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Failure Risk and Quality Cost Management in Single versus Multiple Sourcing Decision 

ABSTRACT  

The advantage of multiple sourcing to protect against supplier failures arising from 

undependable products due to latent defects is examined using a model with non-linear external 

failure costs. Prior research has focused only on supplier failures arising from unreliable supply, 

such as late/insufficient/no delivery. I derive a closed-form characterization of the optimal 

production quota allocation for the LUX (Latent defect-Undependable product-eXternal failure) 

setting. The allocation determines the optimal supply base, with intuitive properties that hold 

under a mild requirement. The requirement includes the special case of equal procurement costs 

charged by suppliers but also allows unequal costs without any particular order. The key result of 

the paper is a necessary and sufficient condition determining whether single or multiple sourcing 

is optimal. Another condition is obtained to determine the exact size of the optimal supply base, 

provided the mild requirement holds. With minor modifications, the results also hold when a 

buyer-initiated procurement contract can be used to elicit private information on the suppliers’ 

unit variable production costs. (Keywords: Supplier selection, latent defects, quality cost, total 

cost of purchasing; JEL L22, L24, M11, M21, M40) 

INTRODUCTION  

Latent defects are flaws or weaknesses in product items that could not be discovered by 

reasonable inspection prior to the sale. They can result from design flaws, systematic 

manufacturing faults, or the like (Thirumalai and Sinha 2011). Undependable (or even unsafe) 

products due to latent defects can result in huge external failure costs caused by warranty repairs, 

product recalls, defect liability claims, reputation damage, loss of sale, customer confidence 

restoration efforts, etc (Nagar and Rajan 2001). For example, in 2000 Bridgestone/Firestone 

recalled 6.5 million tires that seemed to have an unusually high risk of tread failures 

(Bridgestone/Firestone 2000). Tires with this defect were linked to crashes killing 271 people and 

causing over 800 injuries (NHTSA 2001). Many of the tires were installed on Ford Motor’s 
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vehicles because Firestone is a long-term major supplier of Ford. To restore customer confidence, 

Ford later announced the replacement of about 13 million Firestone tires installed on Ford 

vehicles by non-Firestone brands (Bradsher 2001). This move ended the nearly century-long 

buyer-supplier relationship between Ford and Firestone (Hakim 2004).  

Although quality issues arising from latent defects are important, models analyzing the 

protection advantage of multiple sourcing have concentrated on supplier failures due to 

unreliably supply, such as late/insufficient/no delivery caused by machine breakdowns, labor 

strikes, natural disasters, and financial defaults (e.g., Federgruen and Yang 2008, 2009, Babich, 

Burnetas, and Ritchken 2007, Burke, Carrillo, and Vakharia 2007, Dada, Petruzzi, and Schwarz 

2007, and others reviewed in Snyder et al 2010). In contrast, I use a latent-defect model with 

non-linear external failure costs to capture the sort of supplier failure risks relevant to product 

dependability issues. To my knowledge, the model is the first of its kind in the context of a LUX 

(Latent defect-Undependable product-eXternal failure) setting.  

The key result of this paper is a condition determining whether single or multiple sourcing is 

optimal. By analyzing the advantage of multiple sourcing to protect against the failure risk 

arising in a LUX setting, this paper contributes to the literature on multiple sourcing (e.g., 

Benjaafar et al. 2007 and Inderst 2008), as well as on supplier selection (e.g., Ittner et al. 1999) 

and quality management (e.g., Hwang et al. 2006, Balachandran and Radhakrishnan 2005, 

Baiman et al. 2000, Ittner et al. 2001). My model highlights the sourcing decision as one about 

selecting the right mix of suppliers to balance between risk diversification and quality cost 

reduction. In contrast, prior studies on multiple sourcing concern mainly the number of suppliers 

that determines the level of competition, with or without externalities among units or suppliers 

(e.g., Baiman and Netessine 2004 and Klotz and Chatterjee 1995; see also Elmaghraby 2000).  

This paper adds a new perspective to the debate on single versus multiple sourcing. Deming 

(1986) argues that a buying company should take quality costs into consideration and choose 

single sourcing by selecting a high-quality supplier that minimizes total cost of sourcing. The 
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results of this paper suggest that in minimizing total cost of sourcing, one might need to use 

multiple sourcing and include suppliers of lower quality.  

A QUALITY-COST MODEL OF SUPPLY BASE COMPOSITION 

Consider a setting with a single buyer and n ≥ 2 available suppliers, indexed by i ∈ N = {1, 2, …, 

n}. The buyer designs a finished product, owns the brand, and operates as a make-to-order 

manufacturer. Each unit of the product needs a component part to make (e.g., the accelerator 

pedal of a vehicle). The manufacturing of the part is outsourced to the suppliers. Other than this, 

the rest of the product is manufactured by the buyer. For expositional simplicity, I normalize the 

buyer’s fixed and marginal costs of production to zero. To focus on the component part in 

concern without being complicated by other details like the buyer’s assembly and other parts, I 

assume that the production quality of the buyer is virtually perfect and the designs of the rest of 

the product are foolproof. In other words, if a product failure occurs, it must be due to the failure 

of the component part in concern.  

To eliminate any inherent bias toward/against multiple sourcing arising from scale 

diseconomies/economies, I assume the suppliers have constant marginal costs of production and 

no fixed costs. Let ci > 0 denote the price quotation provided by supplier i for each unit of the 

part ordered from it. My analysis focuses on the production quota allocation Q = (Qi)i∈N to 

outsource the part production given the price quotations provided to the buyer, where Qi ≥ 0 is 

the quota for supplier i. Nesting the model into an extended setting to analyze the strategic 

pricing of the suppliers is left for future research.  

For simplicity, I assume that if a latent defect exists in a particular unit of the part, the defect 

will surely reveal itself through a field failure. The amount of defective parts in Qi, denoted by 

Di, depends on supplier i’s production quality (affected by a parameter δi), as well as the buyer’s 

design quality (affected by a parameter µ). Specifically, defects occur in a manner following 

stochastically proportional yield loss, i.e., Di = RiδiQi, where 0 < δi ≤ 1. The random variables 

Ri’s are independently and identically distributed with mean E(Ri) = µ, where 0 < µ  ≤ µ̄ << 1, 
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and variance var(Ri) = σ2 > 0. Intuitively, Riδi may be referred to as the random yield loss, 

although for convenience I sometimes use this to refer to Ri alone. I refer to 1−δi as the quality-

based scoring index of supplier i, or simply its quality level. For analytical convenience, assume 

δi’s are distinct. Without loss of generality, I suppose δ1 < δ2 < … <δn so that supplier 1 has the 

highest quality level, and other suppliers are ordered accordingly.  

Self-reported information collected from the suppliers may be used to determine the 

parameters δi’s. Such potentially biased information can be crossed-checked with independent 

observations from other sources, e.g., direct visits at suppliers’ production facilities. Therefore, 

the δi’s should be interpreted as the ultimate figures used after adjusting for strategic concerns not 

explicitly modeled here, rather than self-reported figures taken at face value. 

Let Q > 0 denote the total quantity of the finished product ordered by and sold to the end 

customers of the buyer. By definition, a part, or a finished product, with a latent defect cannot be 

discovered by inspection prior to the sale. Moreover, inventory holding issues are suppressed to 

focus on other economic forces driving the sourcing decision. Thus, Q is also the total quantity of 

the part ordered by the buyer and delivered by the suppliers. Feasibility requires n

i 1=
∑ Qi = Q.   

Denote by D = n

i 1=
∑ Di the total amount of defective products sold. Each customer with a 

defective product will experience a field failure and take the product back for warranty repair. 

Knowing that the product has a defective part, the buyer finds it in its best interest to apply a 

costly remedy to address the problem. For simplicity, I assume the fix is effective: after the 

warranty repair, the product will not fail again.  

Suppose that all warranty related costs are proportional to the amount of products returned for 

repair, i.e., ωD, where ω > 0. Moreover, the defective products will lead to customer 

dissatisfaction and eventually some additional external failure costs borne by the buyer. For 

tractability, a quadratic other external failure cost function is assumed: CE(D) = cED
2, where cE > 

0. Similar to the Taguchi (1990) quality loss function, the quadratic cost captures the intuition 

that as the number of field failures grows, mass media coverage is increasingly more likely, and 
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the resulting reputation damage is increasingly more detrimental. Because the increasing 

marginal cost of CE is with respect to D (i.e., the sum of the Di’s), not its individual constituents, 

the quadratic functional form does not by itself favor multiple sourcing.  

Summarized below is the event sequence of the model (with table 1 summarizing the 

notations used):  

1.  The suppliers provide price quotations on the per-unit procurement costs ci’s they will charge 

to the buyer.   

2.  The buyer outsources the production of the component part to the suppliers, with a production 

quota Qi allocated to supplier i. 

3.  Suppliers manufacture the parts according to the allocated quotas. The ordered amounts, Qi’s, 

are delivered to the buyer. Out of the amount Qi, Di = RiδiQi are defective parts. (The values of 

Di’s are unobservable to the buyer until later.) 

4.  The buyer uses the parts to manufacture the finished products and sells them to end customers.  

5.  Customers who purchased the D = n

i 1=
∑ Di units of defective products eventually experience 

field failures and return the products for warranty repair. The values of Di’s become known to 

the buyer. The buyer incurs warranty related expenses of ωD and suffers reputation damage 

equivalent to a dollar cost of CE(D) = cED
2.  

OPTIMAL QUOTA ALLOCATION: SINGLE VERSUS MULTIPLE SOURCING 

The buyer’s problem is to choose a production quota allocation to minimize the expected total 

cost of sourcing, i.e., the sum of the procurement cost n

i 1=
∑ ciQi and the expected total external 

failure cost E[ωD + cED
2] = ωµ[ n

i 1=
∑ δiQi] + cEµ

2[ n

i 1=
∑ δiQi]

2 + cEσ
2[ n

i 1=
∑ δi

2Qi
2] (with the 

derivation provided in an appendix available upon request). To simplify the expression of this 

sum, I define the following notations: η ≡ (µ/σ)2 and si ≡ (ci+ωµδi)/cEσ
2. The parameter η is the 

squared standardized mean of the “random yield loss” Ri, which means η−1 is the squared 

coefficient of variation. The parameter si is a ratio representing the relative unimportance of the 

quadratic other external failure cost, characterized by cE, in constituting the buyer’s expected total 
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cost. With these notations, the expected total cost of sourcing can be expressed as  

 C(Q; s) ≡ cEσ
2[ n

i 1=
∑ siQi + η( n

i 1=
∑ δiQi)

2 + n

i 1=
∑ δi

2Qi
2],  (1) 

where s = (si)i∈N. Clearly, C(Q; s) is strictly convex in Q and linear in s.  

The optimization program below formally summarizes the buyer’s sourcing problem: 

[SB]      Min
 
i

Q

 C(Q; s) 

subject to the quota constraint QC:  
n

i 1=
∑ Qi = Q  

with non-negative Qi’s. The choice of the production quotas Qi’s indirectly determines the supply base 

B = { i∈N | Qi > 0 }, i.e., the set of suppliers selected by the buyer. Let b denote the size of the supply 

base, i.e., the number of selected suppliers. Whether multiple sourcing (b ≥ 2) has advantages over 

single sourcing (b = 1), or the other way around, depends on the optimal choice of Qi’s and the 

resulting size of B. The following result tells us when the protection advantage of multiple sourcing 

may fail to exist. (Proofs of the results are provided in an appendix available upon request.)  

PROPOSITION 1 (CONDITIONS FOR NON-EXISTENCE OF PROTECTION ADVANTAGE OF 

MULTIPLE SOURCING):  Suppose the ascending ranking of the suppliers based on si also has 

supplier 1 ranked highest. Or, alternatively, suppose that for any distinct j and k with (δk – δj)(sk 

– sj) ≤ 0,  

 (sj – sk)/(δk – δj) < 2ηδ1Q.  (2) 

Then multiple sourcing has no advantage over single sourcing if one of the following holds: 

(a) The variance of the “random yield loss” is negligible, i.e., σ2 → 0; 

(b) The marginal other external failure cost is negligible, i.e., cE → 0. 

The result of this proposition needs one of two preconditions: either that both the si-based and δi-

based rankings have supplier 1 ranked highest, or that whenever they differ in ranking suppliers j 

and k, the cardinal difference sj – sk, relative to δk – δj, is not too large. When one of these 

preconditions holds, the reason for multiple sourcing to be advantageous comes solely from the 

protection against supplier failure risk due to latent defects. Multiple sourcing becomes 

unattractive if there is little risk to protect against, or the benefit (i.e., external failure cost saved) 
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from the protection is tiny.  

Below I will characterize the unique optimal production quota allocation for the buyer’s 

sourcing problem, identify some intuitive features of the allocation, and derive conditions for 

determining the exact size of the optimal supply base and whether single or multiple sourcing is 

optimal. These results are stated in terms of the quality-adjusted cost-based scoring index 

defined as follows: 

.
)2(

)(
2

E

*

E*








 ++
≡

σ

µδµω

c

Wcc
WS

ii

i
 (3) 

It will be clear shortly that the µW* in the index is simply the expected number of external 

failures given the optimally allocated production quotas.  

If suppliers’ qualities are nearly identical (i.e., δi’s are almost the same), the ranking by Si(W
*) 

is not much different from that by ci. Alternatively, if production costs are equal, Si(W
*) and δ i 

give the same ranking. Even when the costs are unequal, the ranking by Si(W
*) and by δ i can still 

be the same, provided ci’s are “not too unequal.” Specifically, this means  

.)2(max 1E

1

1
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ii
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−

−

−
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In words, the condition requires that the cost saving from using a lower-quality supplier is not too 

attractive given the loss in quality. 

The first major result below characterizes the optimal quota allocation without imposing the 

condition of “not too unequal” costs. Subsequently, it is added to put more structure on the 

optimal quota allocation.   

PROPOSITION 2 (OPTIMAL QUOTA ALLOCATION):  A quantity vector Q* = (Qi
*)i∈N is the unique 

optimal quota allocation for the buyer’s sourcing problem if and only if for some θ* > 0, the 

following marginal conditions are satisfied:  








 −
≥

2

**

*

2

)(

i

i

i

WS
Q

δ

θ
    for all i ∈ N (5) 

with the equality holding for all i’s in the supply base B* ≡ { i∈N | Qi
* > 0 }, where 
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is a quality-adjusted cost-based scoring index and θ* and W* are given by the following 

formulas:  

θ
* = 

(η−1+b*)[2Q+ *
B

∑ (sl/δl
2)] – [ *

B
∑ (1/δl)][ *

B
∑ (sl/δl)] 

(7)
(η−1+b*)[ *

B
∑ (1/δl

2)] – [ *
B

∑ (1/δl)]
2 

 

W* = 
[ *

B
∑ (1/δl)][2Q+ *

B
∑ (sl/δl

2)] – [ *
B

∑ (1/δl
2)][ *

B
∑ (sl/δl)] 

, (8)
2η[ (η−1+b*)[ *

B
∑ (1/δl

2)] – [ *
B

∑ (1/δl)]
2 ] 

with b* ≡ |B*| denoting the size of the supply base and W* = *
B

∑ δlQl
* = n

i 1=
∑ δiQi

*.  

This proposition provides a closed-form characterization of the unique optimal quota 

allocation Q*. Once the supply base B* is determined, the optimal quota for a selected supplier i 

can be computed with the simple formula 










 −
=

2

**

*

2

)(

i

i

i

WS
Q

δ

θ
 whose key constituents, θ* and W*, 

are given by another two formulas specified in the proposition. Although the procedure is 

straightforward, determining the optimal mix of suppliers to constitute the supply base can be 

prohibitively complex. This is especially so when the number of available suppliers is large. In a 

different but related setting, Federgruen and Yang (2008) show that a similar combinatorial 

optimization problem of supplier selection is NP-complete.  

However, suppose that the ranking of the suppliers by the quality-adjusted cost-based scoring 

index Si(W
*) = [ci + (ω+2cEµW*)µδi]/cEσ

2 is the same as that by δi. This would be the case if the 

differences among the costs ci’s are sufficiently small and the marginal other external failure cost 

cE, or the production target Q and hence W* = n

i 1=
∑ δiQi

*, is sufficiently large. Under such 

circumstances, the weight attached to the second component of Si(W
*) will be large enough to let 

δi dominate this scoring index. Consequently, the unique optimal quota allocation Q* will have 

some simple, intuitive properties.  

The first property is a positive association between the quality of a selected supplier and the 

quota assigned to it. That is to say, the higher the quality of a supplier (i.e., with a lower δi), the 

(weakly) larger the quota assigned to it. As a result, if a supplier is selected into the supply base, 
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any suppliers of higher quality will also be selected. These intuitive properties are defined below. 

DEFINITION 1:  The supply base B* of the optimal quota allocation Q
* is weakly quality-

driven if the selection of a supplier into the supply base implies also the selection of any higher-

quality suppliers, i.e., j ∈ B* ⇒ j–1 ∈ B* for all j ∈ B*\{1}, or equivalently B* = {1, 2, …, b*}. 

DEFINITION 2:  The supply base B* of the optimal quota allocation Q
* is strongly quality-

driven if the quota allocated to a supplier is at least as high as those allocated to any lower-

quality suppliers, i.e.,  Qj
* ≤ Qj−1

* for all j ∈ B*\{1}. 

Obviously, a strongly quality-driven B* is also (weakly) quality-driven but not necessarily the 

other way around. 

PROPOSITION 3 (QUALITY-DRIVEN SUPPLY BASE):  Suppose max i∈{2,…,n} [(ci−1 − ci)/(δi − δi−1)] 

≤ (ω + 2cEµδ1Q)µ. Then the supply base B* of the optimal quota allocation Q
* is strongly 

quality-driven. Consequently, it is also (weakly) quality-driven.  

Despite no fixed costs for selecting more suppliers, expanding the supply base can be costly 

because it means using suppliers of lower quality than the incumbent ones. The increase in this 

cost as lower-quality suppliers are included into the supply base eventually may limit its size. The 

next proposition provides a characterization of b*, the size of the optimal supply base. 

PROPOSITION 4 (CONDITION FOR DETERMINING THE SIZE OF THE OPTIMAL SUPPLY BASE):  

Suppose max i∈{2,…,n} [(ci−1 − ci)/(δi − δi−1)] ≤ (ω + 2cEµδ1Q)µ. Then the size of the (smallest) 

optimal supply base is j (i.e., b* = j), where j ∈ N\{n}, if and only if there exist positive θj and Wj 

defined by formulas (7) and (8) with B* substituted by Bj ≡ {1, …, j} such that     

[θj − Sj(Wj)]/2δj
2 > 0 ≥ [θj − Sj+1(Wj)]/2δj+1

2,  (9) 

where Si(W) ≡ [ci + (ω+2cEµW)µδi]/cEσ
2. If the condition above is not satisfied by any j< n, b*=n. 

Determining b* can be rather complex owing to the combinatorial nature of the supplier 

selection problem. However, if the precondition of the proposition holds, i.e., the differences 

between consecutive ci’s are “not too large,” then the problem can be reduced to simply 

comparing the n quality-driven supply bases, i.e., Bj ≡ {1, …, j} for j ∈ N. This comparison only 
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requires solving for each j a linear equation system with two unknowns, i.e., θj and Wj, and then 

search for the j with the lowest positive value of [θj − Sj(Wj)]/2δj
2. Such a problem takes much 

less time to solve than the original problem.  

Suppose one only needs to determine whether single sourcing or multiple sourcing is optimal, 

without actually identifying the size of the optimal supply base for the latter case. Then the 

problem can be simplified even without a precondition. Why? Proposition 2 already provides the 

necessary and sufficient condition for checking whether any given supply base B is optimal. For 

the case of single sourcing, there are only n such candidate supply bases to check. If none of them 

is optimal, the optimal arrangement must be multiple sourcing. To check whether a singleton 

supply base is optimal, it does not require the remaining unselected suppliers to be lined up in 

certain orders. One only needs to ensure that the buyer cannot be better off by shifting some 

quota away from a candidate single-sourcing supplier. This result is the next proposition. 

PROPOSITION 5 (NECESSARY AND SUFFICIENT CONDITION FOR SINGLE SOURCING TO BE 

OPTIMAL):  Let θ h
 ≡ sh + 2(1+η)Qδh

2 and W h ≡ δhQ for all h ∈ N. Then single sourcing is 

optimal if and only if there exists h ∈ N such that     

max i∈N\{h} [(θ
 h − Si(W

 h))/2δi
2] ≤ 0,  (10) 

where Si(W) ≡ [ci + (ω+2cEµW)µδi]/cEσ
2 = si + 2ηWδi and si ≡ (ci+ωµδi)/cEσ

2. The h satisfying the 

condition above is the only selected supplier of the single-sourcing supply base.  

In the condition of this proposition, there is no counterpart of the [θj − Sj(Wj)]/2δj
2 > 0 required 

in Proposition 4. The reason is that such a requirement is automatically satisfied for the case of 

single sourcing. Using the definitions of θ h
 and W h, it is easy to verify that [θ h − Sh(W

 h)]/2δh
2 = 

Q > 0, regardless of the h ∈ N in concern. The requirement of 0 ≥ [θj − Sj+1(Wj)]/2δj+1
2 in 

Proposition 4 as well as its precondition max i∈{2,…,n} [(ci−1 − ci)/(δi − δi−1)] ≤ ωµ + 2δ1QcEµ
2 are  

substituted by the condition that max i∈N\{h} [(θ
 h − Si(W

 h))/2δi
2] ≤ 0 for some h. While this looks 

more complicated, it does not impose any ordering on the ci’s or restrictions on their differences. 

In terms of computational complexity, checking the condition requires calculating n−1 values of 
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[(θ h − Si(W
 h))/2δi

2] for each h ∈ N. This amounts to a total of n(n−1) calculations, a more 

complicated task but still manageable within a reasonable time.  

I end my analysis with the following comparative statics result on the optimal quota allocation 

characterized in Proposition 2. This is a general result without requiring “not too unequal” costs. 

It confirms the intuition of reducing the quota allocated to a supplier if it charges a higher cost.  

PROPOSITION 6 (NON-INCREASING RESPONSE OF A SUPPLIER’S QUOTA TO THE COST IT 

CHARGES):  For any given c
−i = (cj

*)j∈N\i charged by other suppliers, the optimal production 

quota Qi
* allocated to supplier i is non-increasing in the cost ci charged by the supplier.   

In proving this proposition, it would be nice if some function involved is differentiable. 

However, this is not obvious. To get around the problem, I apply the technique of 

supermodularity. This makes the proof simple even without differentiability.   

CONCLUDING REMARKS 

Sourcing decisions form an important part of supply chain management (Mabert and 

Venkataramanan 1999). Earlier studies on sourcing decisions concern outsourcing for strategic 

reasons versus in-house production, this decision’s impacts on firm performance, and its linkage 

with other factors. For example, Narasimhan and Jayaram (1998) empirically investigate, among 

other things, the causal link between the use of outsourcing for strategic reasons and the degree 

of manufacturing goal achievement (in terms of cost, flexibility, dependability, and quality). 

Narasimhan and Das (1999) Examine whether outsourcing strategically can achieve 

manufacturing flexibilities and result in manufacturing cost reduction. Using an agency model, 

Chalos and Sung (1998) study the conditions under which outsourcing is strictly preferred to in-

house production and also the tradeoff between the incremental coordination costs of outsourcing 

and the improved incentive structure. More recently, Murthy, Soni, and Ghosh (2004) establish a 

framework for supplier selection and allocation decisions and provide computational results to 

show the effectiveness of a heuristic procedure for applying the framework under a variety of 

scenarios. Although some of the studies above have considered quality issues, none of them 
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focuses on supplier failures arising from undependable products due to latent defects or provides 

analytical results on the single versus multiple sourcing decision.  

Various reasons for favoring single or multiple sourcing have been studied in the literature. 

They include supplier capacity constraints, saving in outgoing order/incoming 

inspection/transportation costs, saving in inventory holding costs by shortening the delivery lead 

time, quantity discounts due to production scale economies, saving in purchasing costs by 

supplier competition (with or without information asymmetry), and encouraging investment by 

suppliers to reduce production costs or to improve product quality (see reviews in Berger and 

Zeng 2006 and Mishra and Tadikamalla 2006).  

To highlight the benefit from risk diversification as a reason for multiple sourcing, the model 

of this paper assumes away other reasons such as capacity constraints. Moreover, certainty in lead 

time and delivery is assumed to avoid overlapping with prior studies’ emphases. To focus on the 

choice of single versus multiple sourcing, the model also abstracts away from other aspects of 

supply chain management already extensively studied in the literature, such as coordination for 

information sharing (e.g., Chung, Talluri, and Narasimhan 2010, Kouvelis, Chambers, and Wang 

2006, and Cachon 2003).  

I take the perspective of viewing the choice of single versus multiple sourcing as a supply base 

composition problem. The question asked is about what combination of suppliers can diversify 

the risk of latent defects most efficiently, in terms of the incremental quality cost to pay as a 

sacrifice. Instead of formulating a very general model that requires combinatorial mathematical 

techniques to solve, I structure the model in a tractable stylized fashion, yet rich enough to 

capture the fundamental economic tradeoff. The tractability of the model provides the potential 

of using it as a building block to integrate with another model (e.g., Chao et al. 2009 or Arya and 

Mittendorf 2007) to study interesting questions. An example is the joint use of multiple sourcing 

and product recall cost sharing to reduce external failure risks. Another is the interplay between 

internal transfers and external procurement in controlling quality costs in a LUX setting. 
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Recently, Federgruen and Yang (2008) have examined a general setting of the supplier 

selection problem that also emphasizes the optimal mix of suppliers. Their focus is to develop an 

accurate approximation method to overcome the computational complexity of the problem. Dada 

et al. (2007) and Federgruen and Yang (2009) have considered similarly general settings, with a 

focus on solving the supplier selection problem with random yields and uncertain demand.  

By contrast, I consider a simple setting with no random yields nor uncertain demand but only 

latent defects. Complementing prior studies, this paper emphasizes the linkage between supplier 

selection and external failure costs. My model allows a closed-form characterization of the 

optimal quota allocation through which the main economic driving forces can be clearly seen.  

Besides the main analysis presented above (where the buyer is supposed to take the per-unit 

procurement costs charged by the suppliers as given and allocate production quotas accordingly), 

I have considered buyer-initiated procurement contracts in an additional analysis (available upon 

request). There I continue to assume the quality parameters are known to the buyer. However, 

owing to the changing environments specific to the individual suppliers, they have private 

information on their unit variable costs of production.  

In the additional analysis, the buyer can use full-commitment, take-it-or-leave-it contracts to 

elicit the private information from the suppliers. The basic setup remains the same, except that 

the roles of the procurement costs taken as given in the main analysis are substituted by the 

contractual payments specified in the optimal procurement contracts. With this substitution, all 

the findings here continue to hold under asymmetric information on the unit variable production 

costs, provided the virtual unit variable production cost (as usually defined in auction design 

analysis) is non-decreasing in the unit variable production cost privately known to a supplier.   

There are several interesting directions for extending the analysis of this paper. A possible 

extension is to incorporate the buyer’s quality improvement effort to raise the design quality level 

µ and the suppliers’ efforts to reduce the defect rate parameter δi’s. Another is to nest the model 

into an extended setting to analyze the strategic pricing and competition among the suppliers. A 
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third direction is to identify circumstances where even without the condition of “not too unequal” 

costs, the optimal supply base is still quality-driven. Given the limited space here, these 

interesting extensions are left for future research.  
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APPENDIX A: DERIVATION AND PROOFS 

DERIVATION OF THE EXPECTED TOTAL EXTERNAL FAILURE COST: To derive E[ωD + 

cED
2], first note that E(D2) = var(D) + E(D)2. Hence,  

E[ωD + cED
2]  

= ωE[D] + cEE[D2] 

= ωE[D] + cEE[D]2 + cEvar[D] 

= ωE[ n

i 1=
∑ Di] + cE(E[ n

i 1=
∑ Di])

2 + cEvar[ n

i 1=
∑ Di]  

= ω n

i 1=
∑ E[Di] + cE(

n

i 1=
∑ E[Di])

2 + cE

n

i 1=
∑ var[Di]  

= ω n

i 1=
∑ µδiQi + cE[

n

i 1=
∑ µδiQi]

2 + cE

n

i 1=
∑ σ

2
(δiQi)

2 

= ωµ[ n

i 1=
∑ δiQi] + cEµ

2[ n

i 1=
∑ δiQi]

2 + cEσ
2[ n

i 1=
∑ δi

2Qi
2].     

          Q.E.D. 

PROOF OF PROPOSITION 1 (CONDITIONS FOR NON-EXISTENCE OF PROTECTION 

ADVANTAGE OF MULTIPLE SOURCING): When one of the two conditions holds, i.e., either σ2 → 0 

or cE → 0, the buyer’s expected total cost becomes cEµ
2[ n

i 1=
∑ ∆iQi + ( n

i 1=
∑ δiQi)

2] or simply 
n

i 1=
∑ (ci+ωµδi)Qi, where ∆i ≡ (ci+ωµδi)/cEµ

2. Suppose the ascending ranking of the suppliers 

based on ∆i’s also has supplier 1 ranked highest. Then obviously setting Q1 = Q minimizes 
n

i 1=
∑ δiQi as well as n

i 1=
∑ ∆iQi individually. Consequently, the expected total cost must also be 

minimized when Q1 = Q. Thus, multiple sourcing cannot be better than single sourcing. 

Alternatively, suppose that for any distinct j and k with (δk – δj)(sk – sj) ≤ 0, (sj – sk)/(δk – 

δj) < 2ηδ1Q. Then if multiple sourcing is better than single sourcing, the supply base must not 

contain any j and n with the property above. Otherwise, assuming without loss of generality that 

δj < δk, I can rearrange the allocation by shifting some amount of Qk to Qj and thereby reducing 

the sum n

i 1=
∑ ∆iQi + ( n

i 1=
∑ δiQi)

2 in the expected total cost.  

To see this, simply differentiate the sum with respect to Qi to get the derivative ∆i + 

2δi(
n

i 1=
∑ δiQi). Note that si ≡ (ci+ωµδi)/cEσ

2 = η∆i. So for δj < δk, (sj–sk)/(δk–δj) < 2ηδ1Q implies 

(∆j–∆k) < 2(δk–δj)δ1Q < 2(δk–δj)(
n

i 1=
∑ δiQi). Hence,  

∆j + 2δj(
n

i 1=
∑ δiQi) < ∆k + 2δk(

n

i 1=
∑ δiQi), 

implying that shifting some amount of Qk to Qj will reduce the expected total cost further. This 

leads to the conclusion that any multiple-sourcing supply base must include only suppliers with 

δi’s and si’s showing exactly the same ranking. 

 However, with such a ranking of the selected suppliers, the expected total cost can be 

minimized with Q assigned solely to the supplier ranked highest in the supply base, i.e., the one 

with the lowest baseline defect rate among the suppliers selected. This contradicts the initial 

supposition that multiple sourcing can be better than single sourcing if (sj – sk)/(δk – δj) < 2δ1Q 

for any distinct j and k with (δk – δj)(sk – sj) ≤ 0.   Q.E.D. 

PROOF OF PROPOSITION 2 (OPTIMAL QUOTA ALLOCATION): The existence of an optimal 
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quota allocation is guaranteed because any feasible allocation must be from the closed and 

bounded domain [0,Q]n and the objective function and constraints of the optimization problem 

are concave and linear, respectively. The following is the Lagrangian of program SB (with 

constraint QC decomposed into two inequality constraints):      

L = −cEσ
2[ n

i 1=
∑ siQi + η( n

i 1=
∑ δiQi)

2 + n

i 1=
∑ δi

2Qi
2] + θ̄( n

i 1=
∑ Qi − Q) + _θ(Q − n

i 1=
∑ Qi) 

with η ≡ (µ/σ)2 and si ≡ (ci+ωµδi)/cEσ
2. Since L is strictly concave in Q = (Qi)i∈N, a Q* is the 

unique optimal quota allocation for the program if and only if the first-order conditions of the 

program are satisfied (see Takayama 1985, Chapter 1, Section D).1  

Differentiating the Lagrangian with respect to Qi yields the first-order partial derivative 

below: 

Li = θ̄ − _θ − cEσ
2[si + 2ηδi(

n

h 1=
∑ δhQh) + 2δi

2Qi]. 

The first-order conditions require that if Q* has some Qi
* > 0, then Q* has to satisfy the equation 

Li = 0 for some θ̄ ≥ 0 and _θ ≥ 0. These θ̄ and _θ must be the same for all such i’s with Qi
* > 0. In 

addition, if Q* has some Qj
* = 0, then Q* has to satisfy the inequality Lj ≤ 0 for any such j’s for 

the same θ̄ and _θ. Moreover, Q* must satisfy constraint QC. 

As some Qi
* has to be positive, so must the difference θ̄ − _θ. Define θ* = (θ̄ − _θ)/cEσ

2. The 

first-order conditions are equivalent to the following ones: 
n

i 1=
∑ Qi

* = Q   

and some θ* > 0 exists such that  

[MCi]:   θ
* ≤ si + 2ηδi(

n

h 1=
∑ δhQh

*) + 2δi
2Qi

*     ∀ i ∈ N 

with the equality holding for all i ∈ B* ≡ { i∈N | Qi
* > 0 }. Another expression of the marginal 

condition MCi is as follows: 








 −
≥

2

**

*

2

)(

i

i

i

WS
Q

δ

θ
 

with Si(W
*) = [ci + (ω+2cEµW*)µδi]/cEσ

2 and W* ≡ n

i 1=
∑ δiQi

* = *
B

∑ δlQl
*. 

To determine the values of θ* and W*, I divide MCi by 2δi and then sum over the equality 

marginal conditions, i.e., MCi’s ∀i∈B*. This yields the following equation of θ* and W*:  

θ
* [(1/2) *

B
∑ (1/δl)] = [(1/2) *

B
∑ (sl/δl)]+ W* [1 + ηb*], 

where b* ≡ |B*| is the size of the supply base. Similarly, divide MCi by 2δi
2 and sum over the 

equality marginal conditions. Then incorporate the quota constraint, QC. This gives a second 

equation of θ* and W*: 

θ
* [(1/2) *

B
∑ (1/δl

2)] = [Q + (1/2) *
B

∑ (sl/δl
2)] + W* [η *

B
∑ (1/δl)]. 

The solution of the two equations is as follows:  
  

                                                   

1
 Takayama, A. 1985. Mathematical Economics, Second Edition. Cambridge: Cambridge Univ. Press.  
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θ
* = 

(η−1+b*)[2Q+ *
B

∑ (sl/δl
2)] – [ *

B
∑ (1/δl)][ *

B
∑ (sl/δl)] 

(η−1+b*)[ *
B

∑ (1/δl
2)] – [ *

B
∑ (1/δl)]

2 

 
 

W* = 
[ *

B
∑ (1/δl)][2Q+ *

B
∑ (sl/δl

2)] – [ *
B

∑ (1/δl
2)][ *

B
∑ (sl/δl)] 

. 
2η[ (η−1+b*)[ *

B
∑ (1/δl

2)] – [ *
B

∑ (1/δl)]
2 ] 

 

In summary, the first-order conditions imply the conditions specified in this proposition. The 

reverse also holds with θ̄ set to cEσ
2
θ

* and _θ set to zero.   Q.E.D. 

PROOF OF PROPOSITION 3 (QUALITY-DRIVEN SUPPLY BASE):  For any multiple-sourcing 

supply base B*, let supplier j be a selected supplier other than the highest-quality supplier in the 

supply base. Suppose  

max i∈{2,…,n} [(ci−1 − ci)/(δi − δi−1)] ≤ (ω + 2cEµδ1Q)µ. 

Because W*  = *
B

∑ δlQl
* ≥ δ1Q,  

(cj−1 − cj)/(δj − δj−1) ≤ ωµ + 2δ1QcEµ
2 ≤ ωµ + 2W*cEµ

2. 

Hence, cj + (ωµ + 2W*cEµ
2)δj ≥ cj−1 + (ωµ + 2W*cEµ

2)δj−1, or equivalently, 

Sj(W
*) ≥ Sj−1(W

*),  

where Si(W
*) = [ci + (ω+2cEµW*)µδi]/cEσ

2. By Proposition 2, 

Qj
* = [θ* − Sj(W

*)]/2δj
2 > 0 and 

Qj−1
* ≥ [θ* − Sj−1(W

*)]/2δj−1
2. 

Thus, Qj−1
* ≥ [θ* − Sj−1(W

*)]/2δj
2 ≥ [θ* − Sj(W

*)]/2δj
2 = Qj

* > 0. Since b* ≡ |B*|, it has to be that B* 

= {1, 2, …, b*}.           Q.E.D. 

PROOF OF PROPOSITION 4 (CONDITION FOR DETERMINING THE SIZE OF THE OPTIMAL 

SUPPLY BASE):  Suppose max i∈{2,…,n} [(ci−1 − ci)/(δi − δi−1)] ≤ (ω + 2cEµδ1Q)µ. If the size of the 

optimal supply base is j ∈ N\{n}, Proposition 3 implies B* = {1, …, j}. Consequently, 

Proposition 2 implies the existence of positive θ* and W*, as defined by formulas (7) and (8), 

such that  

Qj
* = [θ* − Sj(W

*)]/2δj
2 > 0 and 

0 = Qj+1
* ≥ [θ* − Sj+1(W

*)]/2δj+1
2. 

Define θj = θ* and Wj = W*. The condition of this proposition is thus satisfied. 

 For the “if” part, suppose there exist positive θj and Wj defined by formulas (7) and (8) 

with B* substituted by Bj ≡ {1, …, j} such that [θj − Sj(Wj)]/2δj
2 > 0 ≥ [θj − Sj+1(Wj)]/2δj+1

2. Define 

θ
* = θj and W* = Wj. Then θ* and W* by construction satisfy formulas (7) and (8) for B* = Bj. 

Moreover, define a quota allocation Q* with Qi
* = [θ* − Si(W

*)]/2δi
2 for all i ≤ j and Qi

* = 0 for all 

i > j. Because max i∈{2,…,n} [(ci−1 − ci)/(δi − δi−1)] ≤ ωµ + 2δ1QcEµ
2, a procedure similar to the 

proof of Proposition 3 will show that Si+1(W
*) ≥ Si(W

*) for all i ∈ N\{n}. Consequently, [θ* − 

Sj(W
*)]/2δj

2 > 0 implies Qi
* = [θ* − Si(W

*)]/2δi
2 > 0 for all i ≤ j. Similarly, 0 ≥ [θ* − 
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Sj+1(W
*)]/2δj+1

2 implies Qi
* = 0 ≥ [θ* − Si(W

*)]/2δi
2 for all i ≥ j +1. Thus, the marginal conditions 

in Proposition 2 are satisfied by the Q
* defined above. This means it is the unique optimal 

allocation for the buyer’s sourcing problem, and Bj is the optimal supply base. Hence, b* = j.  

            Q.E.D. 

PROOF OF PROPOSITION 5 (CONDITION FOR SINGLE SOURCING TO BE OPTIMAL):  The 

“only if” part follows directly from Proposition 2. For the “if” part, it is straightforward to verify 

that for each h ∈ N, the θ h and W h defined in this proposition satisfy the formulas (7) and (8) of 

Proposition 2 for the single-sourcing supply base Bh ≡ {h}. Define for each h a quota allocation 

Q
h with Q h

h ≡ [θ h − Sh(W
 h)]/2δh

2 and Q h
i ≡ 0 for all i ∈ N\{h}. Because θ h

 ≡ sh + 2(1+η)Qδh
2 

and W h ≡ δhQ, clearly Q h
h = Q > 0.  

To see if one or none of the Bh’s is the optimal supply base, it suffices to check whether 

one or none of them meets the remaining marginal conditions of Proposition 2, i.e., for any given 

h,  

Q h
i ≥ [(θ h − Si(W

 h))/2δi
2 for all i ∈ N\{h}.  

Some h will meet this last requirement if the condition of the proposition is fulfilled. When this 

is the case, the {h} is the optimal supply base and single sourcing is optimal.  Q.E.D. 

PROOF OF PROPOSITION 6 (NON-INCREASING RESPONSE OF A SUPPLIER’S QUOTA TO THE 

COST IT CHARGES): Because of the quota constraint, the feasible choice set defined on Q is not a 

sublattice of ℜn. This prevents applying some supermodularity result directly. To get around the 

problem, I consider an equivalent formulation of the buyer’s sourcing problem as follows.  

First, the buyer takes Qi as given and choose Q
−i = (Qj

*)j∈N\i to minimize the part of the 

expected total cost that depends on Q
−i, i.e.,  

C
−i(Q−i; Qi) = iNj \∈

∑ cjQj + ωµ[ n

i 1=
∑ δiQi] + cEµ

2[ n

i 1=
∑ δiQi]

2 + cEσ
2[ n

i 1=
∑ δi

2Qi
2], 

subject to the constraint that iNj \∈
∑ Qj ≥ Q – Qi. This constraint is equivalent to the quota 

constraint because C
−i(Q−i; Qi) being increasing in Q

−i ensures that the inequality constraint will 

bind at optimum. This first-stage minimization problem is analogous to the original problem. 

Following the same proof as for Proposition 2, I can show that a unique minimizer Q
−i

*(Qi) 

exists. By the maximum theorem (Sundaram 1996, p. 235), the minimized value C
−i

*(Qi) = 

C
−i(Q−i

*(Qi); Qi) is continuous in Qi.
2 The non-negativity of Qj

*(Qi)’s and Qi ensures that C
−i

*(Qi) 

is non-negative and hence bounded from below. Moving on to the second stage, the buyer 

chooses Qi ∈ [0, Q] to minimize ciQi + C
−i

*(Qi). A minimizer Qi
* clearly exists.  

The two-stage formulation above is equivalent to the original problem, which has a 

unique solution characterized in Proposition 2. The quota allocation (Qi
*, Q

−i
*(Qi

*)) obtained 

                                                   

2
 Sundaram, R. K. 1996. A First Course in Optimization Theory. Cambridge University Press. 
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from the two-stage formulation must be the same unique solution. In order to apply below a 

theorem directly, it is convenient to define the following: θ ≡ –ci, x ≡ Qi, and f(x, θ) ≡ θx – 

C
−i

*(x). Note that for any (x, θ) and (x′, θ′) with x ≥ x′ and θ ≥ θ′,  

f(x, θ) – f(x′, θ)  

= [θx – C
−i

*(x)] – [θx′ – C
−i

*(x′)] 

= (θx – θx′) – (θ′x – θ′x′) + [θ′x – C
−i

*(x)] – [θ′x′ – C
−i

*(x′)]  

= (θ – θ′)(x – x′) + f(x, θ′) – f(x′, θ′) 

≥ f(x, θ′) – f(x′, θ′), 

with the inequality holding strictly whenever x > x′ and θ > θ′. So f satisfies strictly increasing 

differences in (x, θ). By Theorem 10.6 of Sundaram (1996, p. 258), the x* maximizing f over the 

feasible set [0, Q] ⊂ ℜ is non-decreasing in θ. In other words, Qi
* is non-increasing in ci given c

−i 

= (cj
*)j∈N\i.            Q.E.D. 

 



 

 

Table 1: Notations  

N = {1, 2, …, n} is the index set of the n suppliers (n ≥ 2). 

Qi = the production quota allocated to supplier i (Qi ≥ 0). 

Q = n

i 1=
∑ Qi is the total procurement quantity (Q > 0). 

Q = (Qi)i∈N is the production quota allocation. 

ci = per-unit procurement cost charged by supplier i. 

Di = RiδiQi is the amount of defective parts manufactured by supplier i.  

Ri ≥ 0, or more precisely Riδi, is referred to as the random yield loss of supplier i. The 

random variables Ri’s are independently and identically distributed with mean E(Ri) = µ, 

where 0 < µ  ≤ µ̄ << 1, and variance var(Ri) = σ2 > 0. 

η = (µ/σ)2 is the squared standardized mean of the “random yield loss” Ri, or equivalently, 
η−1 is referred to as the squared coefficient of variation. 

δi > 0 is a parameter affecting the random yield loss of supplier i (δi ≤ 1). The value 1−δi is 
referred to as the quality-based scoring index of the supplier, or simply its quality level. 

It is assumed that δ1 < δ2 < … < δn. 

D = n

i 1=
∑ Di is the total amount of defective products sold to end customers by the buyer. It 

becomes observable after the customers have experienced field failures of the products 
and take them back for warranty repair. 

ω > 0 is the constant marginal cost of warranty repair. 

CE(D) = cED
2 is the other external failure cost (e.g., reputation damage) borne by the buyer, in 

addition to the warranty-related cost, as a result of the defective products sold to 
customers (where cE > 0). 

si = (ci+ωµδi)/cEσ
2 is a ratio representing the relative unimportance of the quadratic other 

external failure cost, characterized by cE, in constituting the buyer’s expected total cost. 

Si(W
*) = [ci + (ω+2cEµW*)µδi]/cEσ

2 = = si + 2ηW*
δi is referred to as the quality-adjusted cost-

based scoring index for supplier i, evaluated at W* = 
n

i 1=
∑ δiQi

* based on the optimal 

quota allocation Q* = (Qi
*)i∈N.  

B = { i∈N | Qi > 0 } is the set of selected suppliers constituting the supply base. 

b = |B| is the size of the supply base B. 

C(Q; s) = cEσ
2[

n

i 1=
∑ siQi + η(

n

i 1=
∑ δiQi)

2 + 
n

i 1=
∑ δi

2Qi
2], where s = (si)i∈N, is the buyer’s expected 

total cost of sourcing.  

CX(Q)% = C(Q;(ωµ/cEσ
2)δ), where δ = (δi)i∈N, is the buyer’s expected external failure cost. 

〈Q(�), P(�)〉 = a procurement contract constituted of a profile of allocations Q(�) = (Qi(�))i∈N and 

payments P(�) = (Pi(�))i∈N for any profile of the suppliers’ unit costs of production v = 

(vi)i∈N ∈ [v, v̄]. 

Eπi(vi) = Eπi(vi, vi), where Eπi(mi, vi) = E
−i[πi(mi, vi)], with the expectation E

−i[�] taken over v
−i = 

(vj)j∈N\i, and πi(mi, vi) = Pi(mi, v−i) − viQi(mi, v−i) for any vi ∈ [v, v̄] and mi ∈ [v, v̄].  

p(vi) = vi + F(vi)/f(vi) is the virtual unit variable production cost of supplier i; f(vi) > 0 for all vi 

∈ [v, v̄] is the density function of the probability distribution function F(vi).  

  


