
Kyriacou, P. A. & Shafqat, K. (2012). Heart Rate Variability (HRV) and cardiovascular dynamic 

changes during local anesthesia. In: M.V. Kamath, M.A. Watanabe & A.R.M. Upton (Eds.), Heart 

Rate Variability (HRV) Signal Analysis: Clinical Applications. (pp. 221-240). CRC Press. ISBN 

1439849803 

City Research Online

Original citation: Kyriacou, P. A. & Shafqat, K. (2012). Heart Rate Variability (HRV) and 

cardiovascular dynamic changes during local anesthesia. In: M.V. Kamath, M.A. Watanabe & 

A.R.M. Upton (Eds.), Heart Rate Variability (HRV) Signal Analysis: Clinical Applications. (pp. 221-

240). CRC Press. ISBN 1439849803 

Permanent City Research Online URL: http://openaccess.city.ac.uk/3538/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/29016928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Heart Rate Variability (HRV) and cardiovascular dynamic changes 

during local anesthesia 

 

P A Kyriacou and K Shafqat 

School of Engineering and Mathematical Sciences, City University London, London UK 

 

 

P A Kyriacou, Ph.D 

School of Engineering and Mathematical Sciences 

City University London 

Northampton Square 

EC1V 0HB 

London, UK 

Tel: +44 (0)20 7040 8131 

Email: p.kyriacou@city.ac.uk       

 

 

 

 

 

 

Key words 

Local anesthesia, Cardiovascular and hemodynamic changes, Heart rate variability  

  



Contents 

Heart Rate Variability (HRV) and cardiovascular dynamic changes during local anesthesia ......... 1 

Abstract: .......................................................................................................................................... 3 

1 Cardiovascular and HRV changes during local anesthesia in animal studies .......................... 4 

2 Effects of local anesthesia on the HRV in dentistry................................................................. 6 

3 Comparison of cardiovascular and hemodynamic effects of local vs general anesthesia .... 10 

4 HRV and cardiovascular effects of local anesthesia .............................................................. 13 

5 Discussion and Conclusions: .................................................................................................. 23 

6 References ............................................................................................................................. 26 

 

  



Abstract: 

The analysis of Heart Rate Variability (HRV), the beat to beat fluctuation of the heart rate, is a non-

invasive technique with a main aim in gaining information about the autonomic neural regulation of the 

heart. Assessment of heart rate variability has been shown to aid clinical diagnosis and intervention 

strategies. However, due to the complex nature of different mechanisms that affect the HRV and the 

large number of signal processing techniques that have been used for HRV analysis there are quite a few 

conflicting reports on HRV that perhaps impede its use as a reliable clinical tool. This chapter will provide 

an overview of some of the work carried out on animals and humans in an effort to investigate the 

effect of local anesthesia (LA) on HRV and cardiovascular dynamics. Also, another part of this chapter 

will deal with various studies where the use of local anesthesia has been compared with general 

anesthesia (GA) for different surgical procedures. The last section of the chapter focuses and reports on 

the work performed to investigate the effect of different local anesthetic techniques and anesthetic 

drugs on the cardiovascular and hemodynamics of patients undergoing various surgical procedures. 

  



 

1 Cardiovascular and HRV changes during local anesthesia in animal studies 

The effect of different anesthetic drugs on cardiovascular hemodynamics have been studied since the 

1960s (37,67-69). However, most of these studies focus their analysis on the effect of local anesthetic 

drugs on heart rate, blood pressure and other cardiovascular and hemodynamic parameters, without 

any in depth investigation on Heart Rate Variability (HRV) and/or Blood Pressure Variability (BPV). This 

could represent a major drawback, as small transient changes occurring due to the application of local 

anesthetic drugs could be missed by examining the above mentioned global variables. Nevertheless 

these studies could be useful in providing some indication of hemodynamic and cardiovascular effects 

due to local anesthesia (LA). Some of the studies carried out on animals to analyze the effect of LA are 

summarized in Table 1. 

Table 1: Animal studies involving different local anesthetic drugs 

Authors Animal 

model 

Local anesthesia (LA) Summary 

Fogarty et al (20) Rabbits Pentazocine Transient increase and subsequent 

decrease in arterial pressure. 

Abnormalities of the QRST complex. 

Basil et al. (5) Cuinea-

pigs, cats 

and dogs 

Hydrochloride (M&B 

17,803A)/ practolol and 

propranolol 

Propranolol more potent than M&B 

17,803A and practolol 

Munson et al. (46) Rhesus 

monkeys 

Etidocaine, bupivacaine, 

and lidocaine 

Central nervous toxicity of Lidocaine 4 

times less than etidocaine and 

bupivacaine. 

Kotelko at al. (36) Sheep Bupivacaine and lidocaine Arrhythmias more common in the animals 

that received bupivacaine. 

Hotvedt at al. (30) Dogs Bupivacaine Bupivacaine can enhance susceptibility to 

reentrant arrhythmias. 

Gerard et al. (23) Mongrel 

dogs 

Bupivacaine and/or 

diazepam 

Diazepam blunts the compensatory 

effects of bupivacaine on cardiac function 

and decreases the margin of safety during 



major neural blockade. 

Edouard et al. (18) Dogs Lidocaine after an 

intravenous bolus of 

bupivacaine or normal 

saline with concurrent 

40 minute infusions of 

equihypotensive doses of 

verapamil. 

Regional anesthesia should be applied 

with caution in patients treated with 

calcium entry blockers. 

DeKock at al. (35) Rats Bupivacaine 

5       intravenous 

digoxin or saline 

The threshold doses of bupivacaine toxic 

effects and its serum concentrations were 

lower in the digoxin group. 

Pitkanen et al. (52) Rabbits  Ropivacaine, bupivacaine 

and lidocaine 

Bupivacaine is cardio depressant and 

arrhythmogenic. 

Freysz at al. (21) Pigs Bupivacaine Bupivacaine should be used with caution 

in the condition of ischemia. 

Oliveira at al. (50) Rats Prilocaine chloridate 

(alone and mixed with 

felypressin and 

Epinephrine (E)) 

E must be used with Prilocaine 

 

Stewart et al. (64) used HRV analysis to study the role of the Autonomic Nervous System (ANS) in 

mediating eye temperature responses during painful procedures (sham handling or surgical castration) 

using thirty-four month old bull calves. The maximum eye temperature, Heart Rate (HR), and HRV were 

recorded continuously from 25 minutes before to 20 minutes after castration. The results showed that 

LA reduced the response to painful procedure but did not completely eliminate this response. It was 

concluded that HR, HRV, and infrared thermography measurements when used together could provide a 

noninvasive means to assess ANS responses as indicators of acute pain. 

Due to the highly vascular nature of the application area local anesthesia during oral surgery could 

significantly affect the cardiovascular dynamics. For this reason, a significant amount of work is 

presented in the literature that deals with the use of local anesthesia in dentistry. Some of this work will 

be discussed in the next section. 



2 Effects of local anesthesia on the HRV in dentistry  

The effects of anesthetic drugs given during dental procedures can vary significantly depending on the 

condition of the patient. Table 2 summarizes some key studies which describe cardiovascular and/or 

hemodynamic changes that could occur during dental anesthesia. 

Table 2: Effects of anesthetic drugs in dentistry  

Authors Study Summary 

Hass et al. (26) LA during dental treatment in 

patient with and without 

cardiac disease. 

Cardiac patients suffer with significantly higher ST 

segment depression during tooth extraction. 

Cintron et al. (12) Cardiovascular effects and 

safety of dental anesthesia in 

patients with recent  

myocardial infarction.  

Limited dental anesthesia and dental interventions 

were tolerated by patients with recent myocardial 

infarction. 

Rengo et al. (54) Effect of LA (mepivacaine 

hydrochloride 2% plus 

adrenalin 1:200.000) on 

cardiopathic patients. 

HR, Systolic Blood Pressure (SBP) and Diastolic Blood 

Pressure (DBP) significantly increased during tooth 

extraction. 

Davenport et al. (14) Hemodynamic effects of 2% 

lidocaine with and without 

E 1:100,000 on patients with 

cardiovascular disease. 

The cardiac effects of local anesthetics containing E 

are small and they can be safely used in patients 

with stable cardiovascular disease. 

Goldstein et al. (24) The effects of sedation with 

intravenous diazepam and of 

inclusion of E with the local 

anesthetic during molar 

extraction. 

Increase in HR (25%), SBP (13%) and CO (34%). 

Diazepam sedation abolished the 

Norepinephrine (NE) response without significantly 

affecting the HR or SBP responses. Cardiac output 

and mean plasma E  were increased fivefold with the 

inclusion of E 

Chernow at al. (11) Hemodynamic effects of LA 

following inferior alveolar nerve 

block with E-and NE-containing 

lidocaine hydrochloride. 

Lidocaine alone caused no change in MAP or HR. 

Lidocaine with E caused a transient increase in HR 

and no change in MAP. 

Köhler et al. (34) Cardiovascular risk due to the 

presence of E in LA 2.0    2% 

lidocaine with and without 20 

or 80    E. 

Lidocaine caused no changes. Lidocaine with 20    E 

caused increase in plasma E concentration and HR 

and decrease MAP.  Similar changes occur earlier 

with 80    of E.  

Hempenstall et al. (2

8) 

Comparison of LA and GA in 

dental surgery. 

Plasma growth hormone and prolactin increased in 

LA group while GA caused increased all other 

parameters. 

 



The reports that were discussed so far focused on the hemodynamic changes that occur during dental 

LA on the basis of blood pressure and heart rate changes. The changes occurring in parasympathetic 

activity due to LA were studied by Kawano et al. (32) in 52 patients undergoing dental treatment. 

Coefficient of variation of the R-R interval (CVR-R=SD/MEANx100%) was used as an index of 

parasympathetic activity. Comparisons between a control group and another group receiving atropine 

sulfate were made. The results showed consistently low CVR-R values, higher SBP, DBP, HR and longer 

recovery time in the sulfate group compared to the control group. Matsumura et al. (56) also studied 

the changes caused by LA (2% lidocaine containing 1:80,000 epinephrine) on HR, Blood Pressure (BP) 

and HRV during dental surgery. The study included 40 patients ea  age: . +/‐ .0 years), who 

underwent tooth extraction. A Holter monitor was used to record the ECG signal. The power in Low 

Frequency (LF=0.041 to 0.140 Hz), High Frequency (HF=0.140 to 0.50 Hz), and Total Power (TP=0.000 to 

4.000 Hz) was calculated, and the ratio of power between LF and HF region (LF:HF) and normalized 

power in the HF region (      /    00) were used as indices of sympathetic and parasympathetic 

activities, respectively. The results showed that after the administration of the local anesthetic, both 

blood pressure and pulse rate increased. Patients that were 40 years of age or older experienced an 

increase in BP while the LF:HF ratio decreased. In contrast, in patients that were <40 years of age, the 

%HF decreased and the LF:HF increased indicating that regulation of the ANS during dental surgery 

differs between younger and older patients. 

In another study Carrera et al. (10) compared three anesthetics drugs in combination with different 

vasoconstrictors in the surgical removal of lower third molars. The study consisted of three 

groups (n=15) split according to the anesthetic solution and associated vasoconstrictor 

administered (4% articaine + epinephrine 1:200,000; 3% mepivacaine without vasoconstrictor; and 

3% prilocaine + felypressin 1:1,850,000). Heart rate, SBP and DBP, and oxygen saturation were recorded 

at different times before, during and at the end of surgery. The results showed that the study variables 



were found to be more stable with articaine + epinephrine 1:200,000, although the three studied 

solutions caused no significant hemodynamic changes with respect to the basal values. 

The changes in the cardiovascular dynamics during dental surgery in 18 hypertensive patients were 

compared with age and sex matched control group (normotensive patients) by Miura et al. (43). 

Physiological parameters of HR, BP and HRV were monitored before and during the dental surgery. From 

the HRV analysis, the LF, HF, and TP spectral powers were calculated, and the ratio of power (LF:HF) and 

%HF were used as indices of sympathetic and parasympathetic activities. The increase in BP during tooth 

extraction did not different significantly between the two groups. Administration of anesthesia 

significantly decreased the %HF in normotensive patients efo e s. afte  a esthesia; .  +/‐ 2.4 vs. 

 .  +/‐ . %,       ). In contrast, the LF:HF significantly decreased during LA and tooth extraction in 

hypertensive patients. These results indicate that pressor response induced by tooth extraction did not 

differ between the two groups. 

Ishida et al. (31) studied the effects of LA and periodontal surgery on autonomic nervous activities using 

power spectral analysis of HRV on ten patients undergoing periodontal surgery. Heart rate and BP were 

also measured during LA and surgery. The results showed that the LF:HF ratio increased significantly 

before and during LA, about three minutes after LA, and before surgery. Peak of the plasma epinephrine 

concentration occurred almost simultaneously with the increase in LF:HF ratio after the administration 

of LA containing epinephrine. Mental stress was the contributing factor in the increase in LF:HF ratio 

before anesthesia while, the later increase was due to the physical stress and epinephrine presence in 

anesthesia. However, there were no significant changes in the power of the HRV bands during 

periodontal surgery. 

In 2001 Nakamura et al. (47) also studied the changes in HRV, BP and blood variables in eleven 

normotensive patients (age, 22.5+/‐0.  ea s  du i g de tal su ge . Baseli e eadi gs of these a ia les 

were measured every 30 min over 24 hours 3 to 7 days prior to surgery. Anesthesia was applied using 



2% Lidocaine with 1:80,000 adrenaline. The results showed that during dental surgery there was a 

significant increase in SBP + 0. +/‐ .   g  ut it as ot o elated ith aseli e SB  o  ith 

24 hour averaged BP, LF:HF ratio or HF power. Hence, it was concluded that ambulatory measurements 

of blood pressure and HRV over 24 hours cannot predict the responses of BP during dental surgery. 

Blood pressure, HR and temperature variability during periodontal surgery was also analyzed by 

Gedik et al. (22) in 127 healthy patients (43 males, 84 females) aged +/‐  years. Patients were 

divided into four groups (gingivectomy, periodontal flap surgery, frenectomy and curettage) and were 

anesthetized using Ultracain DS containing 0.06    adrenaline. A significant decrease was observed in 

all parameters lood p essu e: s stoli     . +/‐ 0. , diastoli  . +/‐ . , pulse ate: . +/‐ . , 

te pe atu e: . +/‐0.  fo  all patie ts.  o e e , the ha ges sig ifi a tl  de eased afte  the 

operations (BP: s stoli   0 . +/‐ . , diastoli  . +/‐  . , pulse ate: .0 +/‐ . , te pe atu e: 

. +/‐0. .  e ale patie ts, ithout age diffe e tiatio , sho ed statisti all  sig ifi a t de eases i  all 

parameters (      ).  

The effect of epinephrine in local dental anesthesia in patients with coronary artery disease was 

analyzed in sixty-two patients aged . +/‐ .   Neves et al. (48). Anesthesia was applied with 2% 

lidocaine with epinephrine (E group) (n=30) and without epinephrine (NE group) (n=32). The results 

showed that there were no significant differences in the two groups with respect of BP, HR and number 

of arrhythmic episodes. Based on these results it was concluded that epinephrine could be employed 

safely during dental anesthesia for patients with coronary artery disease. 

Hemodynamic changes during the surgical removal of lower third molars have also been studied more 

recently by Alemany et al. (2) in eighty normotensive individuals (40 females and 40 males) patients. 

Local anesthesia was applied using 4% articaine adrenalin (1:100.000). The parameters of SBP, DBP, HR, 

and oxygen saturation (SpO2) were measured. Also, patient anxiety was determined using Corah's 

Dental Anxiety Scale and Kleinknecht's Dental Fear Scale, and the level of pain experienced was assessed 



by means of a visual analog scale. The results showed that female patients showed higher levels of 

anxiety. Heart rate and BP changes during molar extraction were within the normal limits. The SpO2 

values showed no significant changes. These results showed that most of the cardiovascular changes 

could be associated with the anxiety and stress induced by surgery. A comparison between 2 ml of 2% 

lidocaine with clonidine (15      ) or epinephrine (12.5      ), used for the extraction of upper third 

molar was also carried out by Brkovic et al. (7) in 40 patients.  The results showed that 10 minutes after 

surgery the HR and SBP reduced significantly in the lidocaine+clonidine group while HR increased 

significantly in the lidocaine+epinephrine group. Changes in all other hemodynamic parameters were 

similar in both groups. It was therefore concluded that lidocaine+clonidine combination could safely 

replace lidocaine+epinephrine for intraoral infiltration anesthesia. 

3 Comparison of cardiovascular and hemodynamic effects of local vs general 

anesthesia  

Due to its perceived advantages such as faster recovery time, fewer requirements of post-operative 

analgesia, cost effectiveness and more stable cardiovascular and hemodynamics conditions LA has been 

preferred over GA in many surgical procedures. A large amount of research has been carried out to 

compare the use of local and general anesthesia for different surgical procedures. This section will focus 

in some of the studies carried out to compare the hemodynamic and cardiovascular changes caused by 

local and general anesthesia. 

In 1990 Takolander et al. (65) studied 75 patients to compare the hemodynamics and cardiovascular 

changes caused by LA and GA during coronary surgery. Arterial plasma catecholamines, BP and HR were 

determined before, during and after carotid endarterectomy. Patients were divided into three groups. 

The LA-group (n=28) received LA given as a cervical block with skin infiltration containing 200     

adrenaline. The GAs-group (n=32) received nitrous oxide, fentanyl, isoflurane with skin infiltration 



containing 200     adrenaline, while, the GAo-group (n=15) received GA without skin infiltration. The 

results showed that plasma nonadrenaline (P-NA) levels were significantly higher in the LA-Group (        during anesthesia and surgery while it decreased in the GAo-group (      ) and remained 

unaltered in the GAs-group. Incidences of hypotensive blood pressure reaction (SBP < 100     ; LA 

vs. GAo,         ) were higher in the GAs-group (8 patients) as compared to the LA-group (2 patients) 

and GAo (7 patients). Ten patients in the LA-group also showed a hypertensive blood pressure reaction. 

These results indicate that both types of anesthesia have their disadvantages in patients with an 

increased risk for cardiovascular morbidity/mortality. 

Børdahl et al. (6) also compared local and general anesthesia for laparoscopic sterilization by randomly 

allocating 125 women to receive either LA or GA. Midazolam was used as premedication. For LA, 

lidocaine with adrenaline was infiltrated infraumbilically and bupivacaine was applied to each tube. In 

the GA group, alfentanil and propofol was used for intubation and atracurium was used as muscle 

relaxant. The results showed that LA performed better than GA in terms of operating time, preoperative 

discomfort, equipment costs, postoperative abdominal pai , a algesi s e ui e e t a d patie t’s 

recovery time. 

Comparison between LA and GA for cataract surgery in 169 patients was performed by 

Campbell et al. (9). Oxygen saturation, BP and HR parameters were monitored during anesthesia and in 

immediate recovery period. The results showed that oxygen desaturation occurred at least once in 19% 

of the patients in the GA group compared to none in the LA group. In the GA group 61% of the patients 

also experienced more than 30% decreased in systolic pressure. Based on these results the authors have 

concluded that there was no significant difference between the performances of LA and GA in cataract 

surgery.  

The hemodynamic effect preoperative stressor events during rhinoplasty was also studied by 

Demirtas et al. (15) in 50 healthy adult patients. Ambulatory Holter ECG recording was carried out for 



24 hours starting on the day before the operation and continuing throughout the procedure. All patients 

received 10    of 2% lidocaine with 1:80,000 adrenaline 15 minutes after intubation. Frequency domain 

HRV parameters, HR and non-invasive BP were measured during the study. The results showed that mild 

to moderate tachycardia occurred in the majority of the patients before induction of anesthesia. Similar 

change was also detected after the infiltration of lidocaine/adrenaline and during lateral osteotomies. 

However, preoperative stressors (with the exclusion of GA induction, intubation, and extubation) did not 

cause any significant changes in the BP. Tachycardia before induction was caused by the increase in the 

s patheti  a ti it  due to the patie t’s a iet .  hese esults sho  that these patie ts ould e efit 

from routine use of premedications and that a lidocaine/adrenaline combination is a safe addition to GA 

in rhinoplasty patients.  

In another study patient's stress response during asleep-awake craniotomy has been studied by 

Conte et al. (13) by quantifying the sympathovagal balance using HRV analysis. Twenty-one patients 

aged (22 to 53 years) undergoing tumor resection with language testing were recruited for the study. 

Heart rate and SBP were collected at five time points: T1: preanesthesia; T2: dura mater opening; 

T3: cortical mapping; T4: subcortical mapping; T5: dura mater suturing. The patients were anesthetized 

with propofol/remifentanil infusion and ventilated via laryngeal mask during T2, but were awakened for 

language testing at T3 and T4, and resedated with remifentanil during T5. At each of these five points 

the HRV frequency domain parameters of TP, power in Very Low Frequency (VLF), LF, HF band and 

LF:HF ratio were estimated. The results showed that compared to T1, significant increase in HR and BP 

were observed from T3 through T5 (      ). The LF:HF ratio progressively increased, reaching 

significant level (      ) during T4. However, the ratio values returned to the level of T1 during the T5 

period. These results confirmed the presence of moderate intraoperative stress response, indicating a 

significant increase in the LF:HF ratio during the awaken phases. This information can help to 



i di idualize the p oto ol a d the du atio  of the a ake  phase a o di g to the patie t’s auto o i  

response.  

4 HRV and cardiovascular effects of local anesthesia  

Local anesthesia has been extensively used in numerous surgical procedures and depending on the site 

and technique of application the amount of anesthetic dose could differ significantly. This could result in 

varying cardiovascular and hemodynamic effects during the application of anesthesia. In the literature 

there are many studies in which different anesthetic drugs and/or anesthetic techniques have been 

compared. These studies, which will be the main focus of this section, have analyzed the effect of 

diffe e t te h i ues a d/o  d ugs o  patie t’s data su h as  R, B ,  ea t Rate Variability (HRV), etc.  

Barman et al. (4) undertook a study to determine intraoperatively the hemodynamic effects of LA of the 

carotid sinus nerve during carotid dissection in preparation for endarterectomy.  In a control 

group (n=10) saline solution was infiltrated into the carotid bifurcation. In another group (n=10), 5    of 

2% lidocaine hydrochloride was infiltrated. Heart rate and BP values were recorded at baseline and 

interoperatively every 2 minutes during a 10-minute period. Interoperatively the lidocaine group 

showed higher increase in systolic pressure (          and mean pressure (        ). From these 

results it was concluded that local anesthetic injection of the carotid sinus nerve before carotid 

dissection and endarterectomy is unnecessary when nerve-sparing dissection is performed. 

In another study Keyl et al. (33) investigated the stability in cardiac autonomic tone after GA or LA in 28 

patients undergoing cataract surgery. Group 1 (n=14) received GA (premedication: clorazepate; 

anesthetic induction: propofol, alfentanil, atracurium; anesthetic maintenance: isoflurane, alfentanil; 

airway management: laryngeal mask airway) and Group 2 (n=14) received LA (retrobulbar block with 

bupivacaine/mepivacaine). HRV frequency domain analysis was carried out intraoperatively and up to 

three hours postoperatively. The results showed that in the GA group only the TP was significantly 



reduced intraoperatively and increased slowly during the postoperative period. Postoperatively, the HR 

and the LF:HF ratio values were significantly increased in the LA group compared to the GA group. From 

these findings it was concluded that during ophthalmic surgery, in terms of preoperative cardiac 

autonomic tone, GA has no disadvantage compare to LA. The hemodynamic and electrocardiographic 

responses to LA (midazolam) was studied by Middlehurst et al. (41) in 75 patients with heart disease. 

After splitting the patients into two groups, anesthesia was applied using lignocaine 2%, adrenaline 

1:50,000, and vasopressin 0.25 IU, either alone or with midazolam. During the study the parameters 

relating to HR, BP, and ECG values were recorded, and the rate-pressure product and pressure-rate 

quotient were calculated as indicators for myocardial ischemia. Significant changes were observed in HR, 

SBP and mean blood pressure due to sedation and anesthesia. For the anesthetic group the maximum 

value for the rate-pressure product and the minimum value for the pressure-rate quotient were 

12168 (95% CI=1368) and 1.39 (95% CI = 0.04) respectively while, for the sedated group these values 

were 9882 (95% CI=1226), and 1.13 (95% CI=0.06) respectively. Based on these results the authors 

concluded that the treatment could not be associated with significant ischemic risk. 

The use of Total Intravenous Anesthesia (TIVA) was also compared with LA during cataract surgery by 

Schwall et al. (57). Patients were randomly assigned to peribulbar local block (n=10) or TIVA (n=10). 

Propofol and alfentanil were used for TIVA. Parameters related to HR, BP, plasma concentrations of 

catecholamines, cortisol, and glucose were assessed at seven pre-, intra-, and post-operative time 

points. The results showed that LA cause no significant change in plasma concentrations of E, NE and 

cortisol whereas, in the case of TIVA, plasma E, NE and cortisol decreased approximately by 66%, 51% 

and 61% respectively. Blood pressure and HR did not change significantly during LA while, SBP decreased 

by 30%, and heart rate by 12 bpm during TIVA. The results presented in this study showed that LA 

produces the best adrenergic and hemodynamic stability during cataract surgery. 



In another study Dogru et al. (17) investigated the effect of high/low doses of epinephrine (E) during 

axillary brachial plexus block in 60 ASA I and II patients, which were divided randomly in three groups. 

Patients in group 1 received 5    of saline containing 25     E and then 35    of 1.5% lidocaine; 

patients in group 2 received 5    of saline alone and then 200     of epinephrine mixed with 35    of 

1.5% lidocaine; patients in group 3 received 5    of saline alone and then 35    of 1.5% lidocaine. 

Starting from one minute after axillary injection the hemodynamic data were measured in an interval of 

1 minute for a duration of 10 minutes. The results of the study indicated that complete anesthesia was 

achieved in 85% of the patients in groups 1 and 3 and 90% in group 2. Group 2 had a significantly longer 

duration of motor block compared to groups 1 and 3 while, analgesia duration was significantly longer in 

groups 1 and 2 than in group 3. During the course of a 10 minute recording, HR, systolic arterial pressure 

and diastolic arterial pressure were higher in group 2 as compared to groups 1 and 3 (p  0.0 ). From 

these results it could be seen that lower dose of E provided more stable hemodynamic and similar 

blockade therefore, its use would be beneficial for patients with higher risk of tachycardia and/or 

hypertension. 

Aydin et al. (3) in another study analyzed the effect of single-dose fentanyl on the cardiorespiratory 

system in 70 ASA I, II and III elderly patients (>60 years) undergoing cataract surgery with 

phacoemulsification method. One group (n=35) of patients received fentanyl in 0.7        bolus doses 

in a 2    balanced salt solution, while the other group (n=35) received 2    balanced salt solutions 

without any analgesic drug. Hemodynamic parameters of SBP, DBP, MAP, HR, peripheral oxygen 

saturation (SpO2), respiratory rate (RR), end-tidal carbon dioxide (ETCO2), inspired CO2 concentration 

and sedation scores were measured preoperatively and at 5, 10, 15, 20, and 30 minutes 

intraoperatively. The results showed that in the fentanyl group, no significant differences were observed 

in SPB, DBP, MAP, RR, or peripheral SpO2. Whereas in the control group, RR was higher than the baseline 

values at 10, 15, and 20 minutes and DBP was higher than baseline values at 20 minutes. 



Intraoperatively both the groups had higher end-tidal CO2 and inspired CO2 levels. Compared to the 

control group, the fentanyl group showed higher intraoperative ETCO2 levels. From these results it was 

concluded that Fentanyl (0.7       ) could improve the comfort levels of elderly patients without any 

cardiorespiratory side effects undergoing cataract surgery with topical anesthesia. 

Shafqat et al. have also studied the effect of LA on HRV parameters during axillary brachial plexus block. 

Fourteen ASA I and II patients (7 males and 7 females) mean age 50.6 ± 20.7 years and mean 

weight 67 ± 15.3 Kg undergoing elective general surgery under LA were recruited to the study. Patients 

with known cardiovascular and respiratory problems and those suffering from diabetes were excluded 

from the study. In all cases the transarterial approach was used for the brachial plexus block. A 

combination of 30 ml of 1% Lignocaine and 20 ml of 0.5% Bupivacaine with 1:200000 part adrenaline 

was used as anesthetic agent. Anesthesia was applied without the use of neural simulator. Midazolam 

was used if extra anesthesia was required during the surgery.  

ECG monitoring started about 30 minutes before the start of the block and continued for approximately 

another 30 minutes after the surgery in the recovery ward. The lead II ECG signals were digitized at 

1 kHz sampling frequency to reduce the error is HRV parameters estimation (1,40). The heart timing 

 

Figure 1 Result of detrending the heart timing signal. The original signal is shown in blue color while the 

detrended signal is shown in black color and the magenta dotted line represents the trend which is removed from 

the original signal 



signal (38) was used for the HRV signal representation and also for the correction of missing and/or 

ectopic beats. The performance of the heart timing representation and the beat correction algorithm 

has been validated in previous studies (39,58). The VLF component of the signal was removed by 

detrending the signal using a wavelet packet analysis which have been validated previously (60). The 

effect of detrending the HRV signal is shown in Figure 1 and Figure 2 respectively. Figure 1 shows the 

time domain representation while Figure 2 shows the spectrum, of the same signal used in Figure 1, 

before and after detrending. The respiration signal was estimated from the ECG signal using the ECG 

Derived Respiration (EDR) technique (44-45). 

 

The authors proposed a new method for calculating the variable boundaries associated with the LF and 

the HF region of the HRV signal. The HF band boundaries were defined using the cross-spectrum 

between the HRV signal and the estimated respiration signal. From the cross-spectrum the Centre 

Frequency (CF) and the Standard Deviation Spectral Extension (SDSE) were estimated using Eq. 1 and 

Eq. 2 respectively. 

 

Figure 2 (a) Spectrum of heart timing signal (used in Figure 1) after removing linear polynomial trend; (b) 

Spectrum of the same signal after detrending using the wavelet packet method and part of the spectrum shown 

in  part (a) (line with cross marks) 
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Where in Eq. 1 and Eq. 2  (   represents the frequency domain representation and the integral limits    

and    will represent the upper and lower boundaries of the region (LF, HF). 

Using the estimate of the CF and the SDSE, the range of the HF band was defined as    S S . The CF 

and the SDSE related to the LF region of the signal was also calculated, but in this case the estimate was 

carried out using the frequency domain representation of the HRV signal. In the case where the lower 

boundary of the HF component was below 0.15 Hz then this lower boundary was used in the estimation 

of the LF component ICF and the boundaries, otherwise the estimation was done in the frequency range 

of 0.04-0.15 Hz. The CF and the boundaries were smoothed using a median filter with a length of ten 

seconds to avoid sharp fluctuations in these parameters. Two examples of LF and the HF boundary 

 

Figure 3 (a) Boundary estimation example 1; (a) HRV signal; (b) corresponding EDR estimated respiration signal; 

(c) cross-spectrum between HRV signal and the estimated respiration signal; (d) spectrum of the HRV signal. The 

dotted lines in part (c) and (d) represent the fixed boundaries of the LF and the HF region. The magenta vertical 

lines with a diamond marker in part (d) represent the CF of the LF and HF band while the horizontal line represent 

the band range as estimated by the variable boundary method        . Spectral analysis is carried out using 

non-parametric method 



estimation along with the corresponding HRV and the estimated respiration signals are shown in Figure 

4 and Figure 3 respectively. 

In both cases (Figure 4 and Figure 3) the estimation was carried out on five minute segments of data. In 

the case of Figure 4 (c) the cross-spectrum shows a single well defined peak at a frequency of 0.3 Hz. 

This indicates that the power related to the respiration component (HF) is confined to a narrow band 

that lies within the fixed limits defined for the HF component. Figure 4 (d) (HRV signal spectrum) 

confirms the information represented by the cross-spectrum and shows a well defined respiration 

related component around 0.3 Hz. In this case the respiration component is easily distinguishable from 

the LF component whose CF is around 0.1 Hz. Figure 4 (d) also shows that the range    S S  of each 

band (LF and HF) estimated for power estimation in the variable boundary method and represented by 

horizontal magenta lines quite adequately covers major parts of the signal in these two regions. The 

situation is quite different in the second example of the boundary estimation presented in Figure 3; in 

this case the respiration signal (see Figure 3 (b)) shows more complex dynamics as compared to the 

respiration signal of the first example (see Figure 4 (b)). Because of this reason, the cross-spectrum 

between the HRV signal and the estimated respiration signal shown in Figure 3 (c) is spread over a larger 

 

Figure 4 (a) Boundary estimation example 1; (a) HRV signal; (b) corresponding EDR estimated respiration signal; 

(c) cross-spectrum between HRV signal and the estimated respiration signal; (d) spectrum of the HRV signal. The 

dotted lines in part (c) and (d) represent the fixed boundaries of the LF and the HF region. The magenta vertical 

lines with a diamond marker in part (d) represent the CF of the LF and HF band while the horizontal line represent 

the band range as estimated by the variable boundary method        . Spectral analysis is carried out using 

non-parametric method 



frequency range slightly below the fixed lower boundary of the HF region and shows more than one 

component. By looking at the cross-spectrum shown in part (c) it can be seen that if fixed boundaries 

were used to calculate the power then some of the power which might be due to the respiration 

component would be wrongly assigned to the LF region of the signal. However, the variable boundary 

method will be able to take into account the part of the spectrum below the fixed lower boundary of the 

HF region as in this case the range of the HF component is defined by using the cross-spectrum between 

the HRV and the respiration signal. By looking at the magenta horizontal line (in the high frequency 

region) in Figure 4 (d) it can be seen that the boundary of the HF region as defined by the variable 

boundary method indeed extends below 0.15 Hz, which is considered to be the lower limit of the HF 

region in the fixed boundary method. The results from both examples (see Figure 4 (d) andFigure 3 (d)) 

showed that the major parts of the signal power are covered by the LF and the HF region as defined by 

the variable boundary method. In order to see the effect of variable boundaries, on the estimation of 

the HRV parameters, these quantities were also estimated using the fixed (traditional) range of the 

LF (0.04-0.15 Hz) and the HF (0.15-0.4 Hz) bands. 

The frequency domain analysis of these signals were carried out using non-parametric Wel h’s 

periodogram) method (59), parametric (Autoregressive modeling) method (58), Continuous Wavelet 

Transform (CWT) (61), Smoothed-Pseudo Wigner-Ville Distribution (SPWVD) (62) and Empirical mode 

decomposition (EMD) (63). The results obtained in these studies showed that after the application of the 

local anesthetic drug the LF:HF  ratio increased initially and then decreased reaching a minimum value. 

Compared to the variations observed in other parts of the data during this decrease and sometime after 

reaching the minimum, the variations in the ratio values were significantly low until it recovered from 

the minimum phase after the block. The decrease in the ratio values were observed in each case within 

an hour of the application of the anesthetic block. Apart from the LF:HF ratio value, significant changes 

were also observed in the normalized power related to the LF and the HF band of the signal with 



normalized LF power showing a decreased and normalized HF power showing an increase after the 

application of the anesthetic block. The statistical analysis also showed that similar results were 

obtained using the fixed (traditional) boundary method and variable boundary method. The parameter 

values during the surgery were not included in the statistical analysis as in this case it might not be 

possible to separately identify the changes in the HRV parameter due to the local anesthetic drug and 

the changes occurring due to the surgical procedure. 

The parameters estimated with the CWT data analysis obtained from one of the patients included in the 

study are presented in Figure 5. The Figure shows that in most regions similar changes are observed in 

the values estimated by both the fixed and the variable boundary method. However, there are 

incidences (e.g. around 6000 seconds) where different values of the parameters are obtained from the 

two methods. In all these cases the CF estimated from the two methods shows more difference 

between them as compared to the other regions of the data. The use of the cross-spectrum between 

HRV signal and estimated respiration signal would allow the variable boundary method to consider the 

effect of the respiration signal below 0.15 Hz which is not possible with the fixed boundary method. Due 

to this difference, when the respiration frequency will be close or lower than 0.15 Hz the parameter 

estimated from the two methods might be different. 

 

 

 

 



During the analysis of the data from locally anaesthetized patients two distinguishable changes were 

observed in the LF:HF ratio values after the application of LA. Firstly, the presence of Adrenaline in the 

LA mixture was considered to be the major factor behind a transient short lived increase in the 

LF:HF ratio which was observed in almost all the patients included in this study. Secondly, the anesthetic 

mixture would cause a sympathetic impairment and/or vagal enhancement resulting in a decrease in the 

LF:HF ratio values. 

Due to their superior capability of detecting transient changes occurring in the signals, the Time-

Frequency methods (CWT, SPWVD and EMD) managed to detect changes in the LF:HF ratio values in 

more patients as compared to the parametric and non-parametric methods. The CWT and the EMD 

were the most successful methods and detected LF:HF ratio values changes in thirteen out of fourteen 

 

Figure 5 Results obtained from the CWT analysis of a patient undergoing local anesthetic procedure. In each plot 

the grey vertical block represents the time of block (anesthesia) application and the green vertical lines represent 

start and end of the surgery. The vertical arrow pairs in part (a) show the data segment before and after the 

application of block which was used in statistical analysis. Each plot shows the parameter values estimated using 

both the fixed and the variable boundary method. Lines in green and magenta color represent the parameter 

values before and after the block application estimated using fixed boundary method respectively. In the case of 

variable boundary method the same information is presented with blue and black color lines respectively. The 

units on y-axis for the subplots (b, c and d) showing absolute power values are       and for the subplots (g and 

h) showing frequency values is Hz 
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patients included in the study. The performance of the SPWVD method suffered due to the presence of 

interference terms, present due to the bilinear nature of the distribution, which caused an error in the 

power estimation. The better performance of the CWT method over the SPWVD method in detecting 

the transient changes occurring in the signal has also been reported by other researchers (19,49). 

The analysis of the data from locally anesthetized patients showed that during brachial plexus block 

using a mixture of Lignocaine and Bupivacaine there is a noticeable and almost consistent change in the 

sympathovagal balance (LF:HF ratio decreases) which can be detected through appropriate and 

structured analysis of HRV. 

5 Discussion and Conclusions 

Due to the high success rate and the low number of serious (life threatening) incidents that are usually 

associated with the application of LA there are not many studies that analyzed the hemodynamic and 

cardiovascular data, including HRV analysis, extensively during various procedures involving LA.  

The current recommendations regarding maximum doses of local anesthetics presented in textbooks, or 

by pharmaceutical industries, are not evidence based (i.e., determined by randomized and controlled 

studies). Usually, recommendations are in the form of a total amount of the drug which does not take in 

to account the patie t’s od  ass i de . Also, othe  fa to s su h as the ph si al state of the patients 

and site of the application have great effect of the dosage of the anesthetic drug. Due to all these 

uncertainties the maximum dosage of different anesthetic drugs varies from country to country as 

shows in table 3. 

 

 



Table 3: Officially Recommended Highest Doses of Local Anesthetics in Finland, Germany, Japan, 

Sweden, and the United States (55). 

 Finland  Germany  Japan  Sweden  US 
Chloroprocaine 

With epinephrine 

------ ------ ------ ------ 800    

------ ------ 1000    ------ 1000    

Procaine  

 

With epinephrine 

------ 500     600    (epidural) ------ 500     

------ 600    ------ ------ ------ 

Articaine 

With epinephrine 

7       4       ------ ------ ------ 

7       4       ------ ------ ------ 

Bupivacaine 

 

 

With epinephrine 

175    

(200   *) 

(400   /24 h) 

150    100    (epidural) 150    175   

175    150    ------ 150    225    

Levobupivacaine 

 

With epinephrine 

150     

(400   /24 h) 

150    ------ 150    150    

------ ------ ------ ------ ------ 

Lidocaine 

With epinephrine 

200    200    200    200    300    

500    500    ------ 500    500    

Mepivacaine 

With epinephrine 

------ 300    400    (epidural) 350    400    

------ 500    ------ 350    550    

Prilocaine 

With epinephrine 

400    ------ ------ 400    ------ 

600    ------ ------ 600    ------ 

Ropivacaine 

 

 

With epinephrine 

225    

(300   *) 

(800   /24 h) 

No mention 200   (epidural) 

300   (infiltr) 

225    225    

(300   *
) 

225    No mention ------ 225    225    

(300   *
) 

*For brachial plexus block in adults. 

 



The technique of HRV variability has been applied in many research studies in the field of anesthesia 

both general and local, however so far HRV has not reached the point to be accepted as a clinical 

diagnostic tool, as many of the results obtained from such studies are either inconclusive or not in 

agreement. However, with the continuous advancement of computational and signal processing 

techniques there is hope that HRV will be able to provide more robust information which will aid in the 

better anesthetic monitoring of patients. Also, in order to get a better understanding of the complex 

cardiovascular changes occurring due to local anesthesia the information obtained from the linear and 

non-linear analysis of HRV signals should be combined with the information obtained from other 

physiological signals such as, Electroencephalogram (EEG), BVP etc. Combining information from such 

physiological signals would allow for better prediction of future changes in the patie t’s a dio as ula  

state. This would also help in tailoring the delivery and management of anesthesia according to 

individual patient requirements. 

Another issue which impedes the more conclusive results in HRV studies during anesthesia is the lack of 

control in the studies involving patients. As the patie t’s safet  du i g a esthesia is of pa a ou t 

importance it is quite difficult to analyze the effect of anesthesia in varying levels of anesthetic dosages. 

For this more attention should be given on animal studies where studied parameters could be controlled 

in a more systematic manner.  

Also, as commented above, the current availability of extensive computational recourses has caused a 

rapid increase in the number of signal processing techniques available for the analysis of physiological 

data. This makes the comparison and validation of results from different studies quite difficult. It is 

essential that advance signal processing methods should be applied with care as minor changes could 

cause a great deal of ambiguity and potentially render the results meaningless. For instance, 

Deschamps et. al. (16) have observed increase in power of the HF band and decrease in the LF:HF ratio 

values after the application of LA (20    of 0.125% Bupivacaine and 50    of fentanly) in laboring 

http://www.google.co.uk/search?hl=en&client=firefox-a&hs=AYC&rls=org.mozilla:en-GB:official&sa=X&ei=t5jVTZqYB4HPhAeMy5XLBg&ved=0CCgQvgUoAA&q=Electroencphologram&nfpr=1


patients undergoing epidural anesthesia. The problem with this study in that the authors have used 

wavelet analysis with irregularly sample signal (tachogram) and have associated the coefficients from 

specific wavelet decomposition levels to the two (HF and LF) bands of the HRV signal. Estimating HRV 

parameters in this way could result in error as due to irregular sampling of the data there could be 

significant overlap of scales (frequencies) between levels (42). 

Finally, researchers should make every effort to make their data sets available in open-excess database 

via common internet protocols. This will allow easier comparison of the results obtained from different 

analysis techniques and facilitate rapid development and better understanding of the research area. 
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