticss that are suitable for the dual analysisAG values lead to a much broader range of values for LS. Inrothe
scheme. Note that the dual analysis model is not specific yoon words, only a very low proportion of the lower status of th@glation

these methods.

is living in areas with old houses. When focusing on areaé it

One important type of transformations are unsupervised dimentower proportion of old houses, there is no limitation wigspect to

sion reduction methods such as PCA and MDS. The reliabifithe®
results of such methods depend on the normality and “otftiemess”
of the data columns. Additionally, to improve the interpiwtity of

the results, redundant dimensions should be discardeatiflé com-

the proportion of the lower status population. This “chapgmt”

in the relation between AG and LS was thus discovered by tge bi
deviation ofu and o when using all or just the selected data. On the
contrary, we see that there is almost no change iutaedo values on

ponent loadingsg and the interquartile range (IQR) can be used tthe dimension MV, indicating about the same behavior of dlected
assess the dimensions’ redundancy whiler, skewness and kurtosis and the original data points.

can be used to evaluate normality and the existence of mitiemilar
stransformations are preferred for clustering, where thadityuof the
results is affected by a high number of dimensions as welludgeos
in the data.

In order to verify these impressions, we visualize the AGatision
as opposed to both LS and MV}, V2). We see iv2 in figure 7-a that
in areas with old houses, the proportion of lower societylss aery
low. In \/,1, we see that MV values vary over a wide range of values

In supervised dimension reduction methods like LDA and $upp for the selected houses (i.e., in areas with older housd®etore, it

Vector Machines (SVM), the normality of the data is not regdi
However, the selection of dimensions is crucial with respgeche
quality of the results, also. In order to determine impdrt@imen-

is not possible to talk about a correlation between MV and AG.
The second phase of the analysis involves the eliminationtiers
to refine the PCA results. To determine outliers, we use th& C

sions,o, IQR or information theoretic measures can be utilized [15]_su|3ts (vxzh_ich are already biased by the outliers) that araioet earlier
In all of these methods, filtering dimensions prior to thelgsia  (V/°)- V" in Figure 7-b shows how PCA results change after removing

both improves the quality and interpretability of the résuTherefore,
dimensions need to be evaluated in terms of their variarale(gy)
and/or entropy [15]. Dimensions that are poor in informaontent,
i.e., with a low variance, low entropy, near-zero loading$Cs, can
be marked as “redundant” and left out from the analysis.

the outliers with the brush 3. The updated PCA results now dis-
play two groups of items, however there is still substaniailation in
the groups.

Additionally, the effects of outlier removal are observlrbugh the
changes in dimensions space. In Figure 7-b (2), we obseat: ths.



Select areas Leave out
with high AG Outliers
» 0. 0. » 3.
"y Vo 2E
CR c pPC2|- ¢
i &
-
(o}
A |!5 o More
' i . H
i1 ¢ ] Variance : .
] : Source of &~

Less — outliers
Varianc
AG

(@

AG

Select dimensions

with Vl .
V4 kurt andskew ~0 V' p =
I - »
PC2’ ” skew
,,,,,, > ="

PCI' PCI'
@ Two main groups
Distinctive
Select items 4 dimensions 0
in the group . .
N %

PC2'- %
j ,,,,,, »
,'\‘

u PCI' u

(b)

Fig. 7. A dual analysis of the housing dataset. a) Houses in areas that have a large proportion of old houses (high AG values) are selected in V|°.
vg is updated using new p and o values (1). Deviations in vg indicate a correlation between dimensions w.r.t. the selection. The most deviating
(LS) and the least deviating (MV) dimensions are plotted for a deeper analysis. The variance of the selections (in V|1 and V|2) justifies the deviations
in V2. b) Outliers are removed in \/,3 and PCA is applied with the selected items. V,“' is updated with the new results (2). As a result of the selection
in V}°, one of the dimensions is marked in vg as the source of the outliers. Before operation (3), the current PCA results are set as the context of
V|4. Normally distributed dimensions, w.r.t. kurt and skewvalues in VE}, are selected (3). Updated PCA results now display two groups. One of the
groups is selected in \/,4 and vg now reveals the dimensions that distinguish the selected group.

o values for the Tax-rate (TAX) dimension changed signifiaw/e

tains the expression levels of thousands of genes for thiéfseedt

mark the TAX dimension as the source of these outliers an@vem samples. In molecular level cancer research, these datasetna-
this dimension (with a» brush which is not shown in the image) fromlyzed to distinguish between cancer classes or even to\discew
the analysis before we move on to the next step. As an inteateed types of cancers. Two of the main goals in this research winich

operation, we set the current PCA results (obtained by ramahe
outliers) as the context of our new visualizatiMf‘I.

We would now like to evaluate the dimensions’ normality tcide
whether to include them in the analysis. Therefore, we oostithe
analysis in dimensions space. Sineat andskewvalues are indica-
tors of normality, i.e., both the skewness and kurtosis éonral distri-
bution are 0, we select dimensions throughkbg vs. skewplot (VE%).

volves statistical approaches are: classifying the sasripte classes
of tumors and identifying important genes which plays a inléhis
classification [6]. The statistical analysis of such datdlaays been
a challenge as the dataset contains a very large number e$ gdin
mensions) compared to the number of tissue samples (itefssthe
analysts are interested in identifying both the groups okgeand the
groups of samples, in the analysis of microarray data, oeédana-

We select dimensions (marked with 3 in the figure) which areemolyze both the original and the transposed version of theséata

likely to follow a normal distribution by selecting dimensis with
values around 0. The updated PCA plot displays two wellisepd
groups that have less variance throughout the group.

We perform a final brush ikj* to understand which of the dimen-

sions are more distinctive for these groups (Figure 7-b, Wg se-
lect the larger group on the left and observe the changes\s. o
values. Here, we discover four dimensions: “nitric oxidesaentra-
tion”, “number of rooms”, “pupil-teacher ratio”, “propaon of black
by town” to be the distinctive dimensions. These dimensarsnow
be used for further analysis, e.qg., in clustering the hauses

The proposed dual analysis method continues iteratively nter-
actions between the two spaces. Since the analyst gets adiiaue
feedback of the interactions, item and dimension seles@woa refined
iteratively until the analyst is satisfied with the resuliéote that, the
above analysis presents the interpretations of a set oiftepsatistics
and statistical tools. The interpretations of the views imeractions
needs to be formulated on the nature of the problem andtstatised.

7 USE CASE: MOLECULAR CLASSIFICATION USING DNA Mi-
CROARRAYS

DNA microarrays and high-density oligonucleotide chips ampor-
tant monitoring technologies used in cancer research [B]s fnon-
itoring is applied to different tissue samples which arevindo be
taken from a specific type of tumor. The resulting datasat tdwn-

In this use-case, we work on a gene expression dataset pcolid
Golub et al. [12]. Here, the samples are known to come frontywes
of acute leukemia, namely acute lymphoblastic leukemial(*and
acute myeloid leukemia (AML). The dataset consists of 7188eg
taken from 38 different tissue samples where 27 are knowe tilih
and the rest AML. We treat the dataset in the form that, genes a
items Q) and samples are dimensiory) @s it is the standard way in
statistical analysis of microarray data [9].

The task in this use-case is to find a good classifier thaindisish
the tissue samples into ALL and AML types. In order perforra th
classification, we use LDA as an integrated MVA tool. Our ainta
select a number of genes that are more important in the fitzggin of
the tissues and thus, improve the performance of the classifithout
any modification, i.e., using all the samples and all the gehPA is
able to classify 29 of the 38 samples correctly.

In DNA microarray data analysis, outlier genes are of moneam
tance in the classification of the tissues [9]. Thereforefoeeis the
analysis on selecting the genes. We, firstly, plot the gamasstatter-
plot using PCA and secondly, select outlier genes from tbetplper-
form the classification with the selected genes. We utilizeroodel
to achieve more reliable PCA results, thus improving thesifecation
performance.

We observe the genes in a visualization of PC1 vs. PC2 in items
space. With such a visualization, we aim to separate the fimore



PCA of Tissue Tissue PCA of
genes Loadings Statistics genes
PC?2 2 (o PC2 -
X re i1 IOR Outer PCl
@ (b) - (e) genes ()
Tissue  Outlier genes PCA of PCA of Outlier Tissue
Loadings . genes genes tissue-. . Statistics
2 PC2 . A PC2 o “a
‘-' o o L =t

©

Fig. 8. An analysis of microarray data. The task is to select a small number of genes (preferably outliers) for the discrimination of tissues. a) PCA
is applied on the genes. There is a large variation and a large number of outliers. b) Tissues are plotted against their PCA loadings IIs for PC1 and
PC2, where zero loadings indicate redundancy. c) Tissues with large loadings are selected. d) Less number of outlier genes due to the new PCA
results. e) Tissues are visualized in a o vs. IQR plot for the selection of tissues with a smaller number of outliers. f) PCA is computed using the

selected tissues. g-h) Analyzing the properties of tissues w.r.t. the genes.

portant” genes and filter out the less interesting ones (Ei§ta). We
visualize the tissues in dimensions space and update PQRs by
selecting the tissues (dimensions in this case). To viza#te tissues,
we utilize the loading$l of the PCs as ous function. The loadings
are the weights of each single tissue (dimension) in thdtirguPCs
and they indicate how much a tissue contributes to the ahciom-
ponent. In Figure 8-b, tissues are plotted agaihstalues (for PC1
and PC2). Here, the ones with higher loadings (in absoldtesaare
more important variables and the ones with close-to-zeaditms are
considered as redundant. We leave out redundant samptps €¢F3-
¢) and visualize the updated PCA results (Figure 8-d). Heeesee
that, we get a smaller number of outlier genes. We selectubizo

For a selected group of genes, an outlier tissue is discovered.

spaces: items space and dimensions space. The analysigster
through the interaction with the items in items space and tié di-
mensions in dimensions space. In our model, dimension$atessic
visual entities of the visual analysis in dimensions sp&e&h an ap-
proach enables us to extend the knowledge in the interacisel
analysis of data items to the visual analysis of dimensi®oghe best
of our knowledge, our model is one of the first IVA approachésere
the dimensions are interactively and iteratively analyaedirst-order
visual entities together with the actual data items.

We present a formal definition of our model by defining: i) tlaad
transformations that are used to iterate from one spacetothter; ii)
brushing and F+C visualization to achieve the linking ofwge We

genes and apply LDA using only these genes. We observe thiat Wjefine how MVA tools and statistics are tightly integrateitne dual

this setting, LDA is able classify 30 samples correctly.
We continue the analysis by visualizing the tissues in
interquartile-rangel QR) vs. o scatterplot. Botto andIQR are mea-

analysis concept. Additionally, we present a set of possiolalysis
Brocedures that involve the joint interaction of items aimahsions.
Finally, we evaluate the model in the context of a DNA micragdata

result, if there is a large deviation betweldR and o values of a di-
mension, this dimension is likely to contain outliers. Imgylie 8-e,

we remove such dimensions and re-compute PCA with the selec

dimensions. As a result, we observe that we get a more relRGA
result (Figure 8-f). By selecting the outliers, we obseivat tLDA
classified 34 samples correctly. Additionally, we selectaug of out-
lier genes (Figure 8-g) to explore how the tissues relateisoselected
group. In Figure 8-h, we see that while theando values for most of
the tissues change in a similar manner, one tissue is claarbytlier.

In this use-case, we demonstrate how our model brings nesi-po

bilities to the analysis of DNA microarrays. Additionallye demon-
strate how a statistical tool LDA, is used as a validatiop.st& each
iteration, LDA results provides an immediate feedback & turrent
selection improved the results or not.

8 CONCLUSION

In this paper, we introduce a visual analysis model that lesatne
dual analysis of items and dimensions of high-dimensioath.dThe
iterative and joint analysis of the data is performed oveu tinked

important.

t MVA tools provide elaborate mechanisms to explore high-
dimensional data. They are used for several purposes suetpksn-
ing the relations between dimensions, classifying itents groups
or predicting the classes of items. One of the problems \higse
methods is that, they treat all the dimensions of the datallgand
consider them in the computations even though they may notlbe
vant. In certain cases, the relevance of the dimensions eaorpu-
gationally determined, e.g., by looking at the correlatimiween di-
mensions. In some other cases, however, the relevance wieaslion
can only be determined by the analyst's preferences or griowl-
edge about the data. Moreover, the effects of data itemitaisions
need careful attention while dealing with MVA tools. Suclmsialera-
tions are only possible with the careful inspection of datasgts by an
expert. With the presented model, we exploit the tight ireégn of
MVA tools in the visual analysis process and enable the usesflect
her preferences to the analysis. Here, the analyst is gheepdssibil-
ity to steer the MVA tool by means of interactivity and as aute$oth
the outcome of visual analysis and the performance of MVAhoes$



are improved. [16]

In this paper, we do not focus on specific MVA tools or specific
statistics. Therefore, we picked some of the well-knownstand
statistics such as PCA, LDA, o, skew kurt, andIQR. The concept [17]
of dual analysis can have utilizations with different MVAots. We
plan to work on visualizations and advanced interactionfabpisms
that are more specific to certain MVA tools. We will furthevéstigate
the utilization of our model in the context of other applioatdomains
where the dual analysis concept could prove to be helpful.

As a future work, we will extend our model to include statistihat
consider pairs of dimensions, e.g., correlation, regoessAddition- [20]
ally, as another extension, we plan to include visualizetithat can
provide a formal validation for the interactions, e.g.,jpotion preci- [21]
sion [28].

We think that the presented model brings up new opportunitie [22]
the analysis of high-dimensional data. By looking at theadadbm
two different perspectives with the help of MVA tools, it isgsible to  [23]
build elaborate and specialized visual analysis framesiork

(18]

[19]
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