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Abstract

Molecular surfaces provide a useful mean for analyzing interactions between biomolecules; such as identification

and characterization of ligand binding sites to a host macromolecule. We present a novel technique, which

extracts potential binding sites, represented by cavities, and characterize them by 3D graphs and by amino acids.

The binding sites are extracted using an implicit function sampling and graph algorithms. We propose an

advanced cavity exploration technique based on the graph parameters and associated amino acids. Additionally,

we interactively visualize the graphs in the context of the molecular surface. We apply our method to the analysis

of MD simulations of Proteinase 3, where we verify the previously described cavities and suggest a new potential

cavity to be studied.

Introduction
Molecular biology is studying biological phenomena on

the highest magnification level where the life processes are

carried out by interactions of molecular machinery. One

key focus of this scientific branch is to study and deter-

mine the molecular structure, while another attention is

given to its dynamics and interactions with the other

molecules. The structure, or conformation, of a protein

can for example be obtained through the crystallography

and the interactions of the protein with its environment

are modeled by means of Newtonian physics, involving

potential energy, where induced forces modify the struc-

tural arrangement of the molecule. They are often referred

to as molecular dynamics (MD) simulations. The outcome

of the simulation is then stored as a sequence of transfor-

mations for each atom of the molecule or environment,

denoted as trajectories.

The studied macromolecules such as proteins are typi-

cally analyzed for a binding site to act as a carrier of an

important chemical substance. Alternatively, a small mole-

cule is searched for that would change the conformation

of a particular protein and by the structural change influ-

ence a certain chain of molecular interactions, called as

pathways. For example in a pathway of a certain cancer

types, one would like to change the conformation or to

block the binding site of a participating protein to disable

a successful execution of the pathway.

Typical questions raised by molecular biologist in their

exploratory workflows are where is a suitable binding

site, what are its chemical characteristics and how stable

this binding site is over the simulated time. Typical car-

riers and binding sites are channels, pockets, and cav-

ities on the molecular surface.

One way of channel and pocket detection and analysis

is to perform the Monte Carlo sampling over the bound-

ary of the macromolecule. Cavities can be identified and

characterized by means of differential geometry on the

molecular surface [1,2]. These techniques are mostly

quantitative and non-visual.

Parallel to these approaches are analytical methodologies

that utilize visualization of the molecular surface where

the biologist assesses the molecular structure qualitatively

and searches for potential binding sites. For this type of

analysis it is very important that shape and depth cues are

effectively communicated to the viewer [3].

We have identified the importance of the complemen-

tarity of these two approaches and propose a novel visual

analytics framework for the cavity analysis. The cavity

candidates are extracted automatically from the molecu-

lar structure for each timestep of the simulation. After

the extraction process the user can visually analyze the

cavity geometry, chemical properties and other important

quantitative measures. The user can formulate a query
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for finding cavities that correspond to particular envi-

sioned characteristics and by interacting with the tem-

poral settings she can quickly get familiar with the

binding site stability over time (Figure 1).

It is noteworthy that this work represents a natural

continuation of our previous study [4], which focused

mostly on the graph based cavity representation. Here

we extend this technique by an improvement of the

implicit function sampling and the 3D visualization, and

also by characterization of the graph components by

amino acid types.

Related work
Our work can be regarded as related to two groups of

techniques, namely implicit molecular representation,

and cavity extraction.

Implicit molecular representation

In order to model complex and dynamic geometric

objects, implicit surfaces are a suitable mechanism. In

the molecular visualization field, implicit representation

has been used widely to smoothly model the bond tran-

sitions between single atoms. Blinn [5] used the set of

techniques for the first time, which are today known as

implicit modeling. In order to describe the electron

density function of the atoms, he utilized an implicit

function that sums up the contribution from the atoms:

f (p) = T −
∑

i

bie
−aid

2
i , (1)

with di as the distance from p to the center of atom i,

bi as the “blobbiness”, ai as the radius of the atom, and

T as a threshold for the electron density. In later studies,

implicit surfaces that are constructed from skeleton

points were introduced [6,7]. In general, these represen-

tations can be formulated as:

f (p) = T −
∑

i

mifi(p), (2)

where mi is a weight factor and fi is a density distribu-

tion function that is decreasing. Shestyuk [8] presented

a comparative analysis on how different distribution

functions can be applied. The performance of the kernel

evaluation in the rendering process was improved by

GPU implementations [9], which were later used for fast

visualization of molecular surfaces [10,11]. The above

approaches that use the summation of atom contributions

can be considered to be relatively fast and thus widely

used. However, these approaches do not completely

Figure 1 An application screenshot. Bottom-left: A 3D view shows a visualization of Proteinase 3 at time step 0. Top-left: An amino acids list

view, where for each selected graph/cavity (a row), the cavity’s amino acids are displayed. The color bar diagram represents a chemical property

of the cavity with respect to hydrophobicity (gray), polarity (green), positive (blue) and negative (red) charges. Top-right: A temporal scatterplot,

depicting an average graph size, can be used to select arbitrary graphs (selected graphs – orange, non-selected – gray), realized by mouse

interaction or direct amino acids specification (X), which are then linked with the contextual 3D view. Bottom-right: A plot depicts chemical

properties of cavities over the entire temporal domain.
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consider the solvent that is usually represented as a sphere

with radius R. The consideration of the solvent, on the

other hand, can lead to valuable findings that can lead to

potential binding sites.

Pasko et al. [12] combined different implicit model

forms to propose a generalized implicit surface repre-

sentation. The implicit object representation is denoted

as a function that involves the following inequality:

f (p) ≥ 0, (3)

where p = (x1, x2, x3) Î E3 and f is an implicit surface

function (or implicit function). f classifies the space into

two half-spaces: f(p) >0 and f(p) <0. The above classifi-

cation is also valid for Eqs. 1 and 2.

There are a number of methods to represent molecular

surfaces. A common approach is to represent atoms as

spheres with radii that amounts to the van der Waals forces

(vdW surface) [13]. The implicit function for the van der

Waals that follows Eq. 3 is defined as: f (p) = ∪i(ri − di),

where ri is the van der Waals radii. By extending the sur-

face with a solvent radius, one obtains a solvent accessible

surface: f (p) = ∪i((ri + R) − di).

In the cavity exploration area, the most common

representation is the solvent excluded surface(SES) [14].

Recently, Lindow et al. [15] and Krone et al. [16] pro-

posed GPU implementation of the SES representation.

Although they achieved a high rendering performance,

their models are solely applicable to rendering related

tasks. Our cavity detection method, introduced in this

work, requires that the molecule is defined as an impli-

cit surface.

Parulek and Viola [17] introduced a functional represen-

tation for the modeling and the visualization of the SES

representation. In their method, the molecular surface is

represented as a combination of basic CSG operators and

they define a distance based implicit function. Our func-

tion sampling procedure uses this representation as a

basis. Further details are in the Visualization section.

One method to visualize implicit molecular models is

to construct a mesh representation and render the mesh

as a set of patches [18]. However, in the case of complex

molecules the resulting meshes can consist of millions of

triangles, which creates a challenge to generate detailed

iso-surfaces. As a result, direct visualization techniques

such as ray-casting have been introduced recently.

One subclass of implicit surfaces are represented by

distance based functions. Effective visualization of such

objects was proposed by Hart [19]. Since, essentially, the

distance measure for an implicit function can be approxi-

mated by the first Newton iteration of the function:

fdist(p) ≈
f (p)

|∇F(p)|
; (4)

we also adopted Hart’s technique for rendering.

Analysis of protein cavities

Since the empty spaces on protein surfaces provide valu-

able information, they have been investigated widely in the

literature. Many methods utilize the analytical description

of the SES [20]. For instance, Voss and Gerstein [21] intro-

duced a web-based cavity analysis tool that apply two

separate probes to calculate the solvent volume to search

for potential cavities and channels.

There are also several tunnel exploration methods. In

general, these methods require the specification of an

initial point in the empty space within the protein. The

method tries to reach the exterior by following tunnel-like

cavities and fills the space with geometric structures as it

progresses. These methods also provide information

related to the pathway around the exit area to describe the

cavities. The method HOLE [22], uses a similar strategy,

where the user defines the initial location and orientation

of a pore within the molecule. The specification of the

initial parameters have been automated by Coleman and

Sharp [1], where their algorithm is also capable of deter-

mining arbitrarily shaped tunnels. Voronoi diagrams have

been used to discover molecular channels and pores in

CAVER [23] and MOLE [24]. Recently, Voronoi diagram

of spheres showed its potential to extract significant paths

from the molecules [25]. Random rays are generated at

Voronoi vertices in order to remove them outside the

molecule. Although the use of ray casting to determine

cavities is similar to our method, we utilize an implicit

function sampling rather than Voronoi vertices. Our

method puts more emphasis on the molecular surface.

Pore features are utilized to determine channels in an

iterative and heuristic algorithm in Pore-walker [26].

Within the context of tunnel extraction methods, our

approach can be described as a combination of stochas-

tic methods due to use of function sampling, and Voro-

noi diagrams due to use of graph analysis.

Molecular pockets and cavities have also been subject

to many studies. CAST uses computational geometry

together with alpha shape theory in order to extract cav-

ities [27]. Till and Ullmann use a Monte Carlo algorithm

while sampling a protein surface over a 3D grid [2].

Although the use of randomly sampled points to calcu-

late cavities is similar to our method, we directly use the

sample points to estimate the cavities rather than using a

3D regular grid. Moreover, our approach also includes

the use of interactive visual analysis to investigate the

resulting cavities.

A grid-based approach that also considers molecular

dynamics is utilized in identifying internal cavities and

tunnels [28]. Similarly, Krone et al. [11] introduce a tech-

nique to track the evolution of the cavity in dynamic

cases. In our work, we do not focus on tracking cavities.
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Instead, we present a set of potential cavities for each

time step, where the user has the functionality to explore

this set of cavities through linked views and interaction.

Method overview
To represent molecular surfaces by an implicit function

f(p), we employ the approach introduced by Parulek and

Viola [17]. Nevertheless, one can use a kernel based

approach (Eq. 2), and as well as vdW or SAS, which

both can be easily expressed as implicit functions. The

implicit function is positive inside the molecule and

negative outside, and it is possible to estimate the mini-

mum distance of a sample point from the surface. The

distance can be computed by the application of New-

ton’s formula, (Eq. 4).

Similarly to our former study [4], we compute an

independent set of graphs, Gt = {Gt
1 ∪ . . . ∪ Gt

m}, repre-

senting m cavities of MD simulation in time step t

(Figure 2). Here we improve the positioning of sample

points forming the graphs. These samples are generated

with respect to atom centers within radius [ri, ri + 2R]

from each atom, i.e., within the influence of the atom.

Moreover, for each cavity graph Gt
i, we compute graph

parameters, e.g., the average shortest path, and amino

acids that compose the molecular surface near the

graph. The user is provided with the system of linked

views allowing her to select individual graphs according

to the graph parameters and as well as by direct amino

acids specification.

Cavity graphs

In the first stage, we sample the implicit functions by a

set of random points, S = {p1, ..., pn}, which densely

cover the function domain (Figure 2a). One of the

important issues related to cavity extraction from the

molecular implicit function is how to prefer regions

with higher surface complexity. This is due to the fact

that the occurrence of the cavities is directly related to

the surface complexity. In another words, we should

emphasize surface regions with a higher curvature varia-

tion. Fortunately, this is highly correlated with respect

to the density of atoms in that region, since the function

evaluation employs the closest atoms only, i.e., within

distance ri + 2R from the i-th atom. Therefore, the sam-

pling can be performed by generating an equal number

of sample points for each atom, which will naturally cre-

ate more sample points in regions with more atoms, i.e.,

in regions with higher surface variations (Figure 2b). We

perform the sampling for every time step of the MD

simulation, where the positions of sampling points

remain almost the same for all the time steps, i.e.; we

slightly adjust the position with respect to the molecular

bounding box in a particular time step.

The sampling process evaluates the implicit function f

at every sample position; i.e., we obtain a set of function

values Ft = {f(p1), ..., f(pn)} for time step t, where

n represents the number of samples. With respect to

the property of implicit functions that classifies points

between internal and external ones, we can easily

filter out samples S0 ⊆ S that lie inside the protein,

S0 = {p|f(p) ≤ 0; p Î S} (Figure 2c), which do not belong

to any cavity.

Essentially, S0 contains a set of sample points lying in

a close vicinity of the surface, up to a distance of maxi-

mum 2R from the molecular surface, which is clear

from the sample point definition.

As a next step, we perform a cavity based analysis,

which classifies the samples into potential cavity sam-

ples. Note that there is no exact cavity definition with

respect to any of aforementioned molecular surface defi-

nitions, i.e., van der Walls spheres, solvent accessible

surface, solvent excluded surface, blobby models, etc.

Nevertheless, there are at least some hints on how the

cavity can be described. In our work we follow the spe-

cification by Cheng and Shi [29], which describes a cav-

ity as a connected and concave surface patch that might

open up to the outside via a narrow mouth. This prop-

erty allows to define the cavity through opposite facing

surfaces. This condition is verified at each sample by a

ray that is cast along the normal direction beginning at

the sample. In a case that the ray hits the surface, the

sample is classified as a potential cavity sample [4]

(Figure 2d). Thus only the samples that lie between two

opposite facing surfaces are labeled as a potential cavity.

Although this excludes more shallow regions, it was still

preferred and recommended by our collaborators from

bioinformatics. On the other hand, the ray-casting

method can be performed in a more robust way, such

as for instance producing multiple rays in various direc-

tions. Nevertheless, casting just a single ray is a very fast

method and, when taking into account the large number

of employed samples, it also filter out many false posi-

tives in the set S0. Afterwards, we adjust the sample

position to lie in the middle of two opposite facing sur-

faces (Figure 2e).

The number of points (samples) that are seeded to the

spatial domain depends primarily on the size of the

molecule: for instance for Proteinase 3 (3346 atoms),

used in our use case, we employed 16 samples per

atom, i.e, 3346 × 16 = 53536 of sample points. The

number is significantly lower than in approaches that

employ regular grid discretization, e.g., 2563 stands for

16777216 sample points. In practice the number of sam-

ple points is evaluated with respect to acquired cavities,

i.e., we gradually increase the number of samples, and

when after a certain number of samples the amount of
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extracted cavities does not change dramatically, this

number defines the amount of required samples.

In the next stage, our goal is to form a graph that

defines the relations between the cavity samples. First, we

perform visibility tests between all pairs of sample points.

This generates an undirected graph G, where nodes are

the sample points and edges are mutually visible samples.

Secondly, we perform the connected component analysis,

which results into the set of m independent subgraphs

G = {G1 ∪ ... ∪ Gm}. Thirdly, we apply a minimum span-

ning tree algorithm [30] to each component Gi to build

its central skeleton (Figure 2f).

For more details on our graph extraction technique,

we refer readers to our previous study [4].

Visualization

The rendering of implicit surfaces representing molecules

by a single distance based function was introduced by

Parulek and Viola [17]. In our previous study, we

improved the proposed pipeline by utilizing spherical

impostors representing an area of the atom influence [4].

To ease the shape perception, we farther improve the

surface rendering by contour enhancement. In the litera-

ture, there are several papers on contour enhancement

Figure 2 The pipeline for detection of cavity samples. a) A set of random samples is seeded in the space delimited by the radius 2R from

the van der Waals spheres (yellow circles). b) Generation of sample points for two atoms. Note that more sample points are obtained in the

intersection of both enlarged spheres. c) The samples p that lie inside the molecule (f(p) ≥ 0), are excluded. d) Detection of cavity samples is

performed by means of shooting the ray (blue) along the gradient direction evaluated at all the samples. Those samples that hit the iso-surface

(red) are labeled as potential cavity samples. Here only the rays that hit the iso-surface are rendered. e) The new sample position is computed,

which is defined as the middle point between two points obtained by ray iso-surface intersection. f) The resulting graph components after the

application of connected component and minimum spanning tree analysis.
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techniques [31]. The simplest one employs the angle

between the surface normal and the viewing direction.

The disadvantage is that flat boundary regions that have

similar gradients may become a part of the contour as

well. Therefore we turn to curvature-based techniques,

which can suppress contours in low-curvature regions.

On the other hand, those techniques are usually compu-

tationally demanding. Therefore, we adopt a technique

introduced by Bruckner and Gröller [32], which approxi-

mates the view-dependent curvature by evaluation of two

consequential gradients along the viewing ray. Moreover,

it easily allows to change contour thickness (Figure 3

middle and right).

The surface color is determined by the amino acid

type. The amino acids are the basic building compounds

of molecules, and also provide a deeper relation for biol-

ogists with our cavity analysis. We classify the amino

acids into four categories, according to the classical

amino acid Venn diagram [33]. The four categories of

amino acids are hydrophobic (white), negatively charged

(red), positively charged (blue) and polar ones (green).

The final surface color is determined by the closest

amino acid with respect to the surface point.

To allow for molecule exploration, we include a clip-

ping plane interaction, which we refer to as an implicit

clipping plane (ICP). The ICP clips away the atoms from

the implicit surface. This enables us to study even

occluded cavities located inside the molecule. Here we

exploit the fact that the implicit function is constructed

on the fly during the ray-casting. The ICP neglects those

atoms that lie in front of the clipping plane (Figure 3

left). The reason for using such a clipping plane is to pre-

serve the molecular surface in the close vicinity of the

plane. Users can either link the plane normal with the

viewing direction, or adjust the plane orientation interac-

tively. Additionally, when the implicit clipping plane is

activated, the diffuse shading model is evaluated just for

the surface area that is not clipped. This enables us to

distinguish between the clipped surface and the original

one. For the clipped surface points we utilize just con-

stant colors derived from the amino acid type (Figure 3

middle and right).

To depict the graph components, we use basic geome-

trical primitives, i.e., spheres and line segments. The

radii of spheres are defined by the sample distance from

the molecular surface [4]. The edges represent the mini-

mum spanning tree of each graph. Our system allows to

select and visualize a group of graphs for each time step

separately. We visualize the graph components in the

focus and context style. The focus, the molecular surface

close to the selected graph component, is colored using

the amino acid type, whereas the context, the molecular

surface farther away from the selected graph compo-

nent, is shaded constantly (Figure 4).

Graph attributes
The cavity extraction procedure generates tens of graphs

per time step over a simulation containing thousands of

time steps. Therefore, direct integration of all the graph

components into the visualization can easily produce

results that are cluttered and difficult to interpret. In our

former study [4], we introduced an interactive system

that allows performing visual selection of the graph com-

ponents to steer the focus of the cavity analysis. To ease

the graph exploration, we compute a set of basic graph

measures: the longest path between any two nodes, the

Figure 3 Implicit clipping plane and contour enhancement. Left: The implicit function evaluates the molecular surface (green). It takes into

account only atoms that intersect the plane or lie in the half-space defined by the plane (arrows). Middle: Proteinase 3 is colored according to

the amino acids, while for the clipped surface the flat shading model is employed. Right: An example of changing the width of contours.
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average length of the shortest paths between pairs of

nodes (avgP), and the average of the degree of all the

nodes. In our examples we employ avgP for selections,

which essentially represents the overall cavity size.

Additionally, we compute amino acids (Ai = {a1, ...,

ak}) that compose the molecular surface near the cavity

graph Gi. Here, we employ the geometrical distance

Dg = 3R from the cavity graph, i.e., if there is an inter-

section between the molecular surface and the graph

component (Figure 5), we assign the amino acids com-

posing the surface to the graph. The assignment of

amino acids is illustrated in Figure 5.

By utilizing the properties of the amino acids Ai

(assigned to the cavity Gi), we compute a profile of the

cavity Gi. We build this profile by utilizing a categoriza-

tion of amino acids based on their chemical properties

[33], i.e., the same as we employ for the surface colors.

In order to build the profile of a cavity according to

these categories, we iterate through the atoms that form

the molecular surface near the cavity graph (Figure 5).

We mark each atom according to the type of the amino

acid it belongs to, e.g., if an atom is a part of a polar

amino acid, it is considered to be polar. After all the

atoms are marked, we count the number of atoms and

compute the ratios for each category. We use these ratios

to visually represent the profile of a cavity, where each

category is mapped to a color: gray for hydrophobic,

green for polar, blue for positively charged, and red for

negatively charged amino acids.

Interactive analysis of graph components
The computation of the graphs and their attributes

results in heterogeneous data related to the simulation.

At this stage of the analysis, we have three different

types of data involved in the visualization: i) the raw

simulation data ii) the graph components data iii) the

amino acids data. In order to analyze these heteroge-

neous data, we make use of a coordinated multiple view

setup that employs interactive visual analysis (IVA)

methods. Our setup employs linked views, where each

type of view can handle different parts of the data.

Firstly, to visualize the raw simulation data, we make

use of the 3D visualization method previously discussed

(Figure 1 bottom-left). Secondly, we utilize a scatterplot

Figure 4 Visualization of graph components. Left: The iso-surface point (the black circle), obtained during ray-casting, is evaluated against the

distance (the dashed line) to the graph component (the black line). Right: An example of graph component visualization in the context of the

molecule. When a graph component is shown, the coloring is applied only to points that lie within distance Dg = 3R from the graph. We

employ flat shading for surface points lying beyond Dg. The boundary of Dg is shown as a black contour on the surface. The graph component

is displayed using line segments (edges) and spheres (nodes).

Parulek et al. BMC Bioinformatics 2013, 14(Suppl 19):S4
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that visualizes a selected graph attribute (y-axis) over

time (x-axis), where each dot represents a unique graph

component (Figure 1 top-right). Finally, two separate

views show the data related to the amino acids. One

view visualizes the chemical properties of cavities (cavity

profiles) over time (Figure 1 bottom-right) and another

view lists the selected cavities and their amino acids

ordered by time (Figure 1 top-left).

These different views are linked using an interaction

method called linking & brushing. This method enables

the user to interactively make selections (also called

brushes) in one view and observe what structure the

same selection corresponds to in the other views. In

order to visually express the selection in the views, we

make use of two methods. In the first method, we high-

light the selected data in the context of the whole data.

Example of this method could be seen in the graph

attribute scatterplot, where the selected graphs are high-

lighted by orange color and the rest of the graphs, the

unselected ones, are displayed in gray (Figure 1 top-

right). The second method displays only the selected

information. An example of this method is the cavity

profile view, where only the profiles of the selected

graphs are shown (Figure 1 bottom-right).

In our system there are two different ways to select

graph components. The user can either interactively

select (brush) the graphs through the graph attribute

scatterplot (Figure 1 top-right) or specify the amino acids

through textual queries. Additionally, different selections

can be combined via the basic Boolean operators (AND,

OR and NOT), which lead to more complex queries.

One important point to mention is that all the views are

updated automatically whenever a selection is made. For

example, in the amino acid list view it is possible to select

cavity graphs through a direct specification of amino acids

that are of interest, and the other views display the selec-

tion immediately. Through this view, the user composes

textual queries that include AND = & and OR = ∨ opera-

tions. In Figure 6 we specify two amino acids 140 ∨ 170,

which selects graphs g = {Gi|140 Î Ai ∨ 170 Î Ai; Gi Î G}.

In the accompanied scatter-plot we can observe the distri-

bution of these graphs, g, over time. Additionally, it is pos-

sible to combine queries by specifying the intervals of

amino acids, e.g., the query (120 − 140)&(180 − 190)&173

represents all cavities that contain at least three amino

acids ai, aj, ak, such that ai Î [120, 140], aj Î [180, 190]

and ak = 173.

Implementation and performance
We implemented the entire system in Python program-

ming language, where most of the rendering and com-

putations run on the GPU (CUDA and GLSL). The

performance measurements are done on a workstation

equipped with two 2 GHz processors and 12.0 GB

RAM, and with a GPU NVIDIA GeForce GTX 680. The

3D cavity visualization in the context of the molecular

surface is performed on the fly (GLSL for sphere bill-

boarding and CUDA for ray-casting). The molecular

Figure 5 An illustration of the assignment of amino acids to the graph components. We turn the cavity skeleton into a distance object,

bounded by the distance Dg = 3R, and perform an intersection with the molecular implicit function. We mark those atoms/amino acids that

form the molecular surface.
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visualization can be performed even without the cavity

segmentation, since the ray-casting pipeline is indepen-

dent from the graph analysis. Prior to 3D rendering and

cavity segmentation, the only auxiliary structure that

needs to be computed is the GPU representation of

atoms.

We utilize a simple and straightforward approach that

is based on an uniform spatial subdivision. This has

been already utilized by the broad molecular visualiza-

tion community [15,16]. The atoms are sorted into

cubic voxels with a lateral length of 2radiusmax + 2Rmax,

where radiusmax represents the maximum (van der

Waals) radius of all the included atoms and Rmax repre-

sents the maximal allowed solvent radius. Then, in

order to find the closest atoms to a given point, it is

required to visit 3 × 3 × 3 neighboring voxels. Thus, for

a given time-step, we need to send to the GPU only the

atom centers and their radii, and the grid of voxels.

Such a grid of voxels is computed and stored automati-

cally when the user selects a particular time step either

to visualize or analyze, which has not been processed

before.

In the process of cavity segmentation all the samples are

precomputed for the entire simulation, where the user has

the possibility of resampling a particular time-steps if

desired. All the samples are evaluated in parallel, time-step

wise, using CUDA. For instance, evaluating and segment-

ing 50K samples for 1000 time steps takes around 20 min-

utes. After the cavity samples have been segmented, the

user can initialize the computation of graph components.

The generation of graphs takes around 10 minutes for

1000 time steps, for the previous example. The process of

assigning amino acids to the generated graphs is automati-

cally executed after the graphs have been formed. This

takes approximately another 10 minutes. After these pre-

processing steps are over, the system operates at interac-

tive rates. It is important to mention that, even when

performing complex queries constructed through our

selection mechanism, the system gives an immediate

response.

Use case: analysis of Proteinase 3
Proteinase 3 (PR3) belongs to the family of serine pro-

teases, cleaving proteins via specific hydrolysis of peptide

bonds. It is an enzyme involved in inflammation, where in

a number of chronic inflammatory diseases, e.g., Wegener

granulomatosis and vasculitis, PR3 has a deleterious effect.

Therefore, PR3 is a drug target. To design drugs for PR3,

we need first to understand of how ligands bind to it,

which is conditioned by a better characterization of the

Figure 6 An amino acids list view and a temporal scatterplot showing avgP over time. Here we specify those cavity graphs that are

formed either by amino acid 140 or by 170, i.e., the query equals 140 ∨ 170. Left: The leftmost column depicts the characterization of cavities

with respect to the occurrences of amino acid types: hydrophobicity (gray), polarity (green), positively (blue) and negatively (red) charged. The

middle column shows the time step the cavity occurs at. The rightmost column shows all the amino acids forming the cavity. Right: In the

accompanied scatterplot we see the distribution of the selected cavities over time with respect to its “size”, avgP.
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binding sites. This allows the development of drug candi-

dates with higher affinity to PR3 than its endogenous

targets [34].

The search for new drugs often relies on knowledge of

the three-dimensional structure of the enzyme involved,

and in particular of the cavities on its surface. The drug

candidate efficiency is dependent on a strong interaction

with the enzyme. The strong interaction can be achieved

by binding into a cavity. Nevertheless, all molecules are

dynamic and the structural changes they undergo

impact their function. This is also valid for the dynamics

of cavities. Thus our goal is to provide dynamic picture

of the relevant cavities over the simulation time.

The analysis starts with importing the PDB and DCD

files for PR3. The Protein Data Bank PDB file format is

the most common format for atomic cartesian coordi-

nates and other relevant information (e.g., atom types,

amino acid types, sequence numbers). The DCD file for-

mat is commonly used for MD simulation trajectories,

and is the output format of MD engines, such as

CHARMM [35] or NAMD [36]. For demonstrational

purposes, we limit the number of time step analyzed to

1000.

After loading the data, the user can already visualize

the molecular surface in the 3D view. In the context

menu that is available in the application, the user can

select multiple commands that run the sample and the

graph components generation. Here, one can decide to

execute all the computations, i.e., samples evaluation,

graph creation and amino acids computation, at once for

the entire simulation or for each time-step individually.

Our framework computes automatically the number of

occurrences of amino acids with respect to the graphs.

Using this information, one can easily find the graphs/cav-

ities, which refer to the most present amino acids in the

MD simulation. Moreover, through AND and OR opera-

tions and the linked 3D view, one can verify whether those

amino acids belong to the same cavity.

Another possibility is to verify a priori knowledge of

the cavity that is formed by specific amino acids. Here

the user can specify the corresponding amino acids

queries by the AND operation, or by OR operation to

see whether the occurrence of the selected graph com-

ponents in the accompanied temporal scatter-plot has

changed.

Benchmarking against known binding sites

Here we firstly show how to perform validation of exist-

ing binding sites discoveries. Hajjar et al. [34] evaluated

a binding site that had been early characterized as con-

taining an isoleucine (Ile171) and an aspartic acid

(Asp190). The characterization originated from visuali-

zation of the X-ray structure of Proteinase 3. Using MD

simulations of Proteinase 3 with many different ligands

docked in the binding site, Hajjar and coworkers showed

that Ile171 and Asp190 did not play any significant role

in the interactions with the ligands. Instead Ser176 and

Val193, as well as possibly Ser191 were interacting with

most of their ligands. Additionally, there might be

another cavity formed by, among others, Asp190 and

Ile1.

It is important to mention that these results were

obtained by a series of MD simulations, where each simula-

tion represents another ligand bound to Pr3. The analysis

consisted in measuring the occurrences of contacts

between the ligand and any amino acid of Proteinase 3.

Here we show that, with our visual analysis framework, we

can directly evaluate some of these binding sites by analyz-

ing just a single MD simulation. Moreover, with our

method, the analyst gets an overview of the existing cavities,

characterized in terms of size and chemical properties.

We create a system of views similar to Figure 1, where

we analyze the first 1000 structures resulting from 1

nanosecond-long MD simulation of PR3 with a peptide

ligand. The analysis is done solely on the protein PR3 to

demonstrate the potential of our approach. After the

computation of all the graph components, we perform

different combination of OR and AND operations

applied on the amino acids that we would like to evalu-

ate. Firstly, we have a look at their distribution in form

of cavity graphs over time and in the amino acid list

view (Figure 7). For instance, when we specify in the

amino acid list view 171&190 (both Ile171 and Asp190),

we see in the linked views (Figure 7 top-left) that the

cavity disappears in the middle of the simulation. This

shows that, even though it exists in the X-ray structure

(which is also used as a starting point for the MD simu-

lations), it quickly disappears to reveal another cavity

formed by other amino acids. This reveals that the other

cavity is constituted of amino acids other than Ile171

and Asp190, namely Ser176, Ser191 and Val193. In

what follows we will use only amino acid numbers to be

consistent with the textual queries. Before we evaluate

other amino acids, we firstly perform a visual correlation

between cavities formed by 171&190 and by 1&190. In

order to do that, we execute the query 1&171&190

(Figure 8) and see that it represents the same cavity

defined in Figure 7-left. Moreover, this cavity is located

deeply inside PR3 (Figure 8). This means that the same

cavity is formed by Ile1, Ile171 and Asp190. If we refer

back to the temporal scatterplot in Figure 7-right, we

notice that no cavity is present when we perform the

query 176&193. However, this is not in agreement with

the description of binding sites from the study by Hajjar

et al. [34]. We postulate the following reason, for which

we have not found a cavity represented by a single graph

component, where Hajjar and coworkers see a single

binding site. The cavity formed by both Ser176 and
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Val193, is likely to be composed of two distinct concave

surface features that are divided by a surface extrusion.

This hypothesis is supported by the amino acid query

176 ∨ 193, which shows that there are cavities formed by

at least one of these amino acids (Figure 7). Such a com-

pound cavity is not within the frame of our cavity

description that requires the connectivity of the concave

surface patch. Moreover, a difference between their and

our study is that they analyze which part of PR3 interact

with ligands (no cavity analysis) to derive a model of the

binding sites, while we are looking at actual cavities on

the molecular surface. That might explain the apparent

discrepancy.

As a consequence, and as a next step, we perform sev-

eral extended selections to see whether other amino

acids might contribute to the cavity (Figure 9).

Unsupervised cavity discovery

Hajjar et al. investigated the so-called S4 − S1 and S1’ −

S3’ binding sites of Proteinase 3, and for doing so they

performed analysis of numerous MD trajectories of PR3

with ligands. The design of their simulations and subse-

quent analyses were directed solely towards these binding

sites and did not investigate other potential binding sites.

In the case of PR3, for which we analyzed the same

MD simulation as was described in the previous section,

we are able to discover cavities distinct from the known

peptide binding sites; in particular one clear polar/

hydrophobic but also with Arg (positively charged

amino acid). By finding this cavity we have highlighted a

region of the Proteinase 3 that has potentially an impor-

tant role for its function. This cavity can be further

characterized by our colleagues in molecular biology,

who have the possibility to design experiments to inves-

tigate its potential functional role.

Since each graph component/cavity contains a list of

participating amino acids, we can easily compute the most

present amino acids over the entire simulation. By order-

ing the amino acids by their occurrence we made a list of

the four most present amino acids, and we performed

Figure 7 Evaluation of existing cavities. We sequentially perform selections of cavities based on pairs of amino acids. A typical cavity for each

selection is shown in the top-left corner and marked by the green circle in the temporal scatterplot. Left: We can see that cavities formed by

Ile171 and Asp190 are quite correlated with respect to the content of negatively charged amino acids. The same holds for amino acids Ile1 and

Asp190, but only for graphs containing both, i.e., 1&190. Right: We found that there is a higher number of cavities formed either by Ser176 or by

Val193, 176v191, than by both of them, 176&191. Note that the hydrophobicity of all the cavities is much smaller than in the cavities formed in

the left side. We might see similar cavity occurrences when selecting cavities formed by Ser173 or by Val193 (176 ∨ 193) while cavities are more

hydrophobic. Importantly, in the simulation section, we do not find any cavity when querying both Ser173 and Val193 (176&193).

Parulek et al. BMC Bioinformatics 2013, 14(Suppl 19):S4
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Figure 8 A cavity formed by Ile1, Ile171 and Asp190 (1&171&190). Left: An illustration of of the same cavity in different time steps

(533,537,538,539 and 541) marked by the black circle in the temporal scatterplot. We performed specification of 1&171&190 as a continuation of

the analysis started in Figure 7, which shows that the cavity might be formed by all three amino acids. The cavity is located deep inside PR3

and we have to use the ICP to show it. Bottom-right: It is easy to see that the chemical properties of the cavity are very stable over entire

simulation, where hydrophobicity prevails over polarity.

Figure 9 Extending amino acids selection. Left: We expand firstly the selection by 170 - 176&193, where we can see that the cavity appeared in

the beginning and in the end of the simulation predominantly. Right: We expand selection furthermore by (170 - 176)&(193 - 199), where we

notice that even more cavities appeared although still not as many in the middle of the simulation. We show a typical cavity for both of selections.
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AND operations between all of them. These amino acids

are: Val119, Val150, Thr152 and Arg208. We verify the

presence of the graph components in the scatterplot (Fig-

ure 10 top), and the cavity shape and its span on the

molecular surface in the 3D view (Figure 10 bottom).

Then we can continue with the analysis of the chemical

properties. Additionally, we estimated that the cavity

graph formed by at least Val119 is present in the

Figure 10 A demonstration of a cavity formed by Val119, Val150, Thr152 and Arg208. Top: In the temporal scatterplot we see that this

cavity is frequently present over the entire temporal domain. Middle: The chemical properties are very stable as well, where the dominant ones

are hydrophobicity and polarity. We can also note a small positively charged cavity characteristic. Bottom: A close-up on the cavity in five

consecutive time steps (465,46,467,468 and 469). We can also observe the actual chemical properties directly in the vicinity of the cavity surface.
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simulation for 86.5% of the total time, while all four amino

acids form the cavity for 63% of the total time. We show-

case this cavity in Figure 10, where we also see its chemi-

cal properties over time.

Conclusions
We introduced a framework capable of detecting and

visualizing cavities in molecular simulations. Furthermore

the cavities are described by means of graphs, for which

we compute graph attributes and a list of amino acids that

constitute the molecular surface around the cavity graph.

We used a brushing and linking methodology to analyze

the graph attributes through dedicated views. We pro-

posed a visualization method to show cavities in the con-

text of the molecule. Additionally we introduced an

implicit clipping plane that let us visually investigate

occluded cavities localized inside the molecule.

Moreover, we have shown that our system enables to

verify existing cavities through specification of amino

acids of interest. We studied cavities defined by logical

operators of the amino acids Ile1, Ile171, Ser176,

Asp190, Ser191 and 193 in Proteinase 3 MD simulation.

Additionally, we found out that there might be another

cavity formed by at least four amino acids Val119,

Thr152, Arg208 and Val150, which were even more per-

sistent than the known ones. Our collaborators in biol-

ogy agreed to study the discovered cavity more deeply.

One of the major limitations in our cavity extraction

approach relates to the definition of the cavity. As

already mentioned, the cavity is considered as a concave

surface depression with a possible narrow opening when

located on the molecular surface. To detect also shallow

surface cavities, we can cast multiple rays from the sam-

ple point in distinct directions. However, such an

approach will produce many false positives, which still

can be reduced by the accompanied linking and brush-

ing mechanism. This represents our future studies.

Another task that was demanded by our collaborators

from biology was to track graph components over time.

This is partly solved by linking amino acid selections.

Nevertheless, it might happen that more than one cavity

touches the same amino acid. This can be tackled by

graph matching method applied on pair-wise graph

components located in neighboring time steps. Here,

possible scenarios of graph developments cover mainly

splitting and merging of graph components between

sequential time steps.

Another challenge is represented by incorporating

charges into the existing concept. Electron potential

charges are usually solved on the discrete volumetric

grid by means of solving PDE. Since the implicit repre-

sentation evaluates the function values anyway for any

point in space, both representations can be easily

merged. The resulting charges can then be mapped both

to the graph components and to the iso-surface of the

molecule.
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