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Abstract

Background: Pyrethroids are increasingly used to block the transmission of diseases spread by Aedes aegypti such as
dengue and yellow fever. However, insecticide resistance poses a serious threat, thus there is an urgent need to identify the
genes and proteins associated with pyrethroid resistance in order to produce effective counter measures. In Ae. aegypti,
overexpression of P450s such as the CYP9J32 gene have been linked with pyrethroid resistance. Our aim was to confirm the
role of CYP9J32 and other P450s in insecticide metabolism in order to identify potential diagnostic resistance markers.

Methodology/Principal Findings: We have expressed CYP9J32 in Escherichia coli and show that the enzyme can metabolize
the pyrethroids permethrin and deltamethrin. In addition, three other Ae. aegypti P450s (CYP9J24, CYP9J26, CYP9J28) were
found capable of pyrethroid metabolism, albeit with lower activity. Both Ae. aegypti and Anopheles gambiae P450s (CYP’s
6M2, 6Z2, 6P3) were screened against fluorogenic and luminescent substrates to identify potential diagnostic probes for
P450 activity. Luciferin-PPXE was preferentially metabolised by the three major pyrethroid metabolisers (CYP9J32, CYP6M2
and CYP6P3), identifying a potential diagnostic substrate for these P450s.

Conclusions/Significance: P450s have been identified with the potential to confer pyrethroid resistance in Ae.aegypti. It is
recommended that over expression of these enzymes should be monitored as indicators of resistance where pyrethroids are
used.
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Introduction

Dengue fever, transmitted by Aedes mosquito vectors, is a major

public health problem in over 100 countries with some 2.5 billion

people at risk of the disease [1]. Prevention of the disease depends

in large part on vector control, which relies heavily on the use of

insecticides. Interventions are targeted mainly at the larval stage

(larvicides), water source reduction, or spraying with widespread

use of organophosphates such as temephos and pyrethroids such as

deltamethrin. Epidemiologically, however, the adult is the most

important life stage, thus insecticide treated materials (ITMs) that

target this stage have been tested and show promise in reducing

household level dengue vector infestations [2,3,4]. However, since

pyrethroids are the only insecticides approved for use in ITMs [5],

resistance to this insecticide class poses a serious threat to disease

control; indeed, field-based resistance to pyrethroids is rapidly

spreading across most parts of the world [6,7,8,9]. Understanding

resistance mechanisms is essential for the development of new tools

to sustain vector control interventions.

Insecticide resistance in disease vectors is generally attributed to

increased rates of insecticide detoxification or mutations in the

target sites [10]. Due to the large numbers of potential

detoxification genes in the mosquito genome (Aedes aegypti

contains160 P450 genes [11]), detection of metabolism-based

insecticide resistance is more complex than screening for specific

mutations known to cause target site resistance. Nevertheless,

advances in microarray and genome technology have facilitated

transcriptional and genetic comparisons of susceptible and

resistant populations. This has helped identify a number of

P450s that are transcriptionally over-expressed in pyrethroid

resistant populations of Ae. aegypti [11,12,13].

CYP9J32 in particular is a P450 that is found to be strongly

linked to metabolic resistance as it is significantly over-

expressed in pyrethroid resistant strains in widely separated

populations in Vietnam [14], Mexico, Thailand [11] and Brazil

(Strode, unpublished). Microarray screens being done in

Liverpool (Barriami et al submitted) are continuing to indicate

there may be elevated levels of several other P450s in

pyrethroid resistant Ae.aegypti populations including CYP’s

6CB1, 9J10, 9J19, 9J22, 9J24, 9J26 and 9J28. The key question

is whether these P450s are capable of metabolising pyrethroids

and thus functionally linked with insecticide resistance. If so

they may be considered strong markers for existing or incipient

metabolic resistance.
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In general P450s are difficult to produce for in vitro analysis as

they are membrane bound hemoproteins that require electrons

from NADPH P450 oxidoreductase (CPR) and sometimes

cytochrome b5 (b5) for catalysis [15]. However, we recently

optimised the expression of mosquito P450s in E. coli through co-

expression of An. gambiae CPR (AgCPR) and the addition of

exogenous A. gambiae cytochrome b5 (Agb5) [16,17,18], thus

facilitating their functional characterization. We have therefore

adopted this approach for the expression of CYP9J32 and the

other Ae. aegypti P450s implicated in pyrethroid resistance to

investigate their ability to metabolise and thereby contribute

towards insecticide resistance in Ae. aegypti.

Materials and Methods

Reagents
Oligonucleotides were synthesized by Sigma-Aldrich and

enzymes for DNA manipulation were supplied by New England

Biolabs. Isopropyl-ß-D-thio-galactopyranoside (IPTG), 5-aminole-

vulinic acid (ALA), and 3-[(3-cholamidopropyl)-dimethylammo-

nio]-1-propanesulfonate (CHAPS) were supplied by Melford (UK).

Insecticides were supplied by ChemService: 1,1,1-trichloro-2,2-

di(4-chlorophenyl)ethane (DDT), (S)-a-cyano-3-phenoxybenzyl

(1R,3R)-cis-2,2-dimethyl-3-(2,2-dibromovinyl)-cyclopropanecar-

boxylate (deltamethrin), N-[1-[(6-chloro-3-pyridyl)methyl]-4,5-

dihydroimidazol-2-yl]nitramide (imidocloprid), 3-phenoxyben-

zyl (1R,S)-cis,trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopro-

panecarboxylate (permethrin, mixture of four isomers), and 2-

isopropoxyphenyl N-methylcarbamate (propoxur). (4S)-4,5-

dihydro-2-(6 9-hydroxy-2 9-benzothiazolyl)-4-thiazolecarboxylic

acid (Beetle luciferin) and proluciferin P450 substrates were

supplied by Promega. HPLC solvents and ethanol were

supplied by Fisher Scientific. Other chemicals were obtained

from Sigma-Aldrich unless indicated otherwise.

Gene cloning
Total RNA was extracted with either the Arcturus PicoPure Kit

(Applied Biosystems) or TRI reagent (Sigma-Aldrich) from ten

adult Ae. aegypti mosquitoes, either ‘‘Isla Mujeres’’ [19] or Merida

strains. Complementary DNA was prepared using Superscript III

(Invitrogen) with an oligo(dT)20 primer and used as a template for

amplifying full-length genes with KOD DNA polymerase (Merk

Chemicals). The gene-specific primers used in these high-fidelity

PCRs were designed according to the Ae.aegypti genome sequence

(Table 1). Amplified genes were ligated into pGEM T-easy

(Promega) and sequenced. For expression, the ompA leader

sequence (ompA), was engineered onto the amino-terminus to

direct the P450 to the E. coli outer membrane during expression.

The ompA-leader was inserted into the expression plasmid

pCWmod1 and linked to the 59-end of the P450 gene with

codons for either: Ala-Pro by blunt ligation via an NaeI site, or

Ala-Gly using cohesive ligation with the isoschizomer NgoMIV.

Both linkers were tested with CYP6CB1 and no difference in

expression quality or quantity was observed. All genes used

cohesive ligation at the 39-end and the restriction enzymes are

indicated in Table 2. Another approach was used for CYP9J19 or

CYP9J26: these genes were prepared with an ompA-Ala-Pro

leader sequence by fusion PCR and cloned into pCW-ori+ using

vector plasmid, pB13 [20] via NdeI and EcoRI sites as previously

described [16].

P450 expression
Competent E. coli DH5a cells were co-transformed with the

pCW- P450 plasmid and and pACYC-AgCPR [16]. Transfor-

mants were selected on Luria-Bertani (LB) agar plates with

50 mg/L ampicilin (pCW-P450 selection) and 34 mg/L chloram-

phenicol (pACYC-AgCPR selection). After overnight growth at

37uC, a single colony was used to inoculate 5 mL of LB with

antibiotics (50 mg/L ampicilin and 34 mg/L chloramphenicol) for

overnight growth at 37uC with shaking. Two mL of this starter

culture was then used to inoculate 200 mL of Terrific Broth with

antibiotics that was then incubated at 37uC with orbital shaking.

Once the cultures had reached early log-phase growth

(A595 = 0.8–1.0), the culture was cooled to 25uC before adding

1 mM IPTG and 0.5 mM ALA (final concentrations) and

continuing incubation at 25uC with orbital shaking. Initially,

cultures were monitored daily to find the incubation time for

optimal P450 expression: 6CB1, 1 day; 9J19, 2 days; 9J24, 3 days;

9J26, 2 days; 9J28, 2 days; 9J32, 1 day. P450 expression was

estimated by resuspending whole cells in Spectrum Buffer

(100 mM Tris-HCl, pH 7.4, 10 mM CHAPS, 20% (v/v) glycerol,

1 mM EDTA) [20], adding about 1 mg/mL of sodium dithionite

as a reducing agent and recording the absorption spectra (500-

400 nm) change after exposing to CO for 1 min. The peak height

at 450 nm was used to calculate the P450 concentration [21].

Table 1. Accession numbers for P450 clones.

Gene Strain Reference* Clone**

CYP6CB1 Isla Mujeres XM001654530 JF924905

CYP9J10 Isla Mujeres XM001652170 JF924906

CYP9J19 Merida XM001652172 JF924907

CYP9J24 Isla Mujeres XM001649048 JF924908

CYP9J26 Merida XM001649047 JF924909

CYP9J28 Isla Mujeres XM001649045 JF924910

CYP9J32 Isla Mujeres XM001653404 JF924911

*GenBank accession number for the reference genes used in primer design
(Table 2).
**GenBank accession number for the cDNA sequences isolated from the strains
used for this study.
doi:10.1371/journal.pntd.0001595.t001

Author Summary

Dengue fever, transmitted by Aedes mosquito vectors, is a
major public health problem in over 100 countries.
Prevention of the disease relies heavily on the use of
insecticides such as pyrethroids. Unfortunately, mosqui-
toes are becoming resistant to these insecticides so it is
urgent to identify the genes involved to develop an
effective monitoring tool. In insects, P450s are critically
involved in the metabolism and detoxification of insecti-
cides. Several P450s have been found over expressed in
pyrethroid resistant Ae. aegypti, although their functions
are unknown. Here, we have expressed these enzymes in
bacteria and examined their ability to metabolise pyre-
throids and other compounds. From this we have
identified a set of four P450s (CYPs 9J24, 9J26, 9J28 and
9J32) that are involved in pyrethroid metabolism, thus
they may be considered to be key markers of resistance. To
try and track their expression in field populations, we have
developed diagnostic assays to monitor their activity,
which will aid the development of new tools to monitor
resistance and aid disease control.
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After the optimal incubation period at 25uC, the cells were

harvested and membranes prepared based on the method by

Pritchard et al. [20]. Immediately after membrane isolated by

ultracentrifugation (1 hr at 180000 g) the sample was homoge-

nized in TSE buffer (50 mM Tris-acetate, pH 7.6, 250 mM

sucrose, 0.25 mM EDTA) using a Dounce homogenizer. Typically

1 mL of TSE was used per 200 mL of culture processed.

The membrane samples were analysed for P450 quality and

content by 100-fold dilution in Spectrum Buffer and CO-

difference spectroscopy [21]. Cytochrome c reductase activity

was used to measure CPR content [22], and protein content was

estimated by Bradford assay. Samples were stored in aliquots at

270uC.

Anopheles gambiae cytochrome b5 was prepared as described

previously [18] .

Insecticide metabolism
5 mM stock concentrations of insecticides were prepared in

ethanol and diluted to 106 the assay concentration in 20% (v/v)

ethanol immediately before each experiment to minimise precip-

itation of insecticide. Standard reactions contained a final ethanol

concentration of 2% (v/v) with 10 mM insecticide, 0.1 mM P450,

0.8 mM cyt b5 in 200 mM Tris-HCl for pH 7.4, and NADPH

regeneration components (1 mM glucose-6-phosphate (G6P),

0.25 mM MgCl2, 0.1 mM NADP+, and 1 U/mL glucose-6-

phosphate dehydrogenase (G6PDH)). Reactions were started, after

pre-incubation at 30uC for 5 min, by adding enzyme samples for a

final reaction volume of 0.1 mL. These were incubated for a

specified time at 30uC with 1200 rpm orbital shaking and quenched

by adding 0.1 mL of acetonitrile. Samples were then incubated with

shaking as before for an additional 10 min before centrifuging at

20000 g for 5 min. 0.15 mL of the supernatant was then transferred

to HPLC vials, stored at room temperature and analyzed within

24 hrs. Reactions were performed in triplicate and a paired T-test of

sample reactions (+NADPH) vs negative control (2NADPH) used

for statistical measurements of substrate depletion.

For enzyme kinetic measurements the reaction rate in response

to insecticide concentration was used to estimate Michaelis-

Menton parameters. Reactions were performed, as described

above, for 10 min with insecticide concentrations of: 0.25, 0.5, 1,

2, 4, 8, or 16 mM. The reactions were performed in parallel

against a negative control (2NADPH) at 16 mM. Non-linear

regression of results of three independent experiments were used

for estimations of KM and kcat (SigmaPlot 11, Systat Software, Inc.).

HPLC analysis
100 ml of acetonitrile-quenched reaction supernatant was

analyzed by reverse-phase HPLC with a 250 mm C18 column

(Acclaim 120, Dionex) and a mobile phase consisting of 90%

acetonitrile and 10% water. The system was run at 23uC with

1 mL/min flow rate. Reactions with with permethrin, deltame-

thrin or DDT, were monitored by absorbance at 232 nm, whereas

imidacloprid or propoxur were monitored at 270 nm. The

insecticide was quantified by peak integration (Chromeleon

software, Dionex). Elution times were 9.2 min for deltamethrin

and 10.1 min for cis- and 11.9 min for trans-permethrin stereoiso-

mers. There was no significant difference in the change of area for

the two permethrin peaks in these reactions, therefore permethrin

concentration was measured as the total area under the two peaks.

Metabolism of probe substrates
Four resorufin ethers were tested as fluorogenic substrates and

six luciferin-based substrates (P450-Glo, Promega) were tested

against each of the Ae.aegypti P450 membrane preps. Three An.

gambiae P450/CYP membrane preps were included for additional

comparisons: CYP6Z2 [16], CYP6P3 [17], and CYP6M2 [18].

Each of these probe substrate were tested in reactions at 25uC
buffered with 0.1 M KPi at pH 7.4 and included: 1 mM G6P,

0.25 mM MgCl2, 5 mM substrate, 0.1 or 0.2 mM P450, and cyt b5

at twice the P450 concentration. Positive reactions included

0.1 mM NADP and 1 U/mL GADPH whereas negative reactions

had neither of these components and could not generate NADPH.

Table 2. Oligonucleotide sequences used for cloning Ae. aegypti P450 genes.

Target Orientation Feature Sequence, 59 to 39, feature in bold

CYP6CB1 forward ala-pro GCACCAATGTTACTTCCGATCTTACTTGTAG

CYP6CB1 reverse EcoRI CCTTGAATTCACTTTACTTCGTCC

CYP6CB1 forward NgoMIV ATAGCCGGCATGTTACTTCCGATCTTAC

CYP9J10 forward NgoMIV GTAGCCGGCATGGTTGAAGTGGATTTG

CYP9J10 reverse EcoRI TGGAATTCGTTAGACATCTTTTATCAC

CYP9J24 forward NgoMIV GTGGCCGGCATGGAGGTTAATCTGTTCTACTTC

CYP9J24 reverse XbaI TCTCTAGACTACCCCTTTGGTCTTGGCTTG

CYP9J28 forward NgoMIV GGGGCCGGCATGGAGGTTAATCTGTTCTATTTC

CYP9J28 reverse EcoRI CCGAATTCCTACTTCTTAGGTCTAGGTTTGAAC

CYP9J32 forward NgoMIV GTAGCCGGCATGGAGGTGAACCTGCTTTTATTAC

CYP9J32 reverse XbaI CTTCTAGATCACTTCCTCTTCTTAAATCTCAAATG

CYP9J19 forward ala-pro GCACCGATGGAAGTGGATCTCCTCTCG

CYP9J19 reverse EcoRI GAATTCTACGGTATGTTAACAATCTTAAG

cyp9j19 reverse ompA-ala-pro GAGAGGAGATCCACTTCCATCGGTGCGGCCTGCGCTAC

cyp9j26 forward ala-pro GCACCAATGGAAGTGGAACTCCTACATGTG

cyp9j26 reverse EcoRI site GAATTCACCGCAGCTTCAGCTCC

cyp9j26 reverse ompA-ala-pro CATGTAGGAGTTCCACTTCCATTGGTGCGGCCTGCGCTAC

doi:10.1371/journal.pntd.0001595.t002
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Reactions were run in opaque white 96-well (flat-based) plates in

triplicate. Luciferin (Promega) or resorufin standard curves were

analyzed with each 96-well plate and used to calculate product

formation rate.

Resorufin-producing reactions were monitored in a fluorescence

plate-reader (Ex = 565 nm, Em = 585 nm) with 200 ms measure-

ments recorded 24 s apart. The rate of resorufin molecules

produced per P450 molecule per min (turnover) was determined

by linear regression of the measurements between 2 min and

8 min after the reactions began. Luciferin reactions were run for

30 min before quenching as described by the P450-Glo kit . The

endpoint signal was then measured by a luminescence plate-reader

and the turnover calculated. Three replicates of positive and

negative control reactions were run for each P450/substrate

combination. Significant differences were determined by one-

tailed T-tests (assuming equal variances).

Results

Expression of Ae. aegypti P450s in E. coli
To produce a catalytically active monooxygenase complex

CYP’s 6CB1, 9J10, 9J19, 9J24, 9J26, 9J28 and 9J32 were co-

expressed with An. gambiae CPR in E. coli membranes [16]. As

previously, An. gambiae b5 was also used to enhance P450 catalytic

activity [23]; An. gambiae CPR and b5 are extremely similar to their

Ae. aegypti homologues sharing 87% and 84% amino acid identity

respectively, thus capable of reconstituting Aedes P450 activity.

Apart from CYP9J10, which repeatedly failed to express

functional enzyme in E. coli, all P450s produced the characteristic

CO-reduced spectra indicative of active P450 (Figure 1). Apart

from CYP6CB1 all P450s contained very low quantities of inactive

P420 and high levels of P450 up to ,200 nmol/L for CYP9J19

(Table 3). CYP6CB1 produced relatively low quantities of P450

(,10 nmol/L; Table 3) and large amounts of P420, suggestive of

poor enzyme quality.

Insecticide metabolism
In order to determine if the P450s were capable of pyrethroid

metabolism, they were tested against permethrin and deltame-

thrin, representative Type I (non-cyano) and Type II (cyano)

pyrethroids respectively. Catalytic activity was assessed by

measuring substrate turnover (disappearance of substrate with

time)(Figure 2). CYP’s 9J24, 9J26, 9J28 produced low, but

reproducible deltamethrin and permethrin turnover, whereas

CYP9J32 demonstrated strong activity for deltamethrin and weak

activity for permethrin (Figure 2). CYP’s 9J19 and 6CB1 did not

Figure 1. Carbon monoxide difference spectra of bacterial membranes expressing Ae.aegypti P450s. (A), CYP6CB1; (B), CYP9J26; (C),
CYP9J32 ; (D), CYP9J24; (E), CYP9J28; and (F), CYP9J19.
doi:10.1371/journal.pntd.0001595.g001
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metabolise permethrin or deltamethrin. The ability of CYP’s 9J24,

9J26, 9J28 and 9J32 to metabolise pyrethroids was further

characterised by measuring substrate dependent reaction rates.

The reactions followed Michaelis-Menten kinetics and the kinetic

constants were estimated for each P450-pyrethroid combination

(Table 4). The apparent KM measurements for permethrin ranged

from 2.361.1 mM (CYP9J32) to 4.260.9 mM (CYP9J26) and for

deltamethrin from 1.260.2 mM for (CYP9J26) to 5.262.1 mM

(CYP9J32). The turnover rates (kcat) for permethrin ranged from

0.1660.03 min21 (CYP9J24) to 0.860.1 min21 (CYP9J32) and

from 0.2260.02 min21 (CYP9J26 or CYP9J28) to 3.060.5 min21

(CYP9J32) for deltamethrin. Overall, the KM values for all P450s

were within the normal range, 1–50 mM, associated with substrate

binding and P450 metabolism [18,24]. In comparison with the

normal broad range of kcat values for P450s of 1–20 min21, kcat

values were low i.e. ,1 min21. The exception was CYP9J32,

which had a high kcat value of ,3 min21 for deltamethrin.

Interestingly the kcat for permethrin was ,3 fold lower

(0.8 min21). Finally, as for the pyrethroids, all P450s where tested

against DDT (organochlorine), propoxur (carbamate), and imida-

cloprid (neonicotinoid), but there was no obvious substrate

turnover detected.

Probe substrate metabolism
Fluorescent and chemiluminescent substrates are routinely used

in the pharmaceutical industry for monitoring P450 activity [25].

In the context of vector control these probes could be extremely

useful for diagnostic monitoring of P450 levels for insecticide

resistance [26]. We therefore screened the Ae. aegypti P450s for

their ability to metabolise the four fluorogenic resorufin ethers;

methyl (RME), ethyl (REE), pentyl (RPE), or benzyl ethers (RBE),

as well as six P450 GloTM proluciferin substrates, L-H, L-ME, L-

CEE, L-BE, L-PFBE, L-PPXE. However, with the exception of

CYP9J32, which produced a high rate of metabolism with the

Table 3. Yields of Ae.aegypti P450s expressed in E. coli.

P450 Na Expression Membrane Content

(nmol/L)b nmol P450/mgc
nmol cyt c/min/
mgd

CYP6CB1 3 1067 0.160.1 37624

CYP9J10 3 0 0 102

CYP9J19 1 186 1.56 32

CYP9J24 3 2968 0.660.3 93635

CYP9J26 2 25, 5 0.3, 0.1 45, 32

CYP9J28 3 47630 1.160.9 157665

CYP9J32 4 83628 0.960.3 142614

aNumber of independent membranes used for yield calculations.
Measurements are expressed as means 6 standard deviation. Where N,3,
individual measurements are listed.
bnmol of P450 isolated in membrane preparation per litre of bacterial cultures.
cP450 concentration in membrane preparations as nmol of P450 per mg of total
protein.
dCPR activity in membrane preparation measured as nmol of cytochrome c
reduced per min per mg of total protein.
doi:10.1371/journal.pntd.0001595.t003

Figure 2. Permethrin and deltamethrin metabolism by Ae aegypti P450s. The proportion of 10 mM insecticide cleared by 0.1 mM P450 with
0.8 mM cyt b5 in the presence of NADPH is indicated by bar height. Error bars represent standard deviation (N = 3) and significantly greater insecticide
clearance compared to negative reactions (no NADPH supplied) are indicated: *P,0.05, **P,0.01, or ***P,0.001 (paired T-test).
doi:10.1371/journal.pntd.0001595.g002
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bulkiest luciferin compound L-PPXE, the Aedes P450s were largely

unreactive against these substrates (Figure 3).

We extended the screen to include three An. gambiae P450s

namely, CYP6P3 [17] and CYP6M2 [18], which metabolise

pyrethroids and CYP6Z2, which does not metabolise pyrethroids

[16]. Like CYP9J32, CYP6P3 and CYP6M2 showed a clear

preference for the luciferin substrate L-PPXE. In contrast,

CYP6Z2 showed a marked preference for the smaller probe

substrates with the greatest activity towards RME for the resorufin

ethers and L-ME for the proluciferins (Figure 3).

Discussion

Over the past few years the widespread use of organophosphates

and synthetic pyrethroids for the control of Ae. aegypti larvae and

adults has fed the emergence of insecticide resistance in many

dengue endemic countries [27,28,29]. CYP9J32 has been found

over-expressed in deltamethrin and permethrin resistant Ae aegypti

strains in Thailand, Mexico and Vietnam [11,14]. Here we have

demonstrated that CYP9J32 can metabolise both these pyre-

throids. Although the production of more toxic products cannot be

ruled out, P450 metabolism generally results in the production of

less toxic, more excretable, hydroxylated metabolites and/or

degradation products [18]. Thus, high levels of expression of

CYP9J32 found in resistant populations of Ae. aegypti [11,14] are

indicative of a chemoprotective role for CYP9J32.

In the context of dengue control operations, CYP9J32 therefore

represents a strong candidate for predicting metabolic resistance in

Ae. aegypti, particularly in Vietnam where CYP9J32 was the only

P450 significantly over-expressed in the highly deltamethrin

resistant Nha Trang strain [14]. The turnover for deltamethrin

was in the turnover range 1–5 min21 found for other deltamethrin

metabolising P450s CYP6P3 and CYP6M2 from An. gambiae

[18,30]. Indeed, considering the high deltamethrin resistance of

this strain, what is most striking about the biochemical data is the

Table 4. Subsrate-saturation kinetic constants.

KM (mM) Kcat (min21)

P450 Permethrin Deltamethrin Permethrin Deltamethrin

CYP9J32 2.361.1 5.262.1 0.860.1 3.060.5

CYP9J28 2.660.4 1.760.5 0.4460.03 0.2260.02

CYP9J26 4.260.9 1.260.2 0.660.1 0.2260.01

CYP9J24 3.361.6 2.961.5 0.1660.03 0.3160.06

doi:10.1371/journal.pntd.0001595.t004

Figure 3. Metabolism of probe substrates by Ae. aegypti and An. gambiae P450s. Solid bars indicate significant turnover of probe substrates
compared to the negative (2NADPH) control reactions (N = 3, T-test). The chemical structures of the resorufin and lucerifin-based probe substrates
are shown below the X-axis.
doi:10.1371/journal.pntd.0001595.g003
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,3 fold higher activity of CYP9J32 for deltamethrin (kcat = 3.0 -

min21 ) relative to permethrin (kcat = 0.8 min21).

While there have been a number of studies investigating

insecticide resistance in different populations of Ae. aegypti

[8,9,14,19,28,31], it is clear that a single metabolic gene does

not confer resistance in this species, unlike target site resistance.

Instead, given the multiplicity of detoxification genes and their

overlapping substrate specificities, numerous combinations of

detoxifying enzymes may give rise to insecticide resistance [14].

Thus it is not surprising that along with CYP9J32, our data reveals

at least three other Ae. aegypti P450s that are capable of

metabolising the pyrethroid insecticides permethrin and deltame-

thrin, CYP9J24, CYP9J26, CYP9J28. Most significantly,

CYP9J26 and CYP9J28 P450s are found over-transcribed in

deltamethrin resistant field populations in both Cayman Islands

and Cuba (Bariami et al, submitted), emphasizing a potentially

important role in pyrethroid clearance in-vivo. Therefore, elevated

levels of these P450s are a strong indicator for resistance to

pyrethroids, and an important consideration for planning

successful interventions [5].

At present, the identification of metabolism – based insecticide

resistance generally relies on the detection of gene over-expression,

which is more subjective and less accurate than identifying specific

target site mutations such as kdr, which can be done by PCR [32].

Thus biochemical assays for detecting metabolic resistance by

P450s are in general use [33], although they usually employ

generic heme peroxidase assays that are recognised by many

members of the enzyme family [7], compromising sensitivity and

specificity. Having produced a panel of recombinant mosquito

P450s associated with pyrethroid resistance we screened them

against available fluorescent resorufin compounds and luminescent

luciferin-based substrates to try and identify more specific probes

for resistance monitoring. The luciferin substrate L-H has been

used for tracking general P450 activity in the mosquito Culex pipiens

[26]. Thus it was surprising that L-H proved to be such a poor

substrate against the panel of individual mosquito P450s (Fig. 3).

Instead, the three major pyrethroid metabolisers, CYP9J32,

CYP6P3 and CYP6M2, metabolised L-PPXE (Figure 3). L-PPXE

contains a noticeably large aromatic group linked to the luciferin

moiety, possibly more reflective of a pyrethroid-like substrate.

Consistent with their low permethrin and deltamethrin activity, it

is notable that the other pyrethroid metabolisers CYP’s 9J24, 9J26

and 9J28 produced low levels of PPXE activity. Given the high

activity of CYP9J32 for L-PPXE this suggests that this may be a

very good substrate for tracking this and potentially other

pyrethroid metabolising P450s. Such an assay, requiring individual

or pooled mosquito homogenates, is potentially relatively high

throughgput (96 well plate) and rapid (20–30 min for enzyme

reaction time), although capital expense may be a limiting factor

given the high cost of luminescence detectors.

Finally, although we have not yet examined the active site

structure of CYP9J32, it is worth noting that several structural

models of pyrethroid metabolising mosquito P450s have been

produced including CYP6M2 [18] from An. gambiae and

CYP6AA3 and CYP6P7 from An. minimus [34,35,36]. These

provide an important reference point for further studies into the

mechanisms of pyrethroid metabolism by mosquito P450s.

In conclusion, we have characterised several P450s associated

with insecticide resistance in Ae. aegypti and identified four (CYP’s

9J32, 9J24, 9J26 and 9J28) that are capable of metabolising

deltamethrin and permethrin, two of the commonest pyrethroids

used by vector control operations. Given the escalating use of

microarray and PCR-based technology for resistance monitoring

[5], elevated levels of expression of these P450s should be

considered a warning of incipient or existing metabolic resistance.
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