
BioMed CentralMalaria Journal

ss

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSTM Online Archive
Open AcceResearch
Malaria vectors in Angola: distribution of species and molecular 
forms of the Anopheles gambiae complex, their pyrethroid 
insecticide knockdown resistance (kdr) status and Plasmodium 
falciparum sporozoite rates
Nelson Cuamba1,2, Kwang Shik Choi1 and Harold Townson*1

Address: 1Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK and 2Ministério da Saúde, Instituto Nacional de Saúde, 
C.P 264, Maputo, Mozambique

Email: Nelson Cuamba - ncuamba@yahoo.com; Kwang Shik Choi - kschoi@liverpool.ac.uk; Harold Townson* - htownson@liverpool.ac.uk

* Corresponding author    

Abstract
Background: Malaria is by far the greatest cause of morbidity and mortality in Angola, being
responsible for 50% of all outpatient attendance and around 22% of all hospital deaths, yet by 2003
only 2% of under-5s used insecticide-treated nets. Entomological studies are an essential foundation
for rational malaria control using insecticide-treated nets and indoor residual spraying, but there
have been no published studies of malaria vectors in Angola over the 27 years of the civil war, to
its end in 2002. This paper describes studies arising from a WHO-sponsored visit in support of the
National Malaria Control Programme.

Methods: During April 2001, mosquitoes were sampled by indoor pyrethrum spray collection
from four sites in the semi-arid coastal provinces of Luanda and Benguela and two sites in Huambo
province, in the humid tropical highlands. Collections took place towards the end of the rainy
season and were used to determine the Anopheles species present, their sporozoite rates and the
frequency of a kdr allele conferring resistance to pyrethroid insecticides.

Results: A PCR test for the Anopheles gambiae complex showed a preponderance of An. gambiae,
with indoor resting densities ranging from 0.9 to 23.5 per house. Of 403 An. gambiae identified to
molecular form, 93.5% were M-form and 6.5% S-form. M and S were sympatric at 4 sites but no M/
S hybrids were detected. The highest proportion of S-form (20%) was in samples from Huambo, in
the humid highlands. Anopheles funestus was found at one site near Luanda. The sporozoite rate of
mosquitoes, determined by an ELISA test, was 1.9% for An. gambiae (n = 580) and 0.7% for An.
funestus (n = 140). Of 218 An. gambiae (195 M-form and 23 S-form) genotyped for the West African
kdr-resistance allele, all were homozygous susceptible.

Conclusion: An. gambiae M-form is the most important and widespread malaria vector in the areas
studied but more extensive studies of malaria vectors are required to support the malaria control
programme in Angola. These should include standard insecticide resistance biossays and molecular
assays that can detect both metabolic resistance and target site insensitivity.
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Introduction
In West Africa, Anopheles gambiae, Anopheles arabiensis and
Anopheles funestus are the main vectors of malaria,
although Anopheles melas, a member of the An. gambiae
complex, is known to be a malaria vector in some coastal
areas [1-3].

It has been shown that An. gambiae comprises two molec-
ular forms, M and S, recognisable from rDNA sequence
differences, either in the intergenic spacer [4] or in the
internal transcribed spacer [5,6]. The genetic characteris-
tics of these forms and their known geographical distribu-
tion have recently been reviewed [6]. Whilst there is
considerable restriction to gene flow between these forms,
reproductive isolation is not complete, with the result that
the knock-down resistance allele (kdr), which confers
resistance to pyrethroid insecticides and which is assumed
to have first developed in the S-form, has subsequently
passed from the S-form to the M-form, presumably due to
hybrid formation and consequent introgression [7,8].
Recent studies suggest that the resistance kdr allele is now
spreading in the M-form in West Africa [9]. The S-form is
known to be the most common and widespread in sub-
Saharan Africa, and is the only form found in eastern
Africa. The distribution of the forms is reasonably well
studied in West Africa from Senegal to Cameroon, but less
is known of their distribution further south in western
Africa.

Malaria is endemic throughout much of Angola territory,
and is by far the highest cause of morbidity and mortality.
During the period from 1999 to 2002 (last year for which
data are available) there were 1.47 million cases of
malaria annually, out of a mid-period population of
c.11.4 million. Malaria continues to be responsible for
50% of all outpatient attendance and around 25% of all
hospital deaths, yet by 2003 only 2% of under-5s used
insecticide-treated nets [10]. Due to the successive wars,
malaria vector control activities and operational studies
have been interrupted for decades, with a consequent lack
of basic information on malaria vectors. This lack of infor-
mation plus the dearth of skilled malaria entomologists
are potential impediments to the goal of the National
Malaria Control Programme of scaling up the use of insec-
ticide-treated nets (ITNs) as a major strategy for the con-
trol of malaria. Indoor residual spraying (IRS) of
insecticides was used in 4,000 households in 2002 [10]
but extended use of this technique, which has been effec-
tive in other regions of southern Africa, would also be lim-
ited by inadequate knowledge of vector species
distribution and the lack of skilled staff.

During April 2001, the senior author (NC) visited Angola
at the request of WHO, to assist in "strengthening malaria
vector control especially the promotion of insecticide-

treated bed nets". As one part of this mission, a rapid mos-
quito survey was carried in some of the malarious regions
of the country with a focus on areas around the capital
Luanda, the semi arid coastal cities of Benguela and
Lobito and Huambo city in the tropical highlands. The
main malaria transmission season in Angola lasts from
November to April. This paper is based on data from that
rapid survey and subsequent laboratory studies. The pri-
mary objective has been to gather information on species
composition within the An. gambiae and An. funestus com-
plexes, their potential role in malaria transmission and to
provide information on the status of kdr-based resistance
to pyrethroids in An. gambiae in Angola.

Mosquito collections
Mosquitoes were collected towards the end of the rainy
season during the period 11–19 April 2001 from seven
localities in Angola, all close to or within urban areas; five
in the semi-arid, coastal strip south from Luanda to Ben-
guela and two in the humid tropical highlands of Hua-
mbo Province, (see Figure 1). viz: Funda in the coastal
municipality of Cacuaco (08°51' S; 13° 34' E) just north-
east of Luanda; Samba, a municipality of Luanda (08° 59'
S; 13° 15' E); São Pedro, in the municipality of Lobito
(12° 20' S; 13° 34' E); Cawango and Bela Vista, in the
municipality of Benguela (12° 34' S; 13° 24' E); São Jose
and Cazenga, in the city of Huambo (12° 47' S; 15° 44'
E).

Indoor resting mosquitoes were collected from houses
using pyrethrum spray collections and stored dry over sil-

Map showing the localities in Angola where anopheline mos-quitoes were collected: Luanda (Samba and Cacuaco), Lobito (São Pedro), Benguela (Cawanga and Bela Vista) and Huambo (São Jose and Cazenga)Figure 1
Map showing the localities in Angola where anopheline mos-
quitoes were collected: Luanda (Samba and Cacuaco), Lobito 
(São Pedro), Benguela (Cawanga and Bela Vista) and Huambo 
(São Jose and Cazenga).
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ica gel in Eppendorf tubes. In Samba, only larvae were col-
lected; these were obtained from a rainwater pool and
preserved in 80% alcohol.

Identification of species, molecular forms and kdr 
mutations
DNA was extracted from individual mosquitoes [11] and
members of the An. gambiae complex were identified to
the species-level and molecular-form using the protocol
of Fanello et al. [12]. Identification of specimens of An.
funestus s.l. was performed with the primers and protocol
of Koekemoer et al. [13]. All identifications of M and S
forms were conducted twice (by NC and KSC).

The presence of kdr alleles conferring knock-down resist-
ance in West Africa was assessed using the primers and
protocol of Martínez-Torres et al. [14]. The PCR products
of samples collected in the field in Angola were run on
agarose gels with control samples known to represent
homozygous resistant (kdr/kdr), heterozygous (kdr/+)
and homozygous susceptible (+/+) individuals. The PCR
amplification products consisted of an internal control of
293 bp present in all specimens, a susceptible allele prod-
uct of 137 bp and a resistance allele (kdr) band of 195 bp.
To eliminate errors in scoring, all kdr allele assays were
carried out twice (by NC and KSC) and discrepancies
checked.

Sporozoites rates for Plasmodium falciparum were deter-
mined by the ELISA method [15,16], using the head and
thorax of individual female mosquitoes.

Results
The numbers of mosquitoes found resting indoors at each
locality in Angola are shown in Table 1; data for Culex spp
are included for comparative purposes but are not dis-
cussed further here. The numbers of individuals for the
different species and/or molecular forms of the An. gam-
biae complex are shown in Table 2. Of the An. gambiae s.s.
collected, the M-form was predominate, representing
93.5% (n = 403). The S-form was restricted to localities in
the municipality of Benguela on the coast, where it com-
prised 3.8% (n = 184), and Huambo in the humid high-

lands, where it comprised 20% (n = 94) of An. gambiae s.s.
collected. These differences in proportions of S-forms
between coastal and highland sites are significant (p <
0.001). No M/S heterozygotes were found.

An. melas was found, together with An. gambiae M-form,
resting indoors in the coastal area of Cacuaco. In the larval
collection from Samba, one An. arabiensis was found
along with 21 specimens of An. gambiae M-form. Forty-six
specimens of An. funestus s.l. from indoor collections in
Cacuaco were identified to species; all proved to be An.
funestus s.s.

The results of assays for kdr resistance alleles in An. gam-
biae M and S-forms are shown in Table 3. All 218 individ-
uals examined were exclusively of the homozygous
susceptible genotype.

The results of sporozoite ELISA assays are shown in Table
4. Adult mosquitoes collected from Huambo had to be
preserved in alcohol and hence were unsuitable for ELISA.
The overall infection rate was 0.7 % in An. funestus (n =
140) and 1.9 % in An. gambiae (n = 580).

Discussion
Little is known of malaria vectors in Angola and, with one
exception (discussed below), all published studies pre-
ceded the war of independence and subsequent civil war,
which finally ended in 2002. Although Angola is building
up a cadre of technical staff to assist in the distribution of
ITNs [10], as yet it has insufficient numbers of skilled
malaria entomologists and data on malaria vectors
remains scarce. Thus, despite the limitations of a rapid,
time-limited survey, the data shown are a useful guide to
the further studies needed for effective implementation of
vector control.

A recent analysis of published and unpublished data on
the distribution of the molecular forms of An. gambiae
[6,17] has demonstrated how the M-form shows the great-
est latitudinal range in West Africa, being the only form
recorded in the Sudan and Sahel savannah areas of north-
ern Senegal. The predominant domiciliary malaria vector

Table 1: Numbers and densities of adult mosquitoes of An. gambiae s.l., An. funestus s.l. and Culex from indoor pyrethrum spray 
collections.

An. gambiae s.l. An. funestus s.l Culex sp.
Muncipality site no. of houses no. no. per house no. no. per house no. no. per house

Benguela Bela Vista 24 124 5.2 0 - 0 -
Cawango 33 254 7.7 0 - 133 4.0

Cacuaco Funda 29 29 1.0 315 10.9 0 -
Lobito São Pedro 35 824 23.5 0 - 69 2.0
Huambo Cazenga 34 31 0.9 0 - 105 3.1

São Jose 37 121 3.3 0 - 313 8.5
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in our study was An. gambiae M-form. The low proportion
of the S-form among An. gambiae in Benguela and its
absence in samples from Lobito and Luanda mirrors the
findings in Carrara et al. [17] and almost certainly reflects
the semi-arid climate of the coastal provinces. The more
humid tropical highlands around Huambo would favour
the greater proportion of S-form (20%) found there. In
the published abstract of Carrara et al. [17] data are given
on the distribution of M and S-forms from sites in Angola.
For samples from around Luanda and Namibe, the M-
form was overwhelmingly predominant. Namibe is close
to the northern extension of the Namib desert. Sample
sizes from inland sites in their study were very small (≤
18) but showed a preponderance of S-form.

In our study we found a sporozoite rate in An. gambiae s.s.
of 1.9% (95% CI 0.8–3.0), which is based on samples
from localities where the M-form was predominant
(97.6%). Despite these samples being collected in the
rainy season when nullipars predominate, it is neverthe-
less higher than the 0.4% for An. gambiae s.s. in the studies
of Carrara et al. [17].

Only a single An. arabiensis specimen was found in this
study, in a larval collection. The scarcity of this species in
samples from a semi-arid region that might have been

expected to favour this species may be a reflection of sea-
sonal abundance or exophily, although it is notable that
this species was also scarce in the studies of Carrara et al.
[17].

There is evidence (reviewed in [6]) that throughout its dis-
tribution, the M-form may more often be found in semi-
permanent and man-made breeding sites. This suggests
that consideration should be given to suitable environ-
mental modifications to reduce mosquito breeding in the
coastal peri-urban centres of Angola where M-form pre-
dominates. Environmental management would form a
useful adjunct to ITNs and the residual spraying of houses
[18]. Where S-form is more common, as in the highlands
around Huambo (this study) or in the humid tropics of
the Cabinda enclave [17], such measures could be less
effective, since in many parts of its range, S-form readily
breeds in small rain-dependent sites that are not as ame-
nable to environmental management. In West Africa,
there is evidence of varying levels of hybridisation
between M and S-forms, a mechanism by which adaptive
genes may flow from one to the other, including those
conferring insecticide resistance [7,9]. In our study, no
hybrids have been found out of 403 specimens that were
typed. This infers a frequency of hybridisation of less than
1%, although in the An. gambiae complex, hybridisation

Table 2: Numbers of M and S molecular forms of An. gambiae collected in Angola. Data are for indoor pyrethrum spray collections, 
except where noted.

Locality Site Molecular form Totals
M S

Benguela Cawango 115 3 118
Bela Vista 62 4 66

Lobito São Pedro 91 0 91
Cacuaco Funda* 13 0 13
Luanda Samba** 21 0 21
Huambo São Jose 57 7 64

Cazengue 18 12 30
Totals 377 26 403

* 26 of 29 specimens successfully amplified; 13 of these were An. melas
** 22 identified as larvae; one of these was An. arabiensis

Table 3: Scoring of kdr genotypes in An. gambiae M and S-forms. All were homozygous susceptible +/+

Muncipality site An. gambiae +/+
M S

Benguela Cawango 37 3 40
Bela Vista 80 3 83

Lobito São Pedro 41 0 41
Huambo São Jose 27 7 34

Cazenga 10 10 20
Total 195 23 218

Footnote: kdr genotypes were not scored for the 13 specimens from Cacuaco
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between species and forms may be more likely at certain
seasons as densities are undergoing change.

In this study we tested only 218 An. gambiae s.s. mosqui-
toes for kdr resistance and no resistance alleles were
found. We did not expect to find resistance to pyrethroids,
since these insecticides have not been available in signifi-
cant quantities during the periods of civil strife, when agri-
cultural production was severely disrupted. Carrara et al.
[17] reported "the presence of the kdr-allele (about 18%)"
in the Cabinda enclave, but did not find the resistant alle-
les in samples (of unstated size) from other sites in
Angola. Whilst kdr resistance does not yet appear to have
a highly significant effect on the performance of ITNs for
malaria control, it would be prudent to increase monitor-
ing for resistance using standard WHO bioassays and
molecular tests that can detect both metabolic resistance
and target site insensitivity [19,20].
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