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Abstract

The primary Afrotropical malaria mosquito vector Anopheles gambiae sensu

stricto has a complex population structure. In west Africa, this species is split into

two molecular forms and displays local and regional variation in chromosomal

arrangements and behaviors. To investigate patterns of macrogeographic popula-

tion substructure, 25 An. gambiae samples from 12 African countries were geno-

typed at 13 microsatellite loci. This analysis detected the presence of additional

population structuring, with the M-form being subdivided into distinct west,

central, and southern African genetic clusters. These clusters are coincident with

the central African rainforest belt and northern and southern savannah biomes,

which suggests restrictions to gene flow associated with the transition between

these biomes. By contrast, geographically patterned population substructure

appears much weaker within the S-form.

Introduction

Many studies have attempted to identify genetic disconti-

nuities between conspecific populations and to determine

the factors that promote differentiation. This is a critical

step for predicting the evolution of populations under dif-

ferent scenarios, including those that involve human-made

environmental changes (Crispo et al. 2011). In medically

important insects, the evolutionary relevance of these pre-

dictions gains a public health dimension, as they can be

used to model the dispersal of genes of interest such as

those related to insecticide resistance or refractoriness to

infection by pathogens (Donnelly et al. 2002).

The nominal species of the Anopheles gambiae Giles com-

plex (Diptera: Culicidae), Anopheles gambiae sensu stricto

(hereafter termed ‘An. gambiae’) is a primary vector of

human malaria in Africa. It is widely distributed through-

out sub-Saharan Africa in close association with humans.

There is evidence that this species is undergoing a process

of incipient speciation. The speciation process appears to

be restricted to west Africa and involves sympatric popula-

tions. Initially, heterogeneities have been found in the
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distribution of paracentric inversions at chromosome 2,

which displayed strong heterokaryotype deficits. This led to

the description of five chromosomal forms (cytoforms)

each in Hardy–Weinberg equilibrium and characterized by

distinct arrangements of inversions (Coluzzi et al. 1979,

2002). Following the early recognition of the five cyto-

forms, the species was tentatively split into two molecular

forms, denoted M and S, identified by RFLP patterns in the

X-linked ribosomal DNA (rDNA) intergenic spacer (IGS)

(Favia et al. 1997; della Torre et al. 2001, 2002). The

S-form has a continent-wide distribution, whereas the

M-form appears to be confined to west Africa where it

commonly occurs in sympatry with the S-form (della Torre

et al. 2005). However, despite the extensive area of sympa-

try, MS hybrids are rarely seen (della Torre et al. 2005;

Simard et al. 2009), with the exception of the extreme west

of Africa (Caputo et al. 2008; Oliveira et al. 2008).

Initial genome-wide genotyping analyses revealed that

differentiation between molecular forms was restricted to

relatively small genomic regions located on the three chro-

mosomes (Turner et al. 2005; White et al. 2010). More

recently, however, whole-genome analyses based on next-

generation sequencing and SNP microarrays have shown

that M/S differentiation is more widespread across the

genome than previously thought (Lawniczak et al. 2010;

Neafsey et al. 2010; Weetman et al. 2010). Subsequently,

the detection of genomic islands of divergence was

found to be influenced by the degree of realized gene

flow between the forms, which varies across west Africa

(Weetman et al. 2012). As gene flow decreases, differentia-

tion across the genome tends to increase and masks the

initial divergent genomic regions. These findings point to

a case of sympatric ecological speciation under divergent

selection within An. gambiae (Diabat�e et al. 2008; Costan-

tini et al. 2009).

The phenotypic repercussions of the genetic diver-

gence between molecular forms are still unresolved.

Recent studies have shown that M-form larvae outcom-

pete the S-form in the presence of predators, which

may contribute to habitat segregation observed between

forms (Diabat�e et al. 2008; Gimonneau et al. 2010). M-

form larvae prevail in areas with more permanent

breeding sites (hence with higher predator pressure),

whereas the S-form predominates in temporary rain-

dependent breeding sites, perhaps due to a superior

competitive ability where predation pressure is lower

(Gimonneau et al. 2012). Genetic divergence between

molecular forms may also impact both malaria trans-

mission and vector control. A variant of the comple-

ment-like protein TEP1 with anti-parasitic activity was

found to be fixed in M-form but absent in sympatric

S-form populations of Mali and Burkina Faso (White

et al. 2011). This was the first evidence of how subdivi-

sion within An. gambiae may affect vector competence.

Another striking example comes from the contrasting

differences in the frequency of knockdown resistance (kdr)

mutations found between molecular forms. In spite of

widespread sympatry between M- and S-forms, for a dec-

ade following their discovery in An. gambiae (Martinez-

Torres et al. 1998), kdr mutations were found at high fre-

quency in S-form populations but were rare in M-form

(Santolamazza et al. 2008). Only recently, these mutations

are becoming more common in M-form populations (Da-

bir�e et al. 2009; Lynd et al. 2010).

In addition to the M- and S-forms partitioning, there is

evidence for further population substructure within each of

the molecular forms of An. gambiae. Microsatellite and

AFLP analyses of S-form populations belonging to the

SAVANNA and BAMAKO cytoforms revealed significant

differentiation between these cytoforms in Mali (Taylor

et al. 2001; Slotman et al. 2006). Similarly, Slotman et al.

(2007) reported significant genetic differentiation between

M-form populations of the FOREST and MOPTI cyto-

forms from Cameroon and Mali, respectively. These results

led the authors to hypothesize that the M-form may actu-

ally consist of two partially isolated entities (Slotman et al.

2007; Lee et al. 2009).

With some exceptions (e.g. Lehmann et al. 2003; della

Torre et al. 2005; Esnault et al. 2008; Choi and Townson

2012), the complex scenario of population subdivision

within An. gambiae has been evidenced by studies that

have often been based on a relatively limited geographic

sampling coverage. Such local or regional sampling can

be effective in detecting fine levels of population struc-

ture and revealing patterns of sympatric divergence but

may mask other sources of substructuring, such as the

presence of biogeographic or physical barriers to gene

flow.

Here, we present the results of a microsatellite analysis of

An. gambiae populations spanning the distribution of this

species in the west of sub-Saharan Africa designed to assess

geographic patterns of population structure within each

molecular form.

Materials and Methods

Samples

Twenty-five Anopheles gambiae s.s. DNA samples were

obtained from 24 collection sites in 12 African countries,

between 1996 and 2006 (Fig. 1, see also Table S1 of the

Supporting Information). These samples were collected

mainly indoors by various adult sampling methods and

identified to species by PCR (Scott et al. 1993), within the

framework of previous entomological surveys. With the

exception of a single site located in eastern Africa (Furvela,

Mozambique), all sampling locations were in west Africa.
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The distribution of the west African sampling sites covered

an overland distance of ca. 5700 km, from the Gambia to

southern Angola.

Of the 25 samples analyzed, 16 were of the M-form and

nine of the S-form according to the genotyping of the ribo-

somal DNA IGS marker (Favia et al. 1997; della Torre et al.

2001). The mean pair-wise distance among M-form

sampling sites was 2031 km (median: 1810 km; SD: �
1303 km) and 2129 km (median: 1977; SD: � 1779 km)

for S-form sampling sites. The mean pair-wise distance

among S-form sites from west Africa (i.e. excluding the

eastern African sample of Mozambique) was 1558 km

(median: 797 km; SD: � 1436 km). Although sympatric

M- and S-forms are present in most west and central Afri-

can sites, Bissau (Guinea-Bissau) was the only locality from

which sympatric samples of both M- and S-forms were

analyzed in this study. Information on sample size, year,

type of collection, geographic coordinates, and biome type

is given for each sample in Table S1 of the Supporting

Information.
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Figure 1 Map of Africa biomes (adapted from UNEP 2010) showing the location of the collection sites. Blue marks: M-form samples (identified by

IGS-PCR); red marks: S-form samples; purple mark: locality with both M- and S-form samples. The Gambia: Wali Kunda (1), Maccarthy island (2); Gui-

nea-Bissau: Bissau (3), Burkina Faso: Bobo-Dioulasso (4), Goundry (5); Ghana: Okyereko (6), Accra (7); Benin: Dassa (8); Nigeria: Kobape (9); Camer-

oon: Tiko (10), Simbok (11); Central African Republic (CAR): Bayanga (12); Equatorial Guinea: Ngonamanga (13), Bata (14); Gabon: Libreville (15),

Benguia (16), Bakoumba (17), Dienga (18); Angola: Cabinda (19), Kikudo (20), Luanda (21), Cavaco (22), Namibe (23); Mozambique: Furvela (24).

The dashed contour lines represent the approximate limits of the distribution of the S-form, and the dash-dotted contour line shows the limit of the

distribution of the M-form, which is confined to west Africa.
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Microsatellite genotyping

Thirteen microsatellite loci were genotyped. All loci were

located on chromosome 3 to avoid potential bias resulting

from reduced recombination or selective pressures acting

at chromosomal inversions (frequent in chromosome 2) or

linkage with genomic regions of M/S divergence on chro-

mosome X (Lanzaro et al. 1998; Turner et al. 2005). Each

locus was amplified individually by PCR with fluorescently

labeled primers using the protocols described by Donnelly

et al. (1999). Details of the microsatellites genotyped can

be found in Table S2 of the Supporting Information. Frag-

ment analysis was performed by capillary electrophoresis

on an automated sequencer (ABI�3730, Applied Biosys-

tems, Foster City, CA, USA) at the Science Hill DNA Anal-

ysis Facility, Yale University. To control for variation in

allele size scoring between capillary runs, the same positive

controls, consisting of PCR products of two An. gambiae

specimens from a laboratory colony, were used in all runs.

One additional positive control (DNA template from a col-

ony mosquito) and one negative control (no template)

were also included to assess PCR quality. Allele sizes were

scored from electropherograms using the software GENEMAR-

KER
� (SoftGenetics, State College, PA, USA).

Genetic data analysis

Genetic variation at each microsatellite locus was character-

ized by estimates of unbiased expected heterozygosity (Nei

1987) and allelic richness (El Mousadik and Petit 1996).

The latter parameter was used to account for differences in

sample sizes. Calculation of the estimates and comparisons

among groups by permutation tests (1000 permutations)

were performed using FSTAT v.2.9.3 (Goudet 1995). The

same software was used to compute pair-wise estimates of

the genetic differentiation parameter FST according to Weir

and Cockerham (1984) and to assess their significance by

permutation tests (1000 permutations). The number of

shared alleles between groups was estimated in random

subsamples of each group with size equal to the smallest

group sample size. Exact tests against Hardy–Weinberg

proportions and of linkage disequilibrium between pairs of

loci were performed in GENEPOP v.4.1 (Raymond and Rous-

set 1995). Presence of null alleles at each locus and sample

was tested using the procedure implemented by MICRO-

CHECKER with a 99% confidence interval (Van Oosterhout

et al. 2004). The coalescent-based simulation approach

implemented in LOSITAN (Antao et al. 2008) was used to

identify outlier microsatellites displaying unusually high or

low FST values of by comparing observed FST estimates with

values expected under neutrality (Beaumont and Nichols

1996). Runs were conducted under ‘neutral mean FST’ and

stepwise or infinite alleles mutation models using 50 000

simulations over all loci. The significance threshold for out-

lier detection was set at ≥0.95 percentile of simulations.

Bayesian clustering methods were used to detect popula-

tion subdivision without a priori assumptions on popula-

tion boundaries. Two types of clustering methods, namely

spatial and nonspatial, were employed based on whether

geographic information was included as a prior in the anal-

ysis. Spatial models generally perform better in cases of low

differentiation (FST < 0.05) among populations (Chen

et al. 2007).

The nonspatial Bayesian clustering analysis method

implemented in STRUCTURE 2.3.3 (Pritchard et al. 2000) was

used to infer the number of genetic clusters (K) in the

whole data set and within each molecular form separately.

Analyses were carried out without prior information of

sampling locations. A model with correlated allele frequen-

cies within populations was assumed (k = 1). The software

was run with the option of admixture, allowing for some

mixed ancestry within individuals, and the degree of

admixture (a) was allowed to vary. For each value of K

(K = 1–10), 10 independent runs were carried out with a

burn-in period of 10 000 and 100 000 iterations. The DK
statistic of Evanno et al. (2005) was calculated using

STRUCTURE HARVESTER (Earl and vonHoldt 2012) to deter-

mine the most likely number of clusters. The information

from the outputs of the 10 runs for each K was compiled

by the greedy method implemented in CLUMPP (Jakobsson

and Rosenberg 2007). Individual assignment to clusters

was performed with a probability threshold (Tq) deter-

mined by the analysis of simulated parental and admixed

individuals generated by HYBRIDLAB v1.0 (Nielsen et al.

2006). From the initial whole-sample STRUCTURE analysis,

individuals showing a probability of membership qi > 0.90

were selected to simulate 100 genotypes of each parental

class and four hybrid classes (F1, F2, and backcrosses with

each parental class). Simulated genotypes were analyzed by

STRUCTURE under the same conditions as above. Follow-

ing the example of V€ah€a and Primmer (2006), power and

accuracy were calculated for four Tq values (0.70, 0.75,

0.80, and 0.90).

Spatial genetic clustering analysis was conducted with

the whole data set and with M- and S-form data sets using

the software TESS v.2.3. (Franc�ois et al. 2006; Chen et al.

2007). This method implements a Bayesian clustering algo-

rithm that integrates genetic and spatial information to

ascertain population structure without a priori population

information, by inferring the most likely maximum num-

ber of clusters. As geographic coordinates were available

only for each collection site, individual coordinates for each

specimen were randomly generated within a circle with 10-

km radius around the coordinate of each site. The 10-km

radius was chosen based on previous observations on

anopheline maximal flight distances that seem to vary

© 2013 The Authors. Published by John Wiley & Sons Ltd 6 (2013) 910–924 913
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around 9–12 km (Kaufmann and Briegel 2004). The two

admixed models available in TESS, CAR and BYM (Chen et al.

2007; Durand et al. 2009), were used in the analysis. Ten

independent runs were carried out with a burn-in period of

100 000 iterations and 100 000 replications for each value

of Kmax (K = 2–10). The Deviance Information Criterion

(DIC) was used to select the admixture model that per-

formed better and to infer the number of clusters. The

maximum number of clusters was selected from DIC versus

Kmax plots as the lowest value at which the DIC curve

reached a plateau. The estimated individual membership

probabilities of the ten runs of the optimal Kmax were aver-

aged using the greedy algorithm in CLUMPP to correct for

discrepancies between runs.

Principal coordinates analysis (PCoA) was used to visu-

alize patterns of genetic differentiation among samples in a

two-dimensional plot. Calculations were performed in GEN-

ALEX 6.41 (Peakall and Smouse 2006) using the standard-

ized covariance method for the distance matrix conversion.

Isolation by distance was tested by the linear regression

between logarithmic geographic distances and linearized 1/

(1-FST) values (Rousset 1997). Pair-wise overland distances

between sites were estimated using the metric tool available

in Google� Earth. The software GENALEX was used to assess

the significance of the correlation by Mantel tests (1000

permutations).

Whenever multiple tests were performed, the nominal

significance level (a = 0.05) was adjusted by the sequential

Bonferroni procedure (Holm 1979).

Results

A total of 967 An. gambiae were analyzed. Estimates of

genetic diversity are shown in Table S3 of the Supporting

Information. Mean allele richness (Rs) of the microsatellite

loci varied from 5.4 (AG3H242) to 12.7 (AG3H128) and

expected heterozygosity (He) from 0.575 (AG3H577) to

0.894 (AG3H128). There were 48 significant departures

from Hardy–Weinberg proportions of 325 tests performed.

These were associated with positive FIS values indicating

heterozygote deficits. Loci AG3H88, AG3H127, and

AG3H750 comprised 39 (81.3%) of the 48 significant tests,

suggesting that departures from Hardy–Weinberg expecta-

tions were locus-specific. Presence of null alleles was

detected by MICROCHECKER in 44 of the 48 (92.7%) signifi-

cant heterozygote deficits (Table S3, Supporting Informa-

tion). There were 35 significant linkage disequilibrium

(LD) tests of 1950 performed, of which 24 (68.6%) were

observed in the sample from Cabinda, Angola (sample 19,

Fig. 1) and 6 (17.1%) in Kobape, Nigeria (sample 9). Of

the 13 loci analyzed for signatures of selection using LOSIT-

AN, only AG3H127 showed a significant signal of positive

selection in both mutation models (Fig. S1, Supporting

Information). Two additional loci, AG3H758 and

AG3H93, displayed marginally significant signals of selec-

tion and only under the IAM or SMM mutation models,

respectively.

The results of the Bayesian clustering analysis imple-

mented in STRUCTURE are shown in Fig. 2. Graphical repre-

sentations of Evanno’s DK can be seen in Fig. S2 of the

Supporting Information. When all samples were analyzed

together, the optimum number of clusters was K = 2. This

partitioning generally corresponded to the M (cluster 1)

and S (cluster 2) molecular form composition of the sam-

ples and it was independent of geographic location. How-

ever, samples from west African sites (i.e. samples 1–9 in

Fig. 2, K = 2) displayed more inconsistencies between the

form determined by the IGS marker and the respective

genetic background when compared to samples from cen-

tral and southern Africa. In west African samples, the aver-

age probability of assignment to cluster 1 for M-form

specimens was 0.515 and 0.636 for S-form assignment to

cluster 2. When individuals were assigned to each cluster

based on a Tq ≥ 0.8, as determined by the analysis of simu-

lated data (see Table S4, Supporting Information), there

were only 8.7% (25 of 289) M-form individuals assigned to

cluster 1 and 33.3% (23 of 69) S-form individuals to cluster

2. The proportion of individuals with admixed ancestry

(i.e. 0.20 < Tq < 0.80) was 83.7% and 65.2% for M- and

S-form, respectively. In contrast, the average probabilities

of assignment for M- and S-form individuals from central

and southern African sites were 0.831 and 0.847, respec-

tively. The proportion of consistent assignments was also

much higher: 73.3% (225 of 307) in the M-form and 75.8%

(229 of 302) in the S-form. The second highest DK value

corresponded to K = 3. Here, M-form populations were

subdivided into two genetic clusters (Fig. 2, K = 3): cluster

1 contained mainly individuals from the samples collected

in west Africa (samples 1–9) and also from Bayanga, CAR

(sample 12); cluster 2 included the remaining samples from

central Africa (samples 10, 11, 13, and 14) and Angola

(samples 21–23). These results did not differ qualitatively

when analyses were repeated excluding the three loci that

revealed most heterozygote deficits indicating that locus-

specific Hardy–Weinberg deficits had little impact in the

analysis (Fig. S3, Supporting Information).

STRUCTURE was also performed within each molecular

form separately. When M-form samples were analyzed, a

third subdivision was evident (Fig. 2, M-form). West Afri-

can samples were again grouped in a single cluster (cluster

1, samples 1-9, 12), but there was a separation between cen-

tral African samples (cluster 2, samples 10-11, 13-14) and

the southernmost samples from Angola (cluster 3, samples

21-23). The only exception to this geographic partitioning

was the sample from Bayanga (sample 12). This sample has

a central African location, but individuals displayed a

914 © 2013 The Authors. Published by John Wiley & Sons Ltd 6 (2013) 910–924
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Figure 2 Bayesian clustering analysis implemented by STRUCTURE (Pritchard et al. 2000). Localities are numbered according to Fig. 1 in a northwest–

southeast direction along the X-axis (see also Table S1 of Supporting Information). White boxes indicate M-form and gray boxes indicate S-form sam-

ples as determined by the IGS marker. Y-axis: probability of ancestry to each cluster. In the graphs, each column corresponds to the multilocus geno-

type of a single individual partitioned into colors representing the probability of assignment to each cluster. (A) analysis performed with all samples

(N = 967), K = 2; (B) analysis performed with all samples (N = 967), K = 3; (C) analysis performed with M-form samples only (N = 596), K = 3; (D)

analysis performed with S-form samples only (N = 371), K = 3.
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higher probability of assignment to cluster 1

(mean = 0.633) compared to cluster 2 (mean = 0.289).

For Tq ≥ 0.80, 46.7% of the 45 individuals analyzed were

assigned to the west African cluster 1 and only 2 individuals

(4.4%) were assigned to the central African cluster 2.

Subdivision among S-form populations was also

observed when STRUCTURE analysis was performed with

these samples only (Fig. 2, S-form). The two west African

samples (Bissau, 3S and Accra, 7) were grouped into a west

African cluster (cluster 1). In central Africa, a second clus-

ter was detected (cluster 2). This genetic background pre-

dominates in the sample from Libreville, Gabon (sample

15) and gradually intergrades southwards with cluster 1.

The proportion of individuals assigned to cluster 2

(Tq ≥ 0.80) decreased from 97.8% in Libreville (sample 15)

to 28.9% (Dienga, 18), 17.8% (Benguia, 16), 13.3% (Bak-

oumba, 17), 8.5% (Cabinda, 19), and 6.7% in the south-

ernmost Kikudo (sample 20). Finally, a third cluster

comprised specimens from the southeast African sample of

Furvela (sample 24), in Mozambique.

The geographic structuring of M-form populations was

also evident in the principal coordinates analysis (Fig. 3).

The distribution of the M-form samples in the plot reflects

their geographic grouping into west, central, and southern

clusters. The S-form samples were clearly separated from

the M-form with the single exception of Bissau (3S, Fig. 3).

The separation between west and central African S-form

samples was less pronounced than in the M-form. The

S-form sample of Furvela, Mozambique (sample 24), was

placed as an outlier of the S-form group, in agreement with

the results obtained by STRUCTURE.

The results of the spatially explicit analysis conducted in

TESS were very similar for the two admixture models used.

The CAR model gave, however, less-dispersed DIC values

between runs, so that only the results for this model are

presented (Fig. S4, Supporting information). When both

M- and S-form samples were analyzed together, an optimal

Kmax = 6 was obtained (Fig. 4, A). There were three major

clusters that consisted in the partitioning of the M-form

into west, central, and south clusters, thus confirming the

results of the nonspatial analyses. In the S-form, however,

only the east African sample of Furvela, Mozambique

(sample 24), formed a distinct cluster, whereas the remain-

ing S-form samples from west and central Africa grouped

together. There was one additional minor cluster in which

the highest individual probability of membership was only

0.38, for a specimen from Bata (sample 14). The spatial

analysis of M- and S-form samples alone did not disclose

any additional substructuring. For the M-form, a Kmax = 4

was obtained confirming west, central, and southern clus-

ters (Fig. 4, B and C). A fourth minor cluster comprised

again the same single individual from Bata, Equatorial

Guinea (sample 14) with a probability of membership

qi = 0.731. The assignment of this individual into a minor

cluster was also consistent in the TESS analyses performed

with 10 loci (i.e. excluding the three loci with greatest het-

erozygote deficits; Fig. S3, C and D). This consistency led

us to re-analyze the IGS molecular identification (Scott

et al. 1993) of this and the other specimens of this locality.

This revealed the presence of two misidentified individuals.

One was found to be Anopheles melas, another sibling spe-

cies of the An. gambiae complex, and corresponded to the

individual assigned to the minor cluster. The other gave a

banding pattern consistent with a hybrid between

An. melas and An. gambiae s.s. This individual was

assigned to the M-west cluster with qi = 0.621. Removing

these two individuals had little influence on the estimates

of pair-wise genetic differentiation between this locality

and the others (Table S6). For the S-form, an optimal

Kmax = 3 also confirmed the separation of the east African

sample of Furvela, Mozambique (sample 24), but did not

disclose any subdivision between central and west African

samples (Fig. 4, D and E). There was one additional minor

cluster represented by five specimens, four from Bissau

(sample 3S) and one from Accra (sample 7).

Significant positive slopes were obtained for all the

regressions of (FST/1-FST) with logarithmic distance (Table

S5, Supporting Information). The proportion of the varia-

tion explained by the regression (r2) was generally low, par-

ticularly when both M- and S-form were analyzed together

(all samples, Table S5, Supporting Information). The larg-

est r2 value was recorded for the regression involving

S-form samples (0.43). When the most distant S-form sam-

ple of Furvela, Mozambique (sample 24), was removed, the

regression remained significant but with a lower r2 (0.28).

Plots of the regression of linearized FST and logarithmic
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Figure 3 Principal coordinates analysis of the 25 An. gambiae samples.

Each mark represents a sample numbered according to Fig. 1. Marks

are colored according to the within-form genetic clusters revealed by

STRUCTURE (Fig. 2). Blue: M-west, light blue: M-central, dark blue:

M-south; red: S-west, light red: S-central, dark red: S-east.
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Figure 4 Individual assignment plots and maps showing mean membership probabilities to each cluster at each locality, obtained by TESS (Chen et al.

2007). The bar plots depict individual assignment probabilities averaged for the ten runs using CLUMPP (Jakobsson and Rosenberg 2007). The maps

show pie charts of the average probability of membership to each cluster for each locality. Samples are numbered according to Fig. 1 and Table S1

(Supporting Information). (A) analysis performed with all samples (i.e. both M- and S-form), with clusters colored according to the labels of the fol-

lowing bar plots; (B and C) analysis performed with M-form samples only; (D and E) analysis performed with S-form samples only.
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distance for M- and S-forms are shown in Fig. 5. For the

M-form, comparisons between sampling sites within the

same genetic cluster (obtained by STRUCTURE) had in general

lower FST than comparisons involving sites from distinct

genetic clusters (Fig. 5, A). The mean of pair-wise FST esti-

mates between samples within each cluster varied between

0.015 and 0.022, corresponding to comparisons between

collection sites 18–3658 km apart (Table S6, Supporting

Information). The mean of pair-wise FST between samples

from different clusters ranged from 0.030 to 0.042 and

involved comparisons with distances between 541 km and

5317 km. This pattern was not so evident in the S-form,

where differentiation appears to reflect less cluster ancestry

and depend more on geographic distance (Fig. 5, B).

Estimates of genetic diversity for each genetic cluster

within the M-form and for the S-form are shown in

Table 1. There was a trend for a south–north increase in

diversity within the M-form. Estimates of Rs and He were

lowest in the M-south cluster, intermediate in the M-cen-

tral, and highest in the M-west cluster. These differences

were significant for both parameters (permutation tests, Rs:

P = 0.001; He: P = 0.027). The S-form displayed Rs and He

values similar to those of the M-central cluster. The average

number of shared alleles among clusters was higher

between the S-form and M-west clusters than between any

other comparison (Table 1). These two clusters also had

the lowest pair-wise FST estimate (0.023) with the highest

(0.075) being observed between S-form and M-south

(Table 1).

Discussion

The macrogeographic scale microsatellite analysis on

An. gambiae presented here revealed a significant associa-

tion between genetic differentiation and geographic dis-

tance. This pattern of isolation by distance was not an

unexpected result given the relatively low active dispersal

capacity of this mosquito (<13 km, Kaufmann and Briegel

2004) and also agrees with a previous study covering simi-

lar geographic ranges (Lehmann et al. 2003). However, iso-

lation by distance appears not to be the only factor shaping

the genetic structure of this species. Two additional sources

of variation were disclosed: the well-known subdivision of

the species into the M and S molecular forms and the split

of the M-form into three geographic clusters corresponding

to west, central, and southern African populations.

Subdivision corresponding to the two molecular forms

was revealed by both Bayesian clustering analyses and was

also confirmed by PCoA. This pattern was detected using

molecular markers located outside the previously described

genomic regions of divergence (Turner et al. 2005; White

et al. 2010). It was also independent of the geographic loca-

tion. At K = 2 of the STRUCTURE analysis, all M-form sam-

ples clustered together regardless of being from west,

central, or southern Africa. Likewise, the S-form samples
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Figure 5 Plots of the regression between FST/(1-FST) and logarithmic

geographic distance. (A) M-form. Blue circles: comparisons between

localities for which the majority of individuals were assigned to the

same genetic cluster (i.e. M-west, M-central, and M-south). Red circles:

comparisons between M-west and M-central localities. Orange circles:

comparisons between M-central and M-south localities. Purple: com-

parisons between M-west and M-south localities. Circles with a black

line correspond to comparisons involving the locality of Bayanga (CAR),

which was considered as representative of the M-west cluster. (B)

S-form. Blue squares: comparisons between localities belonging to the

same genetic cluster (i.e. S-west, S-central, and S-east/Mozambique).

Red squares: comparisons between S-west and S-central localities.

Orange squares: comparisons between S-central localities and S-east/

Mozambique. Purple squares: comparisons between S-west localities

and S-east/Mozambique.

Table 1. Estimates of genetic diversity, pair-wise FST, and proportions

of shared alleles among S-form and M-form clusters.

M-west M-central M-south S-form

Rs 8.8 (0.3) 7.5 (0.2) 6.3 (0.4) 7.4 (1.0)

He 0.806 (0.016) 0.773 (0.013) 0.720 (0.027) 0.743 (0.051)

M-west – 0.030 0.048 0.023

M-central 11.5 – 0.035 0.061

M-south 9.4 8.7 – 0.075

S-form 13.0 10.8 8.9 –

He, mean over loci expected heterozygosity; Rs, mean over loci allele

richness; in parenthesis: standard deviation of mean; above diagonal:

FST estimates (all significant, P < 0.001); below diagonal: mean over loci

number of shared alleles estimated in randomly selected subsamples of

each group with samples size equal to the lowest sample size (M-south,

N = 124).
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from west and central Africa also clustered with the East

African sample of Mozambique. The single exception was

the clustering of the majority of the S-form individuals

from Bissau in the M-form cluster, which reflects the high

levels of inter-form hybridization and asymmetric intro-

gression previously described for this region (Oliveira et al.

2008; Caputo et al. 2011; Marsden et al. 2011). The intro-

gression of more M-form genes into the S-form detected in

these reports agrees with the position of the S-form sample

from Bissau in the west M-form cluster of the PCoA con-

ducted in this study.

The degree of inter-form differentiation appeared to be

higher in central and southern African samples than in west

African ones, judging by the individual probabilities of

assignment to M- and S-form clusters obtained in

STRUCTURE at K = 2. An explanation for this observation

could be the nearly monotypic composition of An. gambiae

in some of the collection sites. This is the case for S-form

samples of Mozambique, Gabon and northern Angola and

also for the M-form samples of Angola (Pinto et al. 2002;

Calzetta et al. 2008). However, this hypothesis is less

probable for the sites sampled in Cameroon and Equatorial

Guinea, in which both forms have been found in sympatry

at minimum relative frequencies of ca. 10:90 (Moreno et al.

2007; Ridl et al. 2008; Simard et al. 2009; Weetman et al.

2010; Kamdem et al. 2012).

There is evidence that inter-form gene flow and intro-

gression varies across the An. gambiae distribution range.

In the central African region, the degree of inter-form

divergence appears to be highest and coincident with no

reported MS hybrids (della Torre et al. 2005; Simard et al.

2009), although there is evidence for at least sporadic

recent gene flow (Etang et al. 2009; Weetman et al. 2012).

In contrast, the isolation between forms seems to be less

marked in west Africa. Here, MS hybrid rates have been

found to vary greatly, from ~1% (della Torre et al. 2005;

Costantini et al. 2009) to over 20% (Caputo et al. 2008;

Oliveira et al. 2008). High levels of inter-form hybridiza-

tion and a pattern of asymmetric introgression have been

described in Guinea-Bissau (Oliveira et al. 2008; Caputo

et al. 2011; Marsden et al. 2011). Low inter-form differen-

tiation was also reported in a previous microsatellite analy-

sis of samples from different ecological zones in Ghana

(Yawson et al. 2007). These results contrast with the high

levels of inter-form differentiation revealed by genome-

wide SNP analyses in An. gambiae from Ghana (Weetman

et al. 2010) and also from Mali (Neafsey et al. 2010). This

discrepancy might be influenced by the propensity of

microsatellites to underestimate genetic differentiation as a

result of allelic homoplasy (Estoup et al. 2002). However,

in the SNP analyses of M- and S-forms from Ghana, differ-

entiation was markedly heterogeneous and far lower on

chromosome-3 than on chromosome-2 and chromosome

X (Weetman et al. 2012). Thus, differences might also be

explained by variation in the genomic location of markers.

Comparative genome-wide SNP analysis of samples from

central and west African regions displaying varying levels of

hybridization showed that the degree of genomic diver-

gence was dependent on the amount of realized gene flow

between forms (Weetman et al. 2012). Altogether, these

results point to a considerable variation in the degree of

isolation between molecular forms throughout the species

range. This variation may be a consequence of an intricate

assemblage of factors such as local or regional differences

in the stage or history of the speciation process, the occur-

rence of secondary contact zones, and differences in the

ecological trade-offs of hybridization (Caputo et al. 2011;

Marsden et al. 2011).

Additional partitioning into three distinct geographic

M-form clusters corresponding to west, central, and south-

ern African populations was revealed by both spatial and

nonspatial Bayesian clustering analyses and also by PCoA.

This subdivision appears to be coincident with the transi-

tion from a rainforest biome to northern and southern

savannah biomes, respectively. The genetic discontinuity

imposed by the forest-savannah transition is not complete,

as evidenced by the maintenance of a significant isolation-

by-distance signal across all M-form samples and also by

the presence of a locality (Bayanga, CAR) displaying a

higher proportion of an M-west genetic background in

spite of its rainforest location. Bayesian clustering methods

may overestimate genetic structure by generating spurious

clusters when applied to populations displaying isolation

by distance (Frantz et al. 2009; Schwartz and Mckelvey

2009). However, pair-wise FST values within clusters were

generally lower than those involving comparisons between

clusters, even when the distances between sampling sites of

the same genetic cluster were similar to those between sam-

pling sites of different clusters (Fig. 5, A). This suggests

that differentiation within the M-form is not only depen-

dent on geographic distance but that restrictions to gene

flow may also be present. The intermediate FST values of

the sample of Bayanga in the plot of Fig. 5 (A) are also con-

sistent with a higher admixture between two distinct

genetic clusters in this particular locality. Also, levels of

differentiation do not seem to have been influenced by

temporal differences between samples. Nonsignificant FST
values were obtained between samples from the Gambia

and Guinea-Bissau, located ca. 200 km apart, in spite of a

7-year interval between these collections.

Initial evidence of a separation between west and central

African M-form An. gambiae populations emerged from

two previous microsatellite-based studies. In the only

microsatellite-based continent-wide study carried out

before the present one, the grouping of Senegal and Ghana

samples apart from central African ones was observed in a
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FST-based neighbor-joining population tree (Lehmann

et al. 2003). Moreover, a high degree of genetic differentia-

tion was found between M-form populations from a savan-

nah area in Mali and those from a forested area in

Cameroon, suggesting that M-form may not be a single

entity (Slotman et al. 2007).

Population subdivision associated with forest-savannah

transitions is not uncommon. A similar scenario was

recently described within the An. gambiae sibling species

Anopheles melas Theobald, in which genetically distinct

west and central/southern African clusters were detected

with a degree of divergence comparable to that observed

among other species of the An. gambiae complex (Deitz

et al. 2012). Significant differentiation between rainforest

populations and one southern savannah population of

Anopheles nili (Theobald) in central Africa also suggested a

role of the evergreen forest as a barrier to gene flow in this

vector species (Ndo et al. 2010). A recent study has also

shown the occurrence of a cryptic central African group

genetically distinct from west African populations within

the tsetse fly Glossina palpalis palpalis Robineau-Desvoidy

(Dyer et al. 2009). Altogether, these results are consistent

with a role of the transition between rain forest and savan-

nah biomes as a barrier to gene flow in insect species.

Recent studies have shown that central African M-form

populations are becoming more adapted to densely urban-

ized areas where they explore polluted breeding sites of

anthropogenic nature (Simard et al. 2009; Kamdem et al.

2012). In contrast, west African M-form populations

appear more closely associated with irrigated agricultural

areas, occupying more permanent breeding sites such as

rice fields and irrigation reservoirs (Gimonneau et al.

2012). Local adaptation to different ecological niches cou-

pled with the effect of isolation by distance and restrictions

to mosquito active dispersal imposed by the rainforest

environment could explain the observed patterns of popu-

lation subdivision within the M-form.

Another factor that may have contributed to the differ-

entiation between west and central African M-form clusters

could be a higher degree of genetic introgression between

M- and S-forms in west Africa. This effect is suggested by

the highest mean number of shared alleles and lowest pair-

wise FST estimate between the M-west cluster and the

S-form, in line with a hypothesis of highest introgression

between these clusters. Introgression may also explain the

higher levels of genetic diversity of the M-west cluster as

measured by estimates of He and Rs. The data suggest that

substantial MS inter-form introgression is a less-probable

cause for the differentiation between central and southern

M-form samples, because evidence of inter-form gene flow

(i.e. admixture in the K = 2 analysis of STRUCTURE) was

much lower in these samples. However, sequence analysis

of an X-linked locus revealed that the majority of M-form

individuals in Angola had a 16-bp insertion that was fixed

in the S-form but absent in M-form individuals from west

and central Africa (Choi and Townson 2012), a finding that

suggests inter-form introgression has occurred in this geo-

graphic region.

The results obtained for the S-form did not conclusively

show a genetic discontinuity at the transition between

rainforest and savannah. A central African S-form cluster

was detected by STRUCTURE analysis but appears to be

mostly represented by a single sample (Libreville). Rain-

forest samples of Gabon also appeared more closely related

in the PCoA. However, S-form samples from savannah bi-

omes in west Africa (Ghana) and Angola were grouped

together in the PCoA and into a single cluster in STRUC-

TURE. The intergradation between S-form clusters observed

southwards of Libreville in the STRUCTURE analysis also

suggests gradual differentiation, in line with an expectation

of isolation by distance. Moreover, the results of the spa-

tial genetic analysis conducted by TESS for the S-form did

not show a clustering of central African samples within

the rainforest belt. Instead, the two major clusters corre-

sponded to the separation of the East African sample of

Mozambique from central and west African samples.

However, it should be noted that in spite of the continent-

wide distribution of the S-form, the number of samples

available for this study was quite limited, particularly in

west Africa. Moreover, central African samples were also

concentrated within a relatively small area separated by a

maximum distance of <500 km. This restricted sampling

could have influenced the results, especially for the spatial

cluster analysis as the accuracy of these methods tends to

increase with the inclusion of more spatial points (Guillot

et al. 2009). Thus, while our data suggest that isolation by

distance may be the predominant force in genetic structur-

ing of the S-form, greater geographic coverage would be

required to confirm if a pattern of population subdivision

associated with the forest-savanna transition also occurs in

this form. The third minor cluster detected included only

five specimens, four of which were collected in Bissau.

While this minor cluster may represent an artifact of the

analysis, as the effective number of clusters may be lower

than Kmax (Durand et al. 2009), it may also represent

admixed individuals between M- and S-forms, given the

high levels of hybridization reported for this locality

(Oliveira et al. 2008; Caputo et al. 2011; Marsden et al.

2011). In fact, this particular S-form sample from Bissau

grouped together with the west African M-form samples

in the PCoA and was not distinguishable from the M-form

in both spatial and nonspatial Bayesian analyses performed

with all samples. The differences found between spatial

and nonspatial clustering models in the S-form highlight

the importance of adding a spatial component into the

analysis especially in cases where isolation by distance is
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likely to influence the patterns of population differentia-

tion. When all samples were analyzed together by TESS, the

optimal K obtained reflected both the M/S subdivision

and the geographic partitioning within each form.

The apparent shallow differentiation between west and

southern African S-form samples is consistent with previ-

ous studies pointing to an overall shallow population

differentiation within this form (Lehmann et al. 1999,

2003). These studies have detected a single major subdivi-

sion of S-form populations in east Africa associated with

gene-flow restrictions imposed by the rift valley. In contrast

with the M-form, whose distribution is limited to the occi-

dental side of Africa, the relatively continuous distribution

of the S-form throughout the sub-Saharan continent may

provide a connection between west and southern S-form

populations through the intermediate central African

region west to the Rift Valley. On the other hand, the

heterogeneous haplotype distribution of genes conferring

knockdown insecticide resistance is consistent with a possi-

ble partitioning between rainforest and savannah S-form

populations (Pinto et al. 2007; Lynd et al. 2010). While

differences in insecticide selection pressure are likely to be

the major force shaping the distribution of kdr haplotypes,

forest/savannah restrictions to gene flow may also contrib-

ute to the observed heterogeneities.

The results obtained in this study show that in addi-

tion to the M- and S-forms partitioning and to the exis-

tence of local or regional genetic variants (Coluzzi et al.

1979; Riehle et al. 2011), population subdivision may

occur at a macrogeographic scale in An. gambiae, at

least within the M-form. This trend appears to be asso-

ciated with the transition between forest and savannah

biomes and appears to be evident both northwards and

southwards from the central African rainforest belt. This

complexity is of importance to the management of

malaria vector control programs. A genetic discontinuity

between savannah and forest biomes is likely to influ-

ence dispersal and distribution of genes of practical

importance to malaria epidemiology and control, such

as genes associated with insecticide resistance or with

vector competence.
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