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A gradual spread inelasticity model for R/C beam-columns,

accounting for flexure, shear and anchorage dip

Panagiotis E. Mergos, Andreas J. Kappos

Laboratory of Concrete and Masonry Structures, Depant of Civil Engineering, Aristotle
University of Thessaloniki, Thessaloniki 54124, éce

Abstract. A new beam-column model is developed for the sieismalysis of reinforced concrete
(R/C) structures. This finite element consists wb tinteracting, gradual spread inelasticity sub-
elements representing inelastic flexural and slieaponse and two rotational springs at the ends of
the member to model anchorage slip effects. Thaurfel sub-element is able to capture gradual
spread of flexural yielding in plastic hinge regsoof R/C members. The shear sub-element interacts
throughout the analysis with the flexural sub-elatnén the location of the plastic hinge regions, i
order to capture gradual spread of inelastic stlsHormations as well as degradation of shear
strength with curvature ductility demand based onaaalytical procedure proposed herein. The
skeleton curves and hysteretic behaviour in ak¢hdeformation mechanisms are determined on the
basis of analytical procedures and hysteretic n@odmind to match adequately the experimental
results. Empirical formulae are proposed for theaghdistortion at onset of stirrup yielding and
onset of shear failure. The proposed element deémented in the general finite element code for
damage analysis of R/C structures B@and is validated against experimental results liinvg

R/C column and frame specimens failing in shearseghbent to yielding in flexure. It is shown that
the model can capture well the hysteretic resparsk predict reliably the type of failure of these

specimens.

Keywords: Reinforced concrete; finite elementgeam-column element; gradual spread; shear-

flexure interaction; bond-slip.

1 Introduction

Seismic response analysis of reinforced concrete structures requires realisticadmabdels
that can predict strength, stiffness and ductility characteristics of meonmdes cyclic loading. The
current state of the art in mathematical modelling of reinforced concrete iahaermits

reasonably accurate predictions of hysteretic response in flexure. However, dndddistmations
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generated during seismic response are by no means limited to flexure. Experimestiations
have indicated that inelastic shear distortions can be significant in local ated as hinging
regions, even when the overall behaviour is governed by flexure [1-4]. Moreovas, liteen well
documented [5-7] that an R/C member may fail in shear due to interagtiofiexure despite the
fact that it has been provided initially with shear capacity grehtar the one corresponding to
yielding in flexure.

Several researchers have attempted to explicitly include inelastic shear resp@ssessmant of
R/C structures [8-13]. Typically, in these studies, shear rigidity ism@ss to be constant along the
concrete member or shear deformations developed along the entire element are lumpastin ine
rotational or translational springs placed at the ends of the member. The formachpmoenot be
exact due to interaction of shear and flexural deformations occurring in tie plage regions. The
latter approach can be accurate only in the special case where the matrénition along the
member is already known and the point of contraflexure remains fixed throughout the analysis.

Additionally, a number of fibre elements have been developed incorporating Hreflekibility
effect. In these models, shear deformations are either uncoupled [13] or coupleitil®}ial and
bending effects at the section level. Nevertheless, the computational effort involvethlsipethe
latter case, limits their feasibility for response history agialpf complete multi-storey structures.
Furthermore, the Gauss or Gauss-Lobatto integration technique used in these dlieeenist
represent, in an exact manner, the actual phenomenon, when inelastic deformations teradito spr
gradually from the member ends to the midspan.

To capture the gradual spreading phenomenon, a spread inelasticity formulation has to be
developed. A number of researchers have introduced flexural, spread inelakitiénts [9,14,15].

The writers [16-18] have developed a shear spread inelasticity element das¢hehere shear force
varies along the member due to distributed loading. No model has been developed pfadtece
gradual spread of inelastic shear deformatifmtlewing progressive growth of the plastic hinges
towards the midspan.

In most cases, shear-flexure interaction effect is taken into consideratioringdagtvanced
analytical procedures like the modified compression field theory (MCFT) [19]. Thesedsgetitiueit
conceptually attractive, have not yet been extended to cope successfully witatiegr of shear
strength in plastic hinges and cyclic loading effects [20]. Additionally, the congmaateffort
required hinders their application in seismic analysis of complex R/C structures.

A number of analytical models [11B], applied shear strength models (e.g. Priestley et]altd5
capture degradation of shear strength with increasing flexural ductility deivnild. these models
are able to predict shear failure with a reasonable accuracy, they have not been developed with a view
to reproducing rapid development of shear deformations, following flexural yielding. Hence, the need
arises for a simple analytical procedure which will provide reasonably éeqregictions of shear

strength and deformations, especially in the yielded end-regions of R/C members.



Existing beam-column elements considering separately shear deformations, with gtemexafe
the analytical models presented in [9,11], do not account for anchorage dits @ffan explicit
manner. Fixed-end rotations caused by anchorage slip may influence signifibansiyffness and
deformation capacity of R/C members, while they have not yet been relatedmexpelly to
degradation of shear strength. Moreover, fixed end rotations are treateds@nlfginction of the
moments acting at the ends of the member, i.e. not of the bending moment diagridurtidistr
which determines variation of flexural deformations along the member.eHénis evident that
ignoring bond-slip effects or lumping them together with flexural deformatitside a single end
rotational spring may lead an analytical model to erroneous results.

The goal of the present study is to develop a cost-efficient beam-column, reoidable for
seismic analysis of complex R/C frame structures, which, at the same tiiree wépable of taking
into account rather complex mechanisms, such as gradual spread of inelastic Hexusiear
deformations from the member ends to the midspan, degradation of shear strengtirwsitire
ductility demand, coupling between inelastic flexural and shear deformations in ttie Ipilages,
and fixed-end rotations caused by anchorage slip.

With the objective to verify the capabilities of the proposed model toodape the
aforementioned mechanisms, the results of the analytical model are comparedhaegith
experimentally obtained from a number of well-documented tests of R/C columnramd f
specimens exhibiting rather complex behaviour i.e. failing in shear aftatingeln flexure.
Whenever possible, the comparisons are not restricted to total response parametatsp but
encompass individual deformation components (curvatures, distortions, anchorage shgrdixed

rotations), with a view to verifying individual features of the model.

2 Finite element for mulation

The proposed, member-type, finite eleméntbased on the flexibility approach (force-based
element) and belongs to the class of phenomenological models. It consists of thebemsmutis
representing flexural, shear, and bond-slip response (Fig. 1). The total flexibdityx (F) is
calculated as the sum of the flexibilities of its sub-elements and camnvéeed to produce the
element stiffness matrix{. Hence:

F=F"+F"+F (1)
K=F™* )

Where,F, F", F*", F® are the basic total, flexural, shear and anchorage slip, respectively, tangent
flexibility matrices.K is the basic tangent stiffness matrix of the element, relating incremental
moments4M,, AMy and rotations16,, 46z at the ends A and B of the flexible part of the element
(Fig. 1) through the following equation



[AM A} {AHA}
=K- €))
AM AG,

The local stiffness matrix, relating displacements and forces at the elenmsit i®ithen easily
determined following standard structural analysis procedures. The components of the aforementioned

finite element, as well as their interaction, are described in the following sections.

3 Flexural sub-element

This sub-element (Fig. 1c) is used for modelling the flexural behaviour of @nniember
subjected to cyclic loading before, as well as after, yielding of longituddivdbrcement. It consists
of a set of rules governing the hysteretic moment-curvature)(Msponse of the member end
sections, and a spread inelasticity model describing flexural stiffness distrilalong the entire

member.

3.1 M-¢ relationship for member end-sections

The M- relationship at each end section of the member is described by the primary curve and the
rules determining its hysteretic behaviour. The primary Mationship is derived using standard
flexural analysis and appropriate bilinearization of the resulting curve.

Loading response is assumed to follow the bilinear envelope curve. Unloading is baked on
respective Sivaselvan & Reinhorn [21] hysteretic rule adjusted for milthestff degradation
characterising flexural response. This is achieved by setting the unloading pardrttésehysteretic
model equal to 15. Reloading aims at the previous point of maximum excursion in theeopposit
direction [22].

3.2 Flexural spread inelasticity model

The flexural spread inelasticity model presented herein is based pyiorathe respective one by
Soleimani et al.14]. The stiffness distribution along the member is assumed to have the shape shown
in Fig. 2, whereL is the length of the membegj, andElg are the current flexural rigidities of the
sections at the ends A and B, respectivEly;is the stiffness of the intermediate part of the element;
an andag are the yield penetration coefficients. The flexural rigiditiés andEl; are determined
from the My hysteretic relationship of the corresponding end sections. For simplicity, in this study, it
is assumed that the state (loading, unloading, reloading) and the stiffnesswietie plastic zone is
controlled by the state and stiffness of the section at the end of the member.

The yield penetration coefficients specify the proportion of the element wieeeetihng moment
exceeds the end-section yield moment. These coefficients are first ldalathe current moment
distribution from Eqns. (4)-(5), whend,, and Mg are the respective flexural yielding moments of
end sections A and B. Then, they aompared with the previous maximum penetration lengths; the

yield penetration lengths cannot be smaller than their previous maximum values.
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a,=——2<1 (4)
MA_MB
M,-—-M

aB:ugl (5)
MB_MA

Having established the stiffness distribution along the R/C member at each step of the analysis, the
coefficients of the flexibility matrix of the flexural sidlement can be derived from closed-form

analytical expressions [],4y applying the principle of virtual work.

4 Shear sub-element

The shear sub-element (Fig. 1d) represents the hysteretic shear behaviour ofrtieeRAE prior
and subsequent to shear cracking, flexural yielding, and yielding of the siméarcesnent. Herein,
this sub-element has been designed in a similar way to the flexural elemenbatksdiove. It
consists of a set of rules determiningy\(shear force vs. shear strain) hysteretic behaviour of the
member end and intermediate regions, and a shear spread inelasticity modéhidetelistribution
of shear stiffness along the R/C member.

Shear hysteresis is determined by the ¥keleton curve and a set of rules describing response
during unloading and reloading. The primary curve is first derived withoutdamsj shear-flexure
interaction effects. Then, by applying an appropriate procedure proposed in this studyathe she

flexure interaction effect is taken into consideration at the locations of plasté&shing

4.1 V-y envel ope curve without shear-flexure interaction

The initial V+ primary curve (Fig. 3)is independent from flexure and is used to model shear
hysteresis outside the plastic hinge regions for members that have yielded ia fiexe response
of the entire element for members that have not yielded in flexure.

The V+ primary curve consists of four branches, but has only three different slopes, as explained
later on. The first branch, with uncracked stiffn€%, connects the origin and the shear cracking
point, which is defined as the point where the nominal principal tensile sixessds the tensile
strength of concrete. Shear force at crackigis calculated by adopting an analytical procedure
suggested by Sezen and Moehle [7].

The second and third branches of the initial primary curve have the sameustbpennect the
shear cracking point with the point corresponding to the onset of yielding of transverse egsiefutc
or else the point of attainment of maximum shear strength,). These branches are separated at
the point corresponding to flexural yielding,(y,). This approach is adopted in order to distinguish
hysteretic shear behaviour before and after flexural yielding [4].

To estimate shear strengily, the approach proposed by Priestley et al. [5] is invoked. According

to this approachy, is given by



A, f,,(d-d")-cotd
s

V, =k-[f,-(0.804,)+N - tam + (6)

whereinA,,, is the area of transverse reinforcement oriented parallel to shearffds the concrete
compressive strengtlf,,, is the yield strength of transverse reinforcemeht]' is the distance
measured parallel to the applied shear between centres of longitudinal reinforceisém spacing
of transverse reinforcement, is the angle defined by the column axis and the direction of the
diagonal compression strutsjs a parameter depending on the curvature ductility demand as shown
in Fig. 4, andx is the angle formed by the column axis and the line joining the centres of the flexural
compression zones at the top and bottom of the column. For the initial primary\¢yngederived
by setting in Eq. (Bthe value of k corresponding to 1,<3 (i.e. no strength degradation).

The stiffness of the second and third brawkeA;, which represent shear deformatiqrcaused
by shear force/sin a cracked member, can be estimated by Eq. (7) derived by the truss analogy
approach [2B

AV, E,-b:(d-d)-p,-sin*6-cot'd
GA = - ( _4) (7)
Ay, sin"@+n-p,

whereb is the section widtlp,, is the volumetric ratio of transverse reinforcemé&gts the modulus
of elasticity of steeln=EJ/E. is the modular ratio, arf. is the concrete modulus of elasticity.

Shear distortion at onset of stirrup yieldingcan be easily determined by settiig=V,, where
V. is the shear strength contributed by the transverse reinforcement. Althouglordreeaitioned
procedure is based on a rational approach, calibration studies by the writers showedbdsanot
account accurately enough for the influence of axial load and member aspect yatio on

Regression analyses performed by the writers showed that best correlation wiimexiad
results is achieved when, in calculatigdoy the truss analogy approach, the agketaken equal to
45’ (unless limited to larger angles by the potential coto@erner crack) and the derived valse i
then multiplied by two modification factors. The first modification factalakes into account the
influence of the normalised axial loadnd is given by Eg. (8), while the second modification factor
A represents the influence of the aspect ratio (shear Ispalivided by column deptty) and is given
by Eq. (9.

xk=1-1.07v (8)

A=5.37-1.59 mir{ 2%} (9)

Hence, ifyuss IS the shear distortion at onset of stirrup yielding derived bytrtiss analogy

approach, it is proposed herein thgis given by the following equation.

yst:K'ﬂ“'ytruss (10)



The regression analyses are based on the experimental results for 16 R/C coabieng)(TThe
experimental results involved average shear distortions along the length of purergiveh R/C
specimens or flexure-shear critical elements failing in shear immediatehflekural yielding. The
values followed by asterisk were derived indirectly, using the respective preatsharibed in [16]
The meanmedian and coefficient of variation of the ratios of the experimental over gdicped
values are @9, 0.97 and 0.19 respectively. The coefficient of determinatfis ®82.

Experimental studiegl, 24] have shown that R/C members critical in shear do not lose
immediately their lateral strength after yielding of transversgaement. Tis observation leads to
the conclusion that shear strajncorresponding to onset of shear failure may considerably exgeed
For this reason, a horizontal branch is added to the envelapeu¥ie, fory>ys, to model response
after yielding of transverse reinforcement.

On the basis of experimental results for 25 R/C specimens (Tabldirlg fai shear, the writers
have developed an empirical formula correlatjpgwith the level of the applied axial load, the
amount of transverse reinforcement and the member shear-spanflati€onservatively, it g
assumed in this study that shear failure coincides with the onset of signifitaratl strength
degradation. The experimental results involved either measured shear strains ainttye ofi the
plastic hinge regions for flexure-shear critical R/C members or average disieations along the
length of pure shear critical R/C specimens or members failing in sheadiataly after flexural
yielding. For the average shear distortions along the member length, the vdlowsdfidoy an
asterisk in Table 1 were derived indirectly, using the respective procddsiceibed in [16]. The

proposed relationship is

Vo=h Ao Aa ¥ =7 (11.2)
4 =1.0- 2.5 mir( 0.40;) (11.2)
J,=min(2.5L, h)* (11.3)

2, =0.31+ 17.8 mirfe, ,0.0F (11.4)
0. = /;ngf?N (11.5)

According to Eqg. (11), the difference betwegnandys increases as the amount of transverse
reinforcement and shear span ratio increase, and the normalised axial load sle@ieagaean,
median, and coefficient of variation of the ratios of the experimental ogeprddicted values are
1.00, 1.00 and 0.34. The coefficient of determinatibisfR.96.

It is important to note that the empirical formulae proposed herein fopbatidy, are based on a
set of data (Table 1) satisfying the following criterid:11<L¢/h<3.91; 0<v<0.61 and
0.47%»,<8.13%; hence, they can only be applied with confidence for RC members thattkatisfy

aforementioned criteria.



4.2 \/-y envelope curve including shear-flexure interaction

Several studies [5-7] have demonstrated that shear strength degrades due to disintéghnation o
plastic hinge zones caused by inelastic flexural deformations. Furthermore, it drasshmvn
experimentally [1-4] that shear distortions in the plastic hinge regions maasgecrapidly ‘{shear-
flexural yielding’) subsequent to flexural yielding, despite the fact that shear force demand remains
almost constant, as it is controlled by flexural yielding. The combination of these pendm
defined in this study as shear-flexure interaction effect. It is shown here that bogseophenomena
can be represented simultaneously by combining the shear strength model of Priestlg] eind
the truss analogy approach [23].

Fig. 5a illustrates the variation of the force carried by shear resisting maoisgcioncret®, and
trussVy) in the plastic hinge region of a single R/C column following Phiestley et al. [5] shear
strength approach (for clarity of the figure, the contribution of da@l is lumped intd/,). It can be
seen that, immediately after shear cracking, the truss contribdtiorcreases, to meet additional
shear force demamt¥. This is the case even after flexural yielding and beipreaches the value of
3. However, aften,=3, Vs increases to accommodate bdthand additional deterioration &; this
means that, for the sami’, V; increases now at a higher rate. @rreaching the value of 15, the
concrete shear resisting mechaniggreaches its residual strength and consequéftiycreases
again solely due ta7.

Since the shear strajgsubsequent to shear cracking is correlated Mgtia Eq. (7), variation of
7s With increasingy, can be easily extracted (Fig. 5b). From this figure, it can be seen that
immediately after flexural yieldings increases at a slow rate with increasipgNevertheless, after
u,=3, increase ofs accelerates. Aftar,=7, ys continues to increase more rapidly than whgrs but
less rapidly than whesx ,<7. Finally, whernu,>15, ys continues to increase, but at the slow rate that
initiated when p,<3.

Generalising the above, the shear strain incremtgraused by a shear force increméfit when
shear-flexure interaction effect is taken into account, can be estimated froml Eqvi{@red 7 is the
increment of the shear force resisted by the truss mechanism caused by thenhofetme applied
shear forcelV and the additional drop of the shear capacity of the concrete shear resisting mechanism
AdegV.

A, AV, AV +Adeq/,
7:=GA A

If GA« is the tangent stiffness of the shear primary curve including shear-flexaraction

(11)

effect, then it yields the same increment of shear distortibnsonly for the applied shear force
incrementd) (without4degl), as illustrated in Fig. 6. Hence
AV
- GA,

Ay, (12)



Combining Egs. (11) and (12) and solving @4, the following equation is obtagal

AV

GAf=———
P AV +AdegV,

GA (13)

Eq. (13) shows thaBA.s can only be either equal to, or smaller thady. Equality holds only
when the degradation of the concrete shear resisting mechanisms is negligible. Mdrépwedsar
that GA.s becomes a function of the shear force increm#nt But if it is to be applied in the
analytical procedure? will be influenced byGA.; as well, since the latter will affect the flexibility
matrix of the element (as shown in 84.4). To resolve this issue, an iterativeécahabtteme, applied
at the respective load step of nonlinear analysis, is proposed herein.

According to this schemeapn initial value ofGAssis assumed. Based on this shear rigidity, shear
force incrementd)” and additional drop of the concrete shear resisting mechanism cap@gjty.
for the examined member are evaluated. By applying these values in Eq. (13), auseof @& is
calculated. The iterative procedure terminates, when the val@a.p€onverge with a pre-specified
tolerance. Applying this procedure, it was found that numerical convergenaadst aimmediate.
The number of iterations may increase as the influence of shear deformations on Béibéity
increases, but the additional computational cost is justified by the significdncaloolating

accurately shear response in this case.

4.3 V-y hysteretic model

Shear hysteresis is characterised by significant pinching effect, stiffnessearyilstteterioration.
This behaviour is modelled using the proposals by Ozcebe and Saatcioglu [4] aswitheséyeral
modifications and improvements. Althoughat hysteretic model was calibrated against experimental
results and was found to yield a reasonable match, it has not been designed iextht@ being
incorporated in a dynamic nonlinear analysis framework. With this in mind, the swvhitsre
proposed specific modifications regarding both the unloading and reloading bramahesart be

found in their previous publication [1.6

4.4 Shear spread inelasticity model

In 84.2, rapid increase of inelastic shear deformations inside plastic hinge regiobheehas
explained. Following gradual growth of plastic hinge regions, inelastic shaarsstend to expand
gradually from the member ends to the midspan. To capture this phenomenon, an innovative
approach is adopted herein, based on the concept of gradual spread inelasticity models.

More specifically, a shear spread inelasticity model is proposed, having the sfifness
distribution of Fig. 7c, where,, andaz, are the‘shear-flexuralield penetration” coefficients. These
coefficients specify the proportion of the element where “shear-flexural yielding” has developed,
triggered by flexural yielding as described in 8&ice “shear-flexural yielding’ develops inside

plastic hinge regions, it is reasonable to assume that



Ops =Qp 5 Ops =0p (14)

In Fig. 7¢c,GA, andGAg are the current shear rigidities of the inelastic regions at tihe Aand
B, respectively. These values can be derived from they \kysteretic relationships of the
corresponding end sections, where the skeleton curves are determined including shear-flexure
interaction effect GA¢ in 84.2), based on the inelastic curvature demand of the respective end of the
flexural sub-elementn the case of constant shear force examined here, the level of acting shear force
and the loading state (loading, unloading and reloading) are the same for all sedtiamshe
inelastic shear zones. Consequently, it can be assumed, with reasonable accur&®egrtbatfsess
distribution remains uniform within these regions.

Shear stiffnes§ Ay, occurs in the intermediate (elastic) part of the element. It can bendetdr
again by the A hysteretic model, but by adopting a primary curve without assigning shear-flexure
interaction effect, as described in 84.1. Similarly, it can be considered as umiftrenspecific part
of the element.

After determining the distribution @A along the R/C member at each step of the analysis and by
applying the principle of virtual work, the coefficients of the flexigilinatrix of the shear sub-
element are given by the following equation

f," = O Sl S (i,j=A,B) (15)
GA,-L GA, ‘L GA, -L

Based on the above, a dual coupling effect between the flexural and the shear subislement

achieved. This effect determines both the length and stiffness of the inetastic of the shear sub-
element allowing for constant monitoring of the gradual spread of inelastic sthaigs from the

member ends to the mid-span, with the minimum possible computational cost.

5 Anchorage slip sub-element

The bond-slip sub-element accounts for the fixed-end rotations which atise mterfaces of
adjacent R/C members due to bond deterioration and the ensuing slippage ohftreeraent
anchorage in the joint regions. The proposed model consists of two concentrated ratptiogal
located at the member-ends; the two (uncoupled) springs are connected by an iriGiidtelyr (Fig.
1e). Following this formulation, the coefficients of the bond-slip flexibilitytnimaF® are given by
Eq. (16), wheré,” andf; are the flexibilities of the concentrated rotational springs agiide A and
B respectively. These flexibilities depend on the moment - fixed end ro¢dtidn;,) envelope curve

and the model used to represent hysteretic behaviour of each rotational spring.

sl
Fsl — 1:A 0| (16)
0 f

The M4, skeleton curve is derived on the basis of a simplified procedure [34,35] assuming

uniform bond stress along different segments of the anchored rebar (Fig. 8). Thesetsegenthe
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elastic region L, the strain-hardening regionsland the pullout cone regiond The average elastic
bond strength 1, according to ACI 408 [36] is adopted here for the elastic region, while therigtt

bond 1y according to the CEB Model Code [37] is assumed to apply within the strain-hardening
region. In the pullout cone region, it is assumed that the acting bond is negligible.

For various levels of the applied end moment and using the resultspainiysis, the stress o
and straires of the reinforcing bar at the loaded end are first determined. Then, from equoildnd
applying the asimed bond distribution, variation of reinforcing bar stress 65(X) along the embedmen
length is defined as shown in Fig. 8b, wheyes the yield strength of steel anaglis the stress at the
end of the straight part of the rebar anchorage. Then, by assigning an appropridteicemsaterial
law for steel[38], strain distributiore(x) is determined, as shown in Fig. 8c, whgrandes, are the
steel strains at the onset of yielding and strain hardening, respectively,istite steel strain at the
end of the straight part of the anchorage. It is important to note that postgididearity of the
material constitutive law, i.e. strain hardening, should be taken into accountséeitaaffects
significantly the final results [18

Onceey(x) is determined, slip of the reinforcemeigf, can be calculated by integration along th
anchorage length of the bar. In the case of hooked bars, local slip of the hook shexldigdheT his
can be evaluated by the force acting on the Wgld,-or,, whereA, is the area of the anchored bar,
and an appropriate hook force vs. hook slip relationship [39

Upon determination of dgp,, the respective fixed-end rotation can be calculated by Eq. (17), where
(d-xc) is the distance between the bar and the neutral axis. The enivelgpecurve constructed by
the various points of the afore-described methodology is then idealized liyearbiklationship for

the purposes of analysis.

5slip
(17)
d-x

After establishing the envelope curve, bond-slip hysteretic behaviour is detdriny adopting

6,

slip =

the respective phenomenological model of Saatcioglu and Alsiwiat4d@itional features have been
introduced by the writers to prevent numerical instabilities resultingeanniplementation of the

specific model in the framework of nonlinear analysis [18].

6 Correlationswith Experimental Results

The analytical model described in previous sections has been incorporated in thé fopteera
element program for inelastic damage analysis of R/C structures IDARC2D

(http://civil.eng.buffalo.edu/idarc2d50). In the following, the proposed beam-column model is

calibrated against experimental data from R/C column and frame specimens, whicipetbwtlear
failures after yielding in flexure. Validation is extended, whenever possible, to individuahdéfim

components in order to verify as thoroughly as feasible, all features of the model.
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6.1 R/C bridge pier specimen HS2 by Ranzo & Priestley (2001)

Ranzo & Priestley [33] tested three thin-vedlicircular hollow columns. Herein, the specimen
designated as HS2 is examined, which was designed to fail in shear after yreltkxgre. Its outer
diameter was 1524mm and wall thickness 139mm. The ratio of the column shear spasettidhe
outer diameter was equal to 2.5. The normalised applied compressive axialvdsad.05.
Longitudinal reinforcement ratio was 2.3% and the volumetric ratio of transveirs®ercement
0.35%. Concrete strength was 40MPa and vyield strengths of longitudinal and transverse
reinforcement were 450MPa and 635MPa, respectively. Lateral actions were apfitiecpush and
pull direction of the column for increasing levels of displacement ductilityith three repeated
cycles at each,. For this specimen, initial shear strength is predicted equal to 1930kN.

Fig. 9 shows the experimental and analytical lateral load vs. total displacerspohse of the
specimen. The analytical model captures accurately the initial stiffatsslIstrength and hysteretic
response of the R/C member. More importantly, the proposed model is able to predict reasonably well
the tip displacement at which onset of shear failure and consequent strength degradation is developed

This can be seen also in Fig. 10a, which compares shear strength given by Eq. (6) astiesting
force as a function of the end section curvature demand. Initially, sheartga@saeieds significantly
shear demand. However, due to inelastic curvature development, at the end of the simedysis
demand reaches shear capacity marking the onset of stirrup yielding. Ittfs neporting that
maximum curvatures predicted by the analytical model (0.019rad/m and 0.025rausitive and
negative bending respectively) correlate sufficiently with the measured riigs the plastic hinge
region (approx. 0.02rad/m) [B3

Fig. 10b illustrates shear strain distribution of the R/C column as predictibe Ipyoposed shear
sub-element for various levels of increasing For u,=1.0, shear strains remain constant along the
height of the member. After,>1.5, a double effect is noted: First, shear strains in the inelastic zone
increase more rapidly and tend to differ substantially from the one® imtdrmediate part of the
element due to shear-flexure interaction effect and consequent yielding obtemnssinforcement.
Second, the length of the inelastic zone increases following expansion of flexural yieldandg the
mid-span. By this combined effect, gradual spread of inelastic shear deformatamgropriately
captured by the model.

Figs 11a and 11b present shear hysteretic response resulting by the proposed model inside and
outside the plastic hinge region. It can be seen that while acting sheains the same in both parts
of the element, shear strains become significantly higher inside the inelastic At the onset of
shear failure, occurringnside the plastic hinge, shear deformations are predicted equal to 0.3% and
1.3% outside and inside the inelastic zone, respectively. Both of these ar@uasgood agreement

with the experimental results (approx. 0.3% and 1.2% respectively) [33
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6.2 R/C beam specimen R5 by Ma et al. (1976)

Ma et al. [1] tested nine cantilever beams, representing half scale modeldaie¢hatory of a
20-storey ductile moment-resisting R/C office building. Herein, the specimen desigueR5 is
examined. Shear span ratio was equal to 2.41. Longitudinal reinforcement consisted ofd4op an
bottom 19mm bars, while volumetric ratio of transverse reinforcementsetagqual to 0.31%.
Concrete strength was 31.5MPa and yield strengths of longitudinal and transverseensiefd were
452MPa and 413MPa, respectively. The specimen was subjected to a cyclic concentratethéoad a
free end. For this specimen, initial shear strength is predicted equal to 314kN.

Fig. 12 presents lateral load vs. lateral displacement response as derivepimptised model
and as recorded experimentally. It can be seen that the analytical model repmadticintly the
experimental initial stiffness, lateral load capacity, and unloading stifffRedeading stiffness is
predicted well during the early phases of inelastic response. Howeverspdaceinent demand
increases, the pinching effect is underestimated leading to a small owatiest of the energy
dissipation capacity of the member. It is pointed out that the displacemehatievhich shear failure
is predicted by the analytical model correlates sufficiently well with ahset of serious shear
strength degradation in the experimental respangsety.

Fig. 13a compares shear strength given by Eq. (6) and acting shear force d®a &firtbe end
section curvature demand. Initially, shear capacity exceeds significantly shear demaadei due
to inelastic curvature development, at the end of the analysis shear demand reachespabiyar
marking the onset of stirrup yielding. Maximum curvature demand is pretlicted (experiment
0.11rad/m and prediction 0.12rad/m).

Fig. 13b shows moment vs. fixed-end rotation hysteretic response caused by anchorage slippage as
derived by the analytical model described in this study. Maximum rotation isciee@diqual to
0.007rad in both directions. This hysteretic relationship is not repor{édi fior the specimen under
examination.

Fig. 13c illustrates shear hysteretic response inside the plastic hinge esgpredicted by the
analytical model. It is obvious that this relationship is charactetisedtense pinching effect
following the hysteretic model proposed in [4]. The predicted behaviour matches aljethmate
experimental response with slight underestimation of the observed pinching[&fethis is the
reason for underestimating pinching effect in the total displacement response (Figh#a)
deformation at onset of shear failure is calculated equal to 0.043 and @senagreement with the
experimental evidence as shown in Table 1.

In Fig. 13c, Vy envelope is also included without considering shear-flexure interaction. Initially,
the initial envelope determines shear hysteretic response. Nevertheless, as gge8, ahear
deformations increase more rapidly, due to interaction with flexure, and shearebigsseparates

from the skeleton curve. After stirrup yielding, occurring fed%., shear rigidity becomes close to
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zero and V¥ skeleton curve including shear-flexure interaction continues in parallel with thal init
envelope.

In Fig. 131, variation of displacement components with p, is presented as derived by the proposed
model and experimental recordings. It carsbenthat the analytical and experimental displacement
patterns are in close agreement. Although shear demand after flexural yieldingsreximadst
constant, analytically derived shear displacement increases significantly doeetimg interaction
with flexure and subsequent stirrup yielding.

6.3 R/C frame specimen by Duong et al. (2007)
This single-bay, two-storey frame (Fig.d)dwas tested by Duong et al. [41] at University of

Toronto. The frame was subjected to a single loading cycle. During the experimenglddatewas
applied to the second storey beam in a displacement controlled mode, while two constamadsial |
were applied throughout the testing procedure to simulate the axial load efffepfseo storeys (Fig.
14a). During loading sequence, the two beams of the frame experienced sigsiiiean damage
(close to shear failure) following flexural yielding at their ends [41].

The finite element model applied herein for the inelastic cyclic static @saifthe frame is also
shown in Fig. (14a). It consists of 4 column elements and 2 beam elements (one fofwractaod
beam). Hence, the number of finite elements applied is miniemabring high computational
efficiency of the numerical model. The columns are assumed to be fixed at the foundation. Rigid arms
are employed to model the joints of the frame.

Figs (14b), (14c) compare the experimental and analytical top displacement andchémse s
responses obtained by three different versions of the proposed iauie. F includes only flexural
deformationsModel FB combines flexural and anchorage slip deformations. Finsligde FSB,
which is the one proposed in this study, incorporates all three types of deforn(i¢xme, shear,
anchorage slip).

As shown in Fig. (14b), model FSB follows closely the experimental behaviour fevemntire
range of response. Slight underestimation of the frame lateral stiffnesspiake at the early stages
of loading. This is due to the fact that flexural response prior to cracking is not modelledsitudiyi.
However, the following gradual decrease of frame stiffness is sufficieapifured by the analytical
model. At maximum displacement, the analytical model slightly overestimatesl latrength
(having a calculatetb-observed ratio of 1.10 in both directions). Furthermore, the analytical model
predicts correctly that both beams develop shear failures after yielding in flexure.

On the other hand, models F and FB considerably overestimate both stiffneseagth,sand
consequently the ability of the examined frame to dissipate hysteretic energheFomodel, the
calculatedto-observed ratio for strength is 1.30 and 1.23, in the positive and negativéodirect
respectively. The prediction is improved with inclusion of anchorage slip efffigtte FB model and

the aforementioned ratios become 1.19 and 1.22.
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Fig. (14e) presents the pushover curves obtained by the different finite element mhadelshe
seen that models F and FB overestimate stiffness, strength, and displacement depheitend of
the analysis, the F and FB models overestimate strength by 38% and 37% respectivedyndhe s
models overestimate displacement capacity by 52% and 358% accordingly. Both modelsustyon
predict flexural failure at the base of the frame.

The FSB model predicts correctly that shear failure is developed afteingiald flexure.
However, inclusion of shear-flexure interaction effect and degradation of shesgth with
curvature ductility demand affects substantially the displacement capacity prégictes analytical
model. When shear-flexure interaction is considered, ultimate displacement capégiipd to be
46mm, which is very close to the 44.7mm recorded experimentally. On thehatheéy if shear-
flexure interaction is ignored, displacement capacity is overestimated by 228%.

Finally, Figs (14e) and (14f) present shear force vs. shear straindsysti@ops predicted by the
FSB analytical model inside and outside the plastic hinge regions fot #teréy beam of the frame
under cyclic loading. It can be seen that, due to shear-flexure interaction effect ampghennserrup
yielding, shear strains are predicted significantly higher inside thaideute plastic hinges (1.26%

instead of 0.53%), while shear force remains constant along this RC member.

6.4 R/C frame specimen 1 by Elwood & Moehle (2008)

This half-scale frame specimen was constructed and tested on the shakingttebldraversity
of California, Berkeley 42]. It comprised three columns interconnected at the top by a 1.5m wide
beam and supported at the bottom on footings (Fig. 15a). The columns supported a total mass of 31t.

To represent R/C columns typical of 1960s construction in the Western United Statesntral
column was constructed with light transverse reinforcement havihgd@ks. The outside columns
were detailed with closely spaced spiral reinforcement to ensure ductilesesaod to provide
support for gravity loads after shear failure of the central column.

The specimen was subjected to one horizontal component of the ground motion recorded at Vifia
del Mar during the 1985 Chile earthquake (SE32 component). The normalised axial kb&d in
central column was 0.10. During testing, the central column experienced a lossralf l@ad
capacity, due to apparent shear failure at its top, during a negative displacemientatcy
approximately 17.6sec [42

The finite element model applied herein for the inelastic response-historgiaraflyhe frame is
shown in Fig. (15a). It consists of 3 column elements and 2 beam elements (one for reaein) me
Hence, the number of finite elements required is minieraliring low computational cast

The columns are assumed to be fixed at the foundation. Rigid arms are employedetdha
joints of the frame. Rayleigh model is used for viscous damping. The equivaentiyidamping is
set equal to 2% of critical for the fundamental vibration mode. The mass is assumed lumped at the top

of the frame. In the following, for the calculation of the central column shiangsh, the
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contribution of the stirrups is reduced by half to take into account theilequate anchorage {90
hooks). Hence, initial shear strength is determined equal to 115kN for this member.

Figs (15b), (15c) compare the experimental and analytical top displacement anchémse s
respectively respondastories between t=10sec and onset of shear failure. The first 10 seconds are
omitted so that the critical duration of response can be more clearly obdelgeevident that the
analytical model predicts closely the experimental response up to the onset dastesiof the
central column.

The same conclusion can be drawn in Fig. (15d), which presents the comparison bletween t
experimental and analytical hysteresis loops for the frame, up to onset of dlnear ltais apparent
that the analytical model captures satisfactorily the initial framiasi§, maximum shear capacity
and the displacement corresponding to onset of shear failure.

Finally, Fig. (15e) compares the pushover curves obtained by four different versions of the
proposed finite element model and the experimental response. The comparison is shown in the
negative displacement direction because in this direction shear failure was detected.

Model F, which tackles only flexural deformations, significantly ovareges initial frame
stiffness and underestimates displacement at failure. In particular, dkisl predicts erroneously
flexural failure at the base of the central column at a 20mm lateral displacement.

Model FSwhich combines flexure and shear, predicts correctly the development of sheardilur
the top of central column. However, it significantly overestimates inititdral stiffness and
underestimates displacement capacity at onset of shear failure (27mm instead of 51mm).

Model FB, which includes flexural and anchorage slip deformations, provides betteatestim
than the two previous models. However, it overestimates initial stiffnems kafse shear exceeds
150kN (onset of shear cracking) and underestimates considerably displacement at tatesdl of
failure (37mm instead of 51mm). Moreover, a flexural failure at the base of tlralaalumn is
falsely predicted.

The best estimations are provided by the FSB model which incorporates abtylsfsrmations.
Envelope stiffness is closely captured until maximum response. Additiott@iBymodel predicts
correctly a shear failure at the top of the central column at a 47mm displacement swehiith close

to the experimental value.

7 Summary and Conclusions

A new beam-column finite element for inelastic analysis of R/C planar frame stsictas
introduced and verified against experimental results. The model is of the phenomenttpgieeald
is developed using the flexibility approach. It consists of three indivilitalelements connected in

series and accounting for member flexural, shear, and anchorage slip response.
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The flexural sub-element is used for modelling flexural behaviour before terdyefiding of
longitudinal reinforcement. By adopting a spread inelasticity formulatiois, able to account for
variation of section stiffness along the R/C member.

Shear flexibility is modelled explicitly via the shear sub-element. This sub-eleseapable of
reproducing gradual spread of inelastic shear deformations, developed in plastic mowgethef
member ends to the midspan, a feature that cannot be found in any of the exastetg. mhis is
achieved by determining the length and stiffness of its inelastic zones thmodgal interaction
procedure with the flexural sub-element.

Shear stiffness is defined by the respective primary curve and the emipystatetic model
described in [4]. Initially, shear skeleton response is modelled without d$&earefinteraction. This
envelope curve is appropriate for modelling shear response outside the plastic hinge Heg@ns.
new empirical formulae are proposed for evaluating shear distortion at orstegtugf yielding and
shear failure. Then, by developing a new analytical procedure, which combines thanalogg/
approach and the shear strength model by Priestley et al. [5], theawélope within plastic hinge
regions is determined. In this way, shear strength degradation and rapid increasast€ islebar
deformations following flexural yielding are modelled simultaneously and in a rational manner.

Fixed-end rotations caused by anchorage slippage are modelled by nonlinear rotational springs.
M-0gji, Skeleton curve is determined by a simplified procedure assuming constant, uniform bond stress
distribution along the elastic and inelastic part of the anchorage length. &ldstgmlinearity of the
constitutive law for steel, i.e. strain hardening, is taken into considerdtichorage slip hysteretic
relationship is modellefbllowing the phenomenological approach described ih [40

The proposed analytical modebs implemented in the finite element program IDARC and was
validated against experimental results from R/C column specimens failing in sliEsrquent to
yielding in flexure. Model calibratiorwas not restricted to total response parameters, but also
encompassed individual deformation and displacement components. In all cases, safieiement
was achieved with the experimental observations.

The developed beam-column model represents a complete proposal for modelling inelastic
response of R/C members since all deformations mechanisms (flexure, shear, ancipyrageisl|
as their interaction and gradual development, are duly taken into considefdtiba same time, the
numerical formulation remains robust and requires minimum computationat. dffence, it is
believed that the proposed finite element constitutes an efficient analyticidrteslsmic assessment

of R/C structures.
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Figure 1. Proposed finite element model: a) geometry of R/C member; b) beam-column finite
element with rigid arms; c) flexural sub-element; d) shear sub-element, e) agetslip sub-
element.
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Figure 4: Relationship between curvature ductility demand and strength of concrete shear resisting
mechanisms.
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Figure5: Variation of a) shear resisting mechanisms; b) shear strain after shear cradking wi
curvature ductility demand in plastic hinge regions of R/C members.
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Figure 14: a) Duong et al. frame specimen layout and corresponding finite element nimdel; (
base shear vs. top displacement prediction by FSB model; c) base shear vs. tyerdesp
predictions by F and FB models; d) pushover curves from different finite elementsmeydist
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storey beam shear force vs. shear strain response inside plastic hingestéréiysbeam shear force
vs. shear strain response outside plastic hinges.
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Ref.

Specimen Lgh v Wy Vst Yu
(%) (%0) (%0)
Experiment Prediction Experiment Prediction
(1] RS 241 0.00 8.03 4.1 400 430
1] R6 391 0.00 8.13 3.4 38.0 37.2
[4] Ul 2.86 0.00 3.22 3.6 21.1 20.1
(5] R3A 2.00 0.06 1.15 3.3 3.7 3.3 6.4
5] C5A 2.00 0.06 0.74 5.4 3.7 5.4 5.6
[25] X2 150 0.40 0.49 27 2.9 2.7 2.9
[26] 2CLD12 322 0.15 3.93 27 3.0 14.0 11.8
[26] 2CHD12 3.22 061 3.93 1.0 1.3 3.0 1.3
[26] 2CLD12M  3.22 0.15 3.93 3.3 3.0 9.0 11.8
[27] OA2 1.25 0.18 1.70 4.6 4.3 4.6 4.3
[28] Ccus 1.11  0.16 3.28 9.0 75 9.0 75
[28] 2CUS 1.11  0.27 2.72 7.1 6.8 7.0 6.8
[29] No 1-1 1.50 0.10 2.08 51 6.2 5.1 7.1
[24] Sc9 1.33  0.00 1.92 55 6.9 55 8.0
[24] sc3 2.67 0.00 1.75 34 2.9 12.9 11.4
[30] SBV1 1.67 0.00 3.07 7.7 18.0 18.5
[30] SBV2 2.20 0.00 3.07 5.3 22.0 21.9
[30] SBV3 250 0.00 3.07 3.9 26.0 21.0
[31] No. 1 2.00 0.20 2.41 2.9 3.8 2.9 5.7
[31] No. 3 2.00 0.30 1.20 33 3.3 3.3 3.3
[31] No. 4 2.00 0.35 2.41 25 3.1 25 3.1
[32] SL1 2.00 0.04 0.47 3.7 3.2 3.7 45
[32] SL2 200 0.04 2.50 5.0 17.0 13.6
[33] HS2 250 0.05 0.84 5.0 12.0 12.6
[33] HS3 250 0.15 0.96 3.9 5.0 7.3

Table 1: Experimental and predicted values for yg and vy,
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