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Abstract

Onchocerciasis is a debilitating neglected tropical disease caused by infection with the filarial parasite Onchocerca volvulus.
Adult worms live in subcutaneous tissues and produce large numbers of microfilariae that migrate to the skin and eyes. The
disease is spread by black flies of the genus Simulium following ingestion of microfilariae that develop into infective stage
larvae in the insect. Currently, transmission is monitored by capture and dissection of black flies and microscopic
examination of parasites, or using the polymerase chain reaction to determine the presence of parasite DNA in pools of
black flies. In this study we identified a new DNA biomarker, encoding O. volvulus glutathione S-transferase 1a (OvGST1a), to
detect O. volvulus infection in vector black flies. We developed an OvGST1a-based loop-mediated isothermal amplification
(LAMP) assay where amplification of specific target DNA is detectable using turbidity or by a hydroxy naphthol blue color
change. The results indicated that the assay is sensitive and rapid, capable of detecting DNA equivalent to less than one
microfilaria within 60 minutes. The test is highly specific for the human parasite, as no cross-reaction was detected using
DNA from the closely related and sympatric cattle parasite Onchocerca ochengi. The test has the potential to be developed
further as a field tool for use in the surveillance of transmission before and after implementation of mass drug
administration programs for onchocerciasis.
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Introduction

Onchocerciasis, or River Blindness, is a neglected tropical

disease caused by the parasitic worm Onchocerca volvulus. The

parasite is transmitted to humans through exposure to repeated

bites of infected black flies of the genus Simulium. The disease is a

major public health concern, and has severe social and economic

impact. Recent estimates indicate that, more than 30.4 million

people are infected, mostly in sub-Saharan Africa [1,2]. Over

700,000 people are visually impaired and another 265,000 are

blinded by the disease [3]. There is no vaccine against infection or

suitable macrofilaricidal drug that kills the adult stage of O.
volvulus. Current control is based on annual or semi-annual

distribution of the larvicidal compound ivermectin (Mectizan,

Merck) to the population irrespective of infection status [4–6]. In

the absence of an adulticide, it is recommended that these mass

drug administration (MDA) campaigns should be continued for

10–15 years [7].

MDA programs have now progressed for several years in many

areas, and careful monitoring of infection levels in human

populations, as well as vectors, is required to evaluate their

success, certify elimination and guide the decision to stop MDA.

Definitive diagnosis of infection with O. volvulus in humans

involves identification of subcutaneous nodules or observation of

microfilariae in skin snips using microscopy. The detection of

microfilariae in skin can be a challenge when parasite densities are

low, which is often the case when MDA programs are underway.

Several serological methods exist involving antibody detection to

O. volvulus-specific antigens. The most widely used assays are

based on the detection of IgG4 responses to the Ov-16 antigen in

children [8–11]. Of all the methods developed thus far for

diagnosis of infection in humans, the highest levels of sensitivity

have been achieved in skin snip/scratch analyses using the

polymerase chain reaction (PCR) targeting the O-150 repeat

sequence [12–14]. Infection rates in black flies are rapid and

sensitive indicators of the change in community microfilarial load

that results from ivermectin distribution, and correlate well with

the percentage coverage of the community [7]. Importantly, they

are also an important indicator of when MDA is succeeding in

breaking transmission of O. volvulus. In addition, from logistical

and ethical perspectives, monitoring infections in the vector offers

some advantages over repeated blood examinations of the human

population [15,16]. For detection of O. volvulus infection in black
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flies, the World Health Organization (WHO) recommends the use

of PCR-based methods [7]. To date, these assays have been

performed using the O-150 repeat sequence identified more than

20 years ago [17–22], where the amplification products are

subsequently detected by several methods including an enzyme-

linked immunosorbent assay (PCR-ELISA) [23–26].

In sub-Saharan Africa, cattle are frequently infected with

Onchocerca ochengi, a species that exclusively parasitizes Bovidae.

This is the closest extant relative of O. volvulus and is transmitted

in West Africa by the same species complex of black fly vectors,

Simulium damnosum sensu lato [27]. Discrimination between

these two species requires an additional step of hybridization of the

PCR amplified products with an O. volvulus-specific DNA probe

[17,19,28,29]. Since the complexity of a test can be a technical

barrier, a simpler method for the specific detection of human

parasites in the vector would be a significant advance. In addition

for low-resource settings, PCR can be a challenge as it requires

skilled personnel and expensive equipment [30]. Therefore a new

molecular method for the detection of O. volvulus that circum-

vents some of the current limitations would be a useful tool to aid

onchocerciasis control and elimination efforts [31].

Loop-mediated isothermal amplification (LAMP) is an alterna-

tive technique which amplifies DNA with high specificity,

sensitivity and rapidity under isothermal conditions [32]. The

LAMP reaction includes two sets of primers that hybridize to six

sites on the target DNA, and a third set of primers (loop primers)

to accelerate the reaction [33]. The mixture of stem-loops

containing alternately inverted repeats of the target sequence

and cauliflower-like structures that are generated result in

exponential amplification of the target sequence (.10 mg,.506
PCR yield) [32–34]. Using three primer sets recognizing eight sites

in the target DNA engenders the specificity to discriminate

between genomic DNA at both genus and species specific levels

[35,36]. In recent years this technology has been explored for the

diagnosis of several infectious diseases including those caused by

parasitic protozoa [37,38] and the filarial parasites Brugia malayi
[39], Wuchereria bancrofti [40] and Loa loa [41,42]. The

simplicity, rapidity, and versatility in readout options available

for LAMP, offer a distinct advantage over other molecular

diagnostic methods. LAMP test kits for use in resource-limited

settings are now commercially available for the detection of

Mycobacterium tuberculosis complex [43,44] and human African

trypanosomiasis [45].

In the present study we report on the identification of a new

DNA biomarker, encoding O. volvulus glutathione S-transferase

1a (OvGST1a), and the development of a simple, single-step,

LAMP assay that easily distinguishes between O. volvulus and O.
ochengi DNA. Our results demonstrate that the test represents a

significant technical advance, and has the potential to be used as a

new field tool for surveillance of parasite transmission and

evaluation of MDA programs for onchocerciasis.

Materials and Methods

Reagents
O. ochengi DNA was extracted from adult worms obtained from

cattle skin nodules after normal processing at the Ngaoundéré

abattoir, Adamawa Region, Cameroon. L. loa DNA was prepared

from infective stage larvae isolated from Chrysops silacea collected

in the Southwest Region of Cameroon. Genomic DNA was

extracted using DNAzol reagent (Invitrogen) according to the

manufacturer’s instructions. Onchocerca volvulus genomic DNA

was prepared from adult female worms as described [46]. Bovine

DNA and human DNAs were obtained from Millipore, USA.

Black flies
Uninfected, laboratory reared female Simulium vittatum were

obtained from the Black fly Rearing and Bioassay Laboratory,

University of Georgia, USA. Pools containing varying numbers of

black flies (50, 100, 150 and 200 each) were prepared according to

established protocols [21,23].

Spiking and DNA extraction
Each pool of black flies was placed in a 1.5 mL micro centrifuge

tube and the insects were crushed in 500 mL extraction buffer

(100 mM NaCl, 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.1%

sodium dodecyl sulfate, 100 mg/mL of proteinase K) using a

blunted glass pipette. An additional 500 mL extraction buffer

containing either no DNA, or purified O. volvulus genomic DNA

(1.0 ng, 0.1 ng, or 0.01 ng) was added to the homogenized pool.

DNAs were then purified from the individual pool preparations

using the Qiagen Tissue and Blood Kit [Qiagen, Valencia, CA,

USA] according to the manufacturer’s instructions, or extracted

by boiling at 95uC for 15 min and used directly as template in

both PCR and LAMP reactions. DNA extracted from non-spiked

pools of black flies and purified O. ochengi DNA were included as

negative controls. Purified O. volvulus genomic DNA was used as

a positive control. All experiments were performed in duplicate at

least 3 times.

Sequence analysis
O. ochengi sigma-class GST sequences were obtained from

predicted coding nucleotide sequences available at http://www.

nematodes.org/genomes/onchocerca_ochengi (Nematode genomes

from the Blaxter lab, University of Edinburgh). Putative homologous

protein sequences to O. ochengi sigma-class GSTs with relevant

predicted domains [cd03039 (GST_N_Sigma_like) and cd03192

(GST_C_Sigma_like), available at the Conserved Domain Database

at NCBI (http://www.ncbi.nlm.nih.gov/cdd/) [47] were identified

via BLAST analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi; [48,49]

using the non-redundant database at NCBI (http://www.ncbi.nlm.

nih.gov/; non-redundant GenBank CDS translations + PDB +
SwissProt + PIR + PRF, excluding those in env_nr). Organisms for

GST sequence comparison were selected using the following

rationale: (a) nematode taxonomy – including ‘shared family

Filariidae’ [Onchocerca volvulus {AAG44696.1, AAG44695.1},

Brugia malayi {XP_001901855.1} and Loa loa {003139665.1}];

‘shared nematode Clade III’ [Ascaris suum {ERG83753.1,

ERG81431.1}]; ‘different nematode Clade V’ [Caenorhabditis
elegans {NP_508625.1, NP_509652.2}]; (b) mammalian definitive

host-relatedness [Homo sapiens {NP_055300.1}, Bos taurus
{XP_002688181.1}, Rattus norvegicus {NP_113832.1} and Mus
musculus {NP_062328.3}]; (c) insect intermediate host-relatedness

[Musca domestica {NP_001273827.1}, Drosophila melanogaster
{NP_725653.1}, Pediculus humanus corporis {XP_002426887.1}

and Tribolium castaneum {XP_970714.1}]. BLAST hits of putative

GST sigma-class protein homologues were subjected to multiple

sequence alignment using ClustalX Version 2.1 [50,51]. Phylogenetic

bootstrap neighbor-joining trees were produced as PHYLIP output

files according to the neighbour-joining method [52]. ClustalX

default settings for alignments were accepted using the GONNET

protein weight matrices with PHYLIP tree format files viewed within

the TREEVIEW program [53].

For comparative analysis of sigma GST genomic sequences,

OvGST1a and OvGST1b and the O. ochengi homologue g09064

were aligned over the complete gene sequence (total distance,

3,870 bp) using Kalign [54,55] at http://www.ebi.ac.uk/Tools/

msa/kalign/with ClustalW output. Parameters comprised a gap open
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penalty of 11, a gap extension penalty of 0.85, terminal gap penalties

of 0.45, and a bonus score of zero.

Primer design
To design specific primers for O. volvulus, glutathione S-

transferase-1 gene, sequences from O. volvulus [OvGST1a,

GenBank: AF265556.1; OvGST1b, GenBank: AF265557.1] and

O. ochengi [locus tag: nOo.2.0.1.go9064, http://www.nematodes.

org/genomes/onchocerca_ochengi/] were aligned using ClustalW

[50]. Regions specific for O. volvulus were identified in OvGST1a
and LAMP primers were designed to target the gene using Primer

Explorer V4 [http://primerexplorer.jp/e/]. Two sets of primers

comprising two outer (F3 and B3), and two inner (FIP and BIP)

were selected. FIP contained F1c (complementary to F1), and the

F2 sequence. BIP contained the B1c sequence (complementary to

B1) and the B2 sequence. Additional loop primers, forward loop

primer (FLP) and backward loop primer (BLP) were included in

the reaction.

The outer LAMP primer pair F3 and B3 was also used for

specific amplification of OvGST1a by PCR. PCR primers for

amplification of actin were as previously described [39]. The

forward and reverse primer sequences are (59 GCTCAGTCBAA-

GAGAGGTAT 39) and (59ACAGCYTGGATDGCAACGTACA

39), respectively, where B = C, G or T; Y = C or T, and D = A, G

or T. PCR and LAMP primers were synthesized by Integrated

DNA Technologies (Coralville, IA, USA).

LAMP assay
LAMP reactions were performed in a final volume of 25 mL

reaction buffer [10 mM Tris–HCl (pH 8.8), 50 mM KCl, 10 mM

(NH4)2SO4, 8 mM MgSO4, and 0.1% Tween 20], 8 U Bst 2.0

DNA polymerase (New England Biolabs, Ipswich, MA, USA),

(1.4 mM) of each deoxynucleoside triphosphate (dNTP), 1.6 mM

of each FIP and BIP primer, 0.2 mM of each F3 and B3 primer,

0.4 mM of FLP and BLP, and 2 mL of target DNA. The mixture

was incubated at 63uC for 60 min, then heated at 80uC for 2 min

to terminate the reaction. Reactions were carried out using either

a Loop Amp Realtime Turbidimeter (LA-320c, Eiken Chemical

Co, Japan) or a 2720 Thermocycler (Applied Biosystems, USA) set

at a constant temperature for colorimetric detection. A positive

reaction was defined as a threshold value greater than 0.1.

Turbidity data were analyzed using the LA-320c software package

that reports when the change in turbidity over time (dT/dt)

reaches a value of 0.1, which we then assigned to be the threshold

time (Tt). For determination of amplification measured by color

change (purple to sky blue), 0.15 mL of 120 mM hydroxy naphthol

blue (HNB, Sigma-Aldrich Inc, St. Louis, MO, USA) was added to

the reaction mixture. All experiments were performed in duplicate

at least 3 times.

PCR assay
LAMP primers B3 and F3 were used to PCR amplify OvGST1a

in 25 mL reactions containing 3 mL DNA template, 0.2 mM of

each primer, and 1.25 U of Taq DNA polymerase in 16 standard

buffer (New England Biolabs) containing 3.5 mM MgCl2, 0.2 mM

and 0.2 mM dNTP each. All reactions were denatured once at

94uC for 5 min followed by 35 cycles of the following cycling

conditions: 30 s at 94uC, 1 min at 53uC, 1 min at 72uC, and a

final extension for 5 min at 72uC using a Gene Amp PCR system

9700 (Applied Biosystems). PCR products were visualized by UV

transillumination in a 1.5% agarose gel after electrophoresis and

staining with ethidium bromide. As a positive control for the

presence of intact DNA, a 244 bp actin fragment was PCR

amplified as described [40].

Figure 1. Phylogenetic neighbour-joining tree showing the
relationship of the sigma-class GSTs of Onchocerca ochengi to
similar enzymes of nematodes, mammals and insects. Numbers
shown alongside branches are bootstrap values of 1,000 replications.
The key for protein sequence accession numbers and organisms
displayed in the tree is as follows: Nematodes: Oo_GST_t09064,
Oo_GST_t03844 and Oo_GST_t06414 glutathione transferase [Oncho-
cerca ochengi]; Ov_GST_1b AAG44696.1 glutathione S-transferase Ia
[Onchocerca volvulus]; Ov _GST_1a AAG44695.1 glutathione S-transfer-
ase Ia [Onchocerca volvulus]; Ll_GST XP_003139665.1 hypothetical
protein LOAG_04080 [Loa loa]; Bm_GST_4 XP_001901855.1 glutathione
S-transferase 4 [Brugia malayi]; As_GST_1 ERG83753.1 glutathione S-
transferase 1 [Ascaris suum]; As_GST_4 ERG81431.1 glutathione s-
transferase 4 [Ascaris suum]; Ce_GST-11 NP_508625.1 protein GST-11
[Caenorhabditis elegans]; Ce_GST-36 NP_509652.2 protein GST-36
[Caenorhabditis elegans]. Mammals: Hs_PGD NP_055300.1 hematopoi-
etic prostaglandin D synthase [Homo sapiens]; Bt_PGD_x1
XP_002688181.1 PREDICTED: hematopoietic prostaglandin D synthase
isoform X1 [Bos taurus]; Rt_PGD NP_113832.1 hematopoietic prosta-
glandin D synthase [Rattus norvegicus]; Mm_PGD NP_062328.3 hema-
topoietic prostaglandin D synthase [Mus musculus]. Insects: Md_GST_
NP_001273827.1 glutathione S-transferase [Musca domestica];
Dm_GST_s1 NP_725653.1 glutathione S-transferase S1, isoform A
[Drosophila melanogaster]; Ph_GST XP_002426887.1 glutathione S-
transferase, putative [Pediculus humanus corporis]; Tc_GST
XP_970714.1 PREDICTED: glutathione S-transferase [Tribolium casta-
neum]. The GSTs from O. volvulus and their closest relative in O. ochengi
are shown in bold.
doi:10.1371/journal.pone.0108927.g001
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Figure 2. Diagrammatic view of the similarity of Onchocerca sigma-class GST gene models for O. volvulus GSTs 1a and 1b and the
homologous O. ochengi sigma-class GST t09064. Gene models were aligned over the full-length sequence (total distance, 3,870 bp). Numbers
associated with gene model exons (I–VII shaded blocks) and introns (1–8 non-shaded blocks) display the number of base-pairs within those sections
over which the alignment is spaced. The three major differences between the genes (all insertions in O. volvulus GST1a intron 3) are highlighted in the
diagram.
doi:10.1371/journal.pone.0108927.g002

Figure 3. Alignment of partial gene sequences of glutathione S-transferases (GSTs) from O. volvulus (OvGST1a, OvGST1b) and O.
ochengi (OoGST1) (A) and primer sets targeting OvGST1a (B). Primers are indicated by solid black arrows and dash arrows represent the binding
regions of the loop forward (LFP) and loop back (LBP) primers respectively.
doi:10.1371/journal.pone.0108927.g003
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Results

During manual curation of gene predictions in the O. ochengi
genome (http://www.nematodes.org/genomes/onchocerca_ochengi),

it was noted that this species has one copy of the glutathione

S-transferase-1 gene (OoGST1), whereas O. volvulus has two copies

[56]. Phylogenetic analysis using protein sequences demonstrated

that although two additional gene models containing GST sigma-like

domains are present in the O. ochengi genome, these are unrelated to

the two OvGST1 paralogues and cluster at different branches of the

tree (Fig. 1). Indeed, the ‘‘GST1’’ group [comprising OvGST1a,

OvGST1b and OoGST1 (CDS t09064)] form a highly distinctive

clade, which is distant not only from insect and mammalian sigma

GSTs, but also from those of other nematodes, including filarial

representatives and Ascaris suum (an additional clade III nematode)

(Fig. 1). Intron/exon sequence and gene structure were found to be

highly conserved within the ‘‘GST1’’ group (Fig. 2). Overall

nucleotide identity was.90% for all exons and introns between

OoGST1 and both of the O. volvulus GST1 genes. However,

OvGST1b is most similar to OoGST1 at 98% overall identity, in

comparison to OvGST1a at 96% identity (Fig. 1 and Fig. 2). The

three major differences between the genes comprised insertions in

intron 3 of OvGST1a.

Based on the phylogenetic tree and comparative sequence

analyses, several primer sets targeting OvGST1a and/or

OvGST1b were evaluated (data not shown). Assays were

performed in the temperature range 60–65uC for up to 90 minutes

using various concentrations of MgSO4 (4, 6, 8, and 10 mM) and

primers (0.1, 0.2, and 0.4 mM F3 and B3; 1, 1.5, 2, and 4 mM FIP

and BIP; and 0.5, 1, and 2 mM FLP and BLP), as well as varying

the primer sequences. The optimum incubation condition was

established as 63uC for 60 min in a buffer containing 4 mM

MgSO4, followed by heating at 80uC for 2 min to terminate the

reaction. In accordance with the sequence analysis, OvGST1a was

revealed as the best target (data not shown). Primer sets (Fig. 3A
and Fig. 3B) targeting OvGST1a were designed after optimiza-

tion and used for specificity and sensitivity studies.

Specificity of this primer set was determined in LAMP, using a

real time turbidimeter (Fig. 4A) and colorimetric detection

(Fig. 4B), to monitor amplification of genomic DNA from O.
volvulus, O. ochengi, or a related human filarial parasite, Loa loa.

Bovine, human, and black fly genomic DNAs, and non-template

controls were also included for comparison. Turbidity reached a

threshold value of 0.1 in approximately 45 minutes when 1 ng O.
volvulus DNA was added to the reaction, whereas no turbidity was

observed within the time interval examined (90 minutes) when the

Figure 4. Species-specific LAMP assay targeting OvGST1a. Genomic DNAs from O. volvulus (Ov), O. ochengi (Oo), L. loa (Lloa), Bos taurus (Bos),
Simulium vitattum (Sv) and Homo sapiens (Hsa) were used as template in the LAMP assay. Detection using turbidity (A). Each curve represents the
calculated average of triplicate turbidity curves generated with various genomic DNAs (1 ng) using Bst 2.0 DNA polymerase. Turbidity was observed
only using O. volvulus genomic DNA as template. Detection using hydroxy naphthol blue (B). Genomic DNAs from O. volvulus (Ov), O. ochengi (Oo), L.
loa (Ll), Bovine (Bt), Simulium vitattum (Sv) and human (Hs) were used as template in a PCR assay (C). Amplification product (,200 bp) using LAMP
primers F3 and B3 was obtained when O. volvulus genomic DNA was used (indicated by arrow). As a positive control, an actin gene fragment was PCR
amplified from (Ov), (Oo), (Ll), (Bt), (Sv) and Hs DNAs using degenerate primers (D). Agarose gel showing amplification of a 244 bp fragment of the
actin gene. Water was used in a non-template control (NTC) in all experiments. Molecular weight marker (MW) is indicated.
doi:10.1371/journal.pone.0108927.g004
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same amount of heterologous DNAs from O. ochengi, L. loa,

mammal or black fly was used (Fig. 4A). Similar results were

observed using the more simplified colorimetric detection method,

where a color change (purple to blue) was only evident when O.
volvulus genomic DNA was present (Fig. 4B). Conversely, in the

absence of template or primers, no reactions were observed when

using either turbidity or color change as the readout (Fig. 4A and
4B).

Specificity studies were also performed by PCR amplification of

OvGST1a using primers F3 and B3 (Fig. 4C). A 200 bp fragment

of the expected size was obtained when O. volvulus genomic DNA

was used as a template, whereas no product was observed from

samples containing heterologous DNA or no template. The

integrity of the various DNAs was confirmed in PCR experiments

using primers designed to amplify a conserved actin gene. A single

amplification product of the correct size (244 bp) was observed in

all cases (Fig. 4D).

To determine and compare the detection limits of LAMP and

PCR, ten-fold serial dilutions of O. volvulus genomic DNA

ranging from 0.001–1.0 ng were amplified (Fig. 5A–C). Both

amplification methods were able to detect levels as low as 0.01 ng,

which is equivalent to 1/10
th of a single microfilaria. In the case of

LAMP a positive result was evident within one hour (Fig. 5A).

Since the goal is to use the LAMP assay to evaluate infection in

the vector, pools of uninfected, laboratory-reared black flies were

spiked with 0.001–1.0 ng O. volvulus genomic DNA, and total

genomic DNA was then isolated using a commercially available

DNA extraction kit or by boiling. Samples from each pool and

extraction method were then used as templates for amplification of

OvGST1a in LAMP and PCR reactions (Table 1). Consistent

with previous results using highly purified DNA as template,

LAMP was positive in samples prepared from an insect pool

containing 50–200 black flies spiked with 0.1 ng O. volvulus DNA

(equivalent to a single microfilaria) when DNA was purified using

a commercially available kit, or extracted in a more crude fashion

by boiling. PCR was less effective following crude extraction with a

pool size limit of 150 black flies. At the 0.01 ng level using kit

purified material, LAMP efficiently amplified OvGST1a in pool

sizes up to 150 black flies, whereas for PCR the pool size limit was

50 insects. When boiling was used to extract DNA, a positive

signal was obtained for LAMP at a ratio of 0.01 ng target DNA in

100 insects, while the limit for PCR was 0.01 ng DNA in 50

insects. These results demonstrate the ability of the LAMP assay to

withstand the inhibitory effects of components present in the

purified or crude black fly extracts without severely affecting

sensitivity.

Discussion

In recent years there has been significant progress in the control

of onchocerciasis by treating whole populations with repeated,

semi-annual (Latin America) or yearly (most African foci) cycles of

ivermectin [57]. Several agencies are involved in these activities for

example, the African Programme for Onchocerciasis Control

(APOC), and the Onchocerciasis Elimination Program for the

Americas (OEPA). Surveys of Simulium vectors are recommended

by WHO to determine if transmission has been interrupted and to

certify that elimination of the parasite has been achieved [7].

Previous studies have shown the value of molecular xenodiagno-

sis(detection of parasite DNA in insects by DNA amplification

methodologies) as a tool for assessing changes in parasite

prevalence rates in endemic populations after MDA

[12,17,21,23,58]. This method requires collection of representa-

tive samples of insects, isolation of total DNA from insect pools,

amplification of parasite-specific DNA sequences, and detection of

the amplified product. Currently, PCR pool screening of large

numbers of flies is employed since infection levels are likely to be

low or non-existent in treated areas. There is a limit to the number

of flies in each pool, since the DNA polymerases used in PCR

reactions are highly sensitive to inhibitors present in insect

extracts. Currently, either silica-purified DNA or oligonucleotide

capture of O. volvulus genomic DNA from homogenates of insects

is used to reduce the amount of inhibitors carried over into the

reaction [23]. Another approach involves reducing the insect

Figure 5. Sensitivity of LAMP and PCR methods for the detection of O. volvulus using ten-fold serial dilutions of O. volvulus genomic
DNA ranging from 0.001–1.0 ng. Detection of LAMP product using turbidity (A) or hydroxy napthol blue (B). PCR amplification of a ,200 bp
product using LAMP primers F3 and B3 was obtained when O. volvulus genomic DNA was used (C). Molecular weight marker (MW) is indicated.
doi:10.1371/journal.pone.0108927.g005
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biomass by limiting the analysis to insect heads alone. This will

also reveal the prevalence of flies carrying infective-stage larvae

(L3) and therefore provide an accurate assessment of transmission,

and high-throughput methods for collecting black fly heads have

been developed for this purpose [22,25]. Current OEPA

guidelines require that the prevalence of flies carrying L3s be less

than 1/2000 in every sentinel community for transmission to be

interrupted [59], which necessitates surveying approximately 6000

flies from each area to state with 95% confidence that the

prevalence of infective flies is in this range [23].

In sub-Saharan Africa where cattle-biting S. damnosum s.l. flies

and zebu cattle are present, O. ochengi infections are common in

the vector population [60,61]. Based on the presence of

microfilariae, the prevalence in cattle is as high as 66–71% in

some areas [62]. The parasite is extremely closely related to O.
volvulus, as determined by phylogenetic distance [63] and natural

history [64]. Indeed, it has been hypothesized that O. volvulus
diverged from O. ochengi as recently as 5,000 years ago during the

domestication of cattle in sub-Saharan Africa [65]. The routinely

used O-150 diagnostic marker for O. volvulus clusters with other

Onchocerca species, thereby hampering species discrimination

[66].

In the present study we identified a gene (OvGST1a), encoding

a glutathione S-transferase, as an alternative biomarker for O.
volvulus infection. GSTs (EC 2.5.1.18) are an ancient and diverse

superfamily of multifunctional proteins. Three different classes of

GST (OvGST1-3) have been isolated and characterized from O.
volvulus [67,68]. The OvGST1a and OvGST1b isoforms (differ-

ing in only 10 amino acids) [56,69] are unique sigma-class GSTs

that encode an extracellular enzyme located in the outer zone of

the hypodermis at the host-parasite interface, where they are

thought to influence host inflammatory and immune cells due to

their GSH-dependent prostaglandin D Synthase activity

[56,67,70]. GSTs are present in all the developmental stages of

the parasite and have been pursued as potential vaccine/drug

targets [70]. The presence of two GST1 paralogues in O. volvulus
suggests that the GST1 gene underwent a duplication event

following the speciation of the human parasite from its bovine-

specific sister. We evaluated the suitability of OvGST1b (data not

shown) and OvGST1a for diagnosis of O. volvulus infection using

both LAMP and PCR methods. High levels of specificity were

achieved in OvGST1a-based LAMP and PCR assays. LAMP

primers amplified O. volvulus DNA but not DNA isolated from

the closely related filarial parasites O. ochengi or L. loa, or from

human, bovine or black fly. LAMP primers F3 and B3 showed a

similar specificity profile when used in PCR reactions, highlighting

the versatility of this target for molecular diagnostic studies.

High levels of specificity and sensitivity can be achieved in

LAMP because the amplification reaction involves four specific

oligonucleotide primers that anneal to six distinct regions within

the target sequence [32]. The addition of loop primers may further

improve performance [34]. We observed comparable levels of

sensitivity (0.01 ng), equivalent to 1/10
th of a single microfilaria

[71], using either LAMP or PCR to amplify OvGST1a when

highly purified DNA was used as template. We would therefore

predict that the assays would permit detection of a single infective

stage larva given that they are considerably larger in size.

However, LAMP was more efficient than PCR in detecting O.
volvulus DNA recovered from black fly material (0.01 ng in 150

insects within 60 minutes). This is likely due to the fact that black

flies contain a number of biological substances that inhibit the

polymerases used in PCR which cannot be removed completely

during classical extraction protocols. The most efficient method

used to circumvent this problem involves paramagnetic bead
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purification, but it is expensive [25]. Other studies have also shown

superior tolerance of LAMP tests for biological substances [72–

74]. Furthermore unlike PCR, LAMP proved effective even when

DNA was extracted using a simple boiling method, rather than

using commercially available kits that add a significant cost to the

process (as well as time and effort). This is a significant finding

representing an important technical advance, and emphasizes the

usefulness of the LAMP technique as a surveillance tool for mass

screening of infected vectors. In addition, recent estimates suggest

that diagnostic LAMP tests are significantly cheaper than PCR.

The estimated cost of a W. bancrofti LAMP test is $0.82 compared

with more than $2.20 for PCR [40]. Other distinct advantages of

LAMP over PCR include its operational simplicity and isothermal

nature. In PCR, thermal cycling is required to denature the

template, anneal primers and extend the amplicon. LAMP

employs Bst DNA polymerase, which provides both strand

displacement and target amplification at a single temperature in

a simple heat block or water bath at 60–65uC [32]. Rapidity and

versatility in readout options also make LAMP a particularly

appealing technology. In the present study, real-time turbidity was

used for assay design and optimization yielding positive results

within 60 minutes, and results were confirmed using the more

field-friendly hydroxy naphthol blue [75,76].

All the data on detecting O. volvulus-specific OvGSTa DNA

were derived from pools of laboratory reared S. vittatum spiked

with purified O. volvulus gDNA. Further work is required to

demonstrate that the extraction techniques employed are able to

release sufficient template for detection from at least one infected

fly in a pool of insects. The current recommendation for the

number of flies in a pool, limited by the DNA purification process,

is 50 flies for Latin American vectors and 100 flies for African

vectors [23]. We anticipate that the OvGSTa LAMP assay will

accommodate these pool sizes since the data from DNA-seeded

pools (up to 200 insects) indicates that the method is robust and the

extraction protocol employed will likely suffice to release

measurable DNA target from a single infected black fly.

In summary, we describe a simple OvGST1a-based LAMP

diagnostic assay for O. volvulus infection that generates a robust

read-out within 60 minutes. The assay has considerable potential

as a new field tool for implementation and management of MDA

programs for onchocerciasis.
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