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Abstract 

Regional or national growth distributions can provide vital information on the health status of 

populations. In most resource poor countries however, the required anthropometric data from purpose-

designed growth surveys are not readily available.  We propose a practical method for estimating 

regional (multi-country) age-conditional weight distributions based on existing survey data from 

different countries. We developed a two-step method by which one is able to model data with widely 

different age ranges and sample sizes. The method produces references both at the country level and at 

the regional (multi-country) level. The first step models country-specific centile curves by BCT and 

BCPE distributions implemented in GAMLSS through a common model. Individual countries may vary 

in location and spread. The second step defines the regional reference from a finite mixture of the 

country distributions, weighted by population size. To demonstrate the method we fitted the weight-for-

age distribution in twelve countries in South East Asia and the Western Pacific, based on 273,270 

observations. We modelled both the raw body weight and the corresponding Z score, and obtained a 

good fit between the final models and the original data for both solutions. We briefly discuss an 

application of the generated regional references to obtain appropriate, region-specific, age-based dosing 

regimens of drugs used in the tropics. The method is an affordable and efficient strategy to estimate 

regional growth distributions where the standard costly alternatives are not an option. 
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1. Introduction  

A wide range of methods is available for estimating the age-related distribution of human growth [1, 2]. 

Growth standards are based on such distributions. Growth standards describe how children should 

grow, and are widely accepted tools for monitoring height, weight and body mass index (BMI). Many 

countries use standards developed for another country, such as the recently updated international WHO 

standards for children below 5 years of age [2] and standards for school-aged children and adolescents 

[3]. In contrast to growth standards, growth references describe the actual distribution of growth 

parameters at population level at a certain point or period in time, i.e. they show how children actually 

grow in a given population. Growth references provide vital information on the overall health status of 

a population and can be updated to show changes in health/growth over time [4] .  

In practice, growth references are rarely available in resource-poor regions since the required purpose-

designed national or multi-country growth surveys are costly and logistically challenging. Some 

nutritional data may however be available from sub-groups within the population from a variety of 

different sources. Large national household surveys such as UNICEF’s Multiple Indicator Cluster 

Survey (MICS) program and the Measure Demographic Health Survey (DHS) program collect various 

nationally representative population-level representative demographic and health data. These studies 

currently typically cover anthropometric measurements in specific population subgroups only, such as 

children < 3 or <5 years of age, or women of reproductive age (15-45 years). In addition, nutritional 

data that are representative at the sub-national/district level may be collected as part of demographic 

surveillance systems (DSS) or other large-scale research efforts.  
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Despite the availability of these data, there are currently no standardized methods that aim to capture 

multi-source data to derive reference curves. The use of existing data could be an affordable, efficient 

strategy when alternatives are not an option, but the success of this approach is highly dependent on the 

quality of the data used. Obvious problems include the incompleteness of data across age ranges, sex, 

ethnicity, geographic regions, time periods and/or socio-economic strata. In addition, differences in 

sampling design and sampling fraction, quality assurance of anthropometric measurements related to 

the accuracy of measurements, rounding, or calibration of equipment would undermine this approach. 

With this incomplete list of potential drawbacks, one may be tempted to discard the use of existing data 

altogether. These problems, however, are not unlike those faced when conducting systematic reviews of 

the effects of healthcare interventions. In the same way the Cochrane guidelines provide 

recommendations regarding literature searches, data inclusion, data extraction, quality assessment and 

the appropriate statistical methods of meta-analyses [5]. When handled with care, the use of existing 

anthropometric data to estimate the distribution of human growth is likely to be informative and of 

public health relevance, despite their obvious limitations. 

The methodology for creating growth references for individual populations for whom complete, quality 

data is available is well established [1, 6 , 7]. The modeling of growth data from different sources and 

regions requires an expansion of current modeling methodology to address three main problems. 

Firstly, populations may have different growth distributions with varying median, spread and skewness 

linked to genetic or nutritional factors. Secondly, existing data typically cover different age ranges and 

may not be equally available for both genders, whereas conventional methodology is limited to the 

available age range. The analysis may thus require data extrapolation. Thirdly, country-specific 
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references may need to be combined into a regional distribution covering multiple countries. This 

requires the overall distribution to be weighted for population size or other factors of interest.  

In this paper we propose a practical method for estimating age-conditional distributions based on 

existing data from multiple sources. We will demonstrate the method by estimating the age-conditional 

distribution of body weight using existing data from countries in South East Asia and the Western 

Pacific. Section 2 introduces the data sources that were used to develop the method. Section 3 describes 

two different modeling options to estimate the age-conditional body weight distribution. Section 4 

presents a method to combine individual country-specific distributions into a weighted regional 

distribution. Section 5 discusses some potential applications of the generated regional reference, in 

particular to calculate optimal age-based drug dosing regimens. Section 6 discusses the strengths and 

limitations of the method and concludes the paper. The appendix contains the R code for fitting the 

main models.  

2. Source data 

Through literature searches and communication with individual researchers, research institutions, and 

national and international agencies, we compiled community-based data from twelve Asian countries 

covering the WHO Western Pacific and South-East Asian regions. Body weight was measured for 

273,270 individuals (62,523 males, 210,747 females) aged between 2 weeks to 50 years. Only 

population-based datasets collected as random samples of the population and direct weight 

measurements were included. Data based on self-reported body weight were excluded. Table 1 provides 
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a breakdown of the number of observations per country. Detailed methods of the quality assessment, 

selection criteria and collation procedures of these different datasets will be described elsewhere. 

All body weight measurements (in kg) were expressed as weight-for-age deviation scores, or Z scores, 

relative to the CDC 2000 growth reference [8]. The Z score for persons aged 20 years and older was 

calculated using the reference for the 20-years olds. Any weight gain in adults thus implies a higher Z 

score. Outliers for weight were examined by first plotting the Z score by age for each study separately, 

followed by searching for discontinuities in the distributions. As the spread between countries was 

fairly large, we decided to apply liberal cut-off values of Z <-10 SDS and Z > +6 SDS for the automatic 

exclusion of outliers. Asymmetric cut-offs were chosen to reflect the fact that the mean weights of our 

data were considerably lower than the reference set (based on the US population). The percentage of 

outliers thus removed was equal to 0.12% of the data, and was no greater than 0.63% for any one 

country. 

The remaining observations were randomly split into two data sets: a training set of 70% of the records 

for fitting and checking the model, and a test data set of 30% of the records to assess the predictive 

validity and the risk of over-fitting the obtained model.  

Figures 1 and 2 contain simple scattergrams of body weight against age for the twelve countries. Note 

that each subplot exhibits the familiar pattern of increasing body weight with age, but there are 

substantive differences between countries with respect to the ages covered, and the density of the 

available data. Also, some countries are covered by two or more studies. For example, one could 

recognize three different studies among Vietnamese males.  In total 77% of the data represented 

females. This unusual sex ratio is explained by the sampling strategy of the large-scale, national DHS 
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and MICS surveys, which contributed 83% of the compiled data. In these surveys, anthropometric data 

is collected from children of both sexes up to the age of 3 to 5 years, from women of reproductive age, 

but not from adult males. This focus on adult females in these surveys is linked to the known 

association between maternal anthropometrics and child and reproductive health indicators. 

3. Models for country-level age-conditional weight distributions  

This section focuses on modeling the age-conditional body weight distribution for individual countries 

through a common model. The modeling framework is based on the Generalized Additive Model for 

Location, Scale and Shape (GAMLSS) [9]. GAMLSS provides a flexible model for a univariate 

response variable Y based on explanatory variables. The distribution of Y in GAMLSS can be selected 

from a large collection of distributions, including highly skewed and kurtotic distributions. The package 

for fitting GAMLSS is available in R [10]. The analysis presented here used the GAMLSS 1.8.7 library 

running under R 2.6.2. 

Here we consider a special case of the GAMLSS model where we model the outcome Y using both a 

continuous explanatory variable x, a function of age and a categorical variable c for country (indexed by 

subscript j): 

 

Y ~ D(µ, σ, ν, τ) 
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g1(µ) = α1j + h1(x)  

g2(σ) = α2j + h2(x)        (1) 

g3(ν) = α3j + h3(x) 

g4(τ) = α4j + h4(x) 

where D represents the distribution, either the Box-Cox t (BCT) distribution or the Box-Cox Power 

Exponential (BCPE) distribution. Equation (1) expresses the location (µ), scale (σ), skewness (ν) and 

kurtosis (τ) parameters of the distribution as smooth functions of explanatory variables x. The term αkj 

is the constant intercept for country j for distribution parameter k (k =1,..,4), hk(x) is either a polynomial 

or a smooth function of x, and gk() is a known monotonic link function chosen by the user. Males and 

females are modeled separately. 

We use the following stepwise procedure for selecting a country-level model:  

1. Select Y (raw weight or weight-for-age Z score) 

2. Select functions gk() and distribution D (BCPE or BCT) 

3. Select transformation x of variable age 

4. Assess the need to split the countries into two or more homogeneous subgroups, if age-

dependent weight distribution of sub-groups is considerably different, using the Schwarz 

Bayesian information criterion (SBC) 
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5. For each homogeneous subgroup of countries, select size of penalty for each effective degree of 

freedom used in the models for µ, σ, ν and τ on the training data, for application with the 

generalized Akaike information criterion (GAIC), or a combination of worm plots and 

associated mean squared error (MSE) plots 

6. Optimize models for each individual subgroup of countries 

7. Confirm overall model fit using the test data  

Selecting Y, i.e. modeling W or Z. The function Z = f(W,t) converts measurements in kg (W) into 

standard deviation scores (Z) relative to a chosen reference, while W = f
-1

(Z, t) is its inverse. We present 

models for both W and Z. The first approach uses the raw weight in kg and simultaneously describes the 

variation in weight between different ages and between countries. The second approach models Z, and 

concentrates on modeling the variation between countries.  

Distributions. Previous applications of GAMLSS include centile estimation using the BCPE  and BCT 

distributions to a variety of anthropometric measures against age [11] and [12]. Both distributions are 

four parameter distributions, allowing modeling of location, scale, skewness and kurtosis. Both 

distributions allow modeling of positive and negative skewness. The difference between the BCPE and 

BCT distributions is that BCPE allows modeling of both platykurtosis and leptokurtosis, while BCT 

only models leptokurtosis. The BCT distribution has been found to provide a better fit to a response 

variable with high leptokurtosis, e.g. [12], while BCPE has the flexibility to fit a response variable with 

platykurtosis or moderate leptokurtosis. 
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Transformation of the age scale. To simplify the model needed to fit the median weight over the course 

of life, we applied a transformation to age t. In general, it is beneficial to expand the ages where growth 

velocity is high, and compress age where growth velocity is low [6]. Based on the optimized SBC, a 

simple square root transformation of age was found to appreciably enhance the model fit. We also tried 

the age transformation method proposed by Cole, whereby the median curve is first fitted against age in 

the usual way, then it is refitted but using the initial median curve rather than age. The refined median 

curve is then plotted against the original age.[12] However, this did not provide an improved fit to the 

data as judged by the SBC. All modeling was therefore done in the scale of √t. 

Model selection. The optimal (effective) degrees of freedom in each of the smooth h functions above 

were selected based on the combination of two diagnostic tools: 

a. Minimization of the generalized Akaike information criterion (GAIC), given by GAIC = -2l + 

#df, where l is the log likelihood function, # is a penalty for each degree of freedom used in the 

model and df is the total (effective) degrees of freedom used in the model. The penalty # 

chosen should be sufficiently large to avoid over-fitting (which results in centile curves that are 

insufficiently smooth) and sufficiently small to avoid under-fitting (which results in a poor fit 

to the data). We use the SBC, a specific GAIC where the penalty # = log n. As the penalty is 

related to the size of the dataset, this reduces the risk of overfitting.  

b. In addition, worm plots per country and the associated mean squared error (MSE) were used to 

guide these choices [7]. The worm plot is a de-trended QQ-plot created for a number of 

(usually 16) age intervals. The shapes of the worms indicate where and how we can improve 

the fit of the model. Worm plots were drawn on the level of the individual countries, and a 
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customized software routine was created for this purpose. Our strategy involved the 

comparison of two worm plots side by side, where we gradually increased the degrees of 

freedom df(µ), df(σ), df(ν), and df(τ). The degrees of freedom df were chosen at the point at 

which only very minor differences can be seen between solutions df and df+1. In order to 

quantify this effect, we calculated the quantitative measures, β0 to β3, which describe the shape 

of each worm. The amount of fit of the µ-component in the model is measured by shape 

coefficient β0. For age groups g=1,…,16 we calculate the mean squared error MSE(β0) = 

Σgβ0,g
2
/16 over the 16 panels of the worm plot. This is done separately for country and shape 

coefficients β0 to β3 on a grid of models for df(µ), df(σ), df(ν), and df(τ).  

The resulting local (country-level) references were plotted in the form of age-dependent curves for µ, σ, 

ν, and τ by using the predict.gamlss function.  

In the following sections we present two alternative options to model either body weight W against age 

(referred to as the ‘raw score model’), or models the weight for age Z score against age (referred to as 

the ‘Z score model’).  

3.1. Raw score model  

Here we model directly the body weights W against age and country using a GAMLSS model of type 

(1), applying the following steps: 

1. Set distribution to BCT, and change the default link function from identity µ to log(µ)  

2. Set age transformation: x = √t  
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3. Set age smoothing method: Cubic splines 

4. Assess the homogeneity between countries: Split the countries into two groups: Thailand 

versus the remaining countries (see below) 

5. Optimize models for the 2 individual homogeneous subgroups using the GAIC (i.e. SBC), 

MSE and worm plots. 

The rationale for this model choice is as follows. The BCT distribution was found to give a better 

overall fit to W than the BCPE distribution. The log link for µ was found to give a better fit than the 

identity link. The log link for µ  provides a multiplicative model for µ, i.e. the countries have 

multiplicative effect on µ , while the identity link for µ  would provide an additive model for µ . Cubic 

splines provided flexible smooth curves in age.  

Figure 3 displays the MSE(β0) per country for males at increasing degrees of freedom df(µ) before the 

split of the model into subgroups. For most countries the fit increases (i.e. the MSE decreases) as the 

model becomes more flexible. A notable exception is Thailand. We interpret this as an indication that 

the age-dependent weight distribution for males from Thailand is different from that in the other Asian 

countries. This is supported by the fact that the sum of the two deviances for the separate models is 

substantially lower than the deviance from the model fitted to all countries at once. We therefore 

decided to model Thailand separately. For the females, we came to a similar conclusion. 

Hence four models for W were fitted: male Thailand, male other countries, female Thailand and female 

other countries. All four models for W were in the form given by: 
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W ~ BCT(µ, σ, ν, τ) 

 

log(µ)= α1j + h1(x) 

log(σ) = α2j + h2(x)        (2) 

ν = h3(x) 

log(τ) = h4(x) 

The male ‘other countries’ model includes different constant intercepts α1j and α2j for each of the other 

countries (indicated by subscript j) for each of µ and σ respectively. Similarly for the female ‘other 

countries’ model. The male and female Thailand models isare in the same form, but without the country 

effect, i.e. setting α1j = 0 and α2j = 0.  

The functions hk(x) for k = 1,2,3 are smooth functions of x for all four models, while function h4(x) is 

linear in x, i.e. h4(x)  = α4 + β4x for all models except the female ‘other countries’ model where it is a 

smooth function of x. 

Table 2 provides the chosen degrees of freedom for smoothing (on top of constant and linear terms in x) 

for the h functions of µ, σ, ν and τ. Note that all four models have different fitted smooth functions and 

the fitted linear models for h4(x) in three of the models (where the smoothing degrees of freedom is 

zero) are also different. 
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The use of the log link for µ affects the interpretation of the median curve. For the other countries 

model (2) we have: 

µ = 
)(11 xh

ee jα
= µj H1(x)

 

σ = 
)(22 xh

ee jα

= σj H2(x)
 

where H1(x) = )(1 xh
e   and H2(x) = )(2 xh

e are smooth functions of x, while µj =  je 1α
and σj = 

je 2α
are 

scaling factors for µ and σ  for  the country j (j =1,…,J). Hence the fitted functions for µ (the median 

weight) against age (for the different other countries) differ only in their scaling factor µj.  

Figure 4 plots the estimates of µj against σj. The medians for Bhutan and Philippines were about 1.1 to 

1.3 times the common median curve. The data for India had a high variance, whereas the spread in the 

data was low in Vietnam.  

3.2. Z score model 

This section discusses modeling Z instead of W. The Z measure expresses all data relative to the 1997 

Dutch weight-for-age references. Fitting the model involved the following steps: 

1. Set distribution to BCPE, using default link functions 

2. Set age transformation: x = √t  

3. Set age smoothing method: orthogonal polynomials for model exploration, switch to cubic 

splines for final models 
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4. Add a constant = 11 to the Z score data before fitting (see below for rationale). 

5. Split the countries into two groups: Thailand versus the rest 

6. Optimize models using the GAIC (i.e. SBC), MSE and worm plots. 

The distribution of Z is platykurtic, i.e. it has thicker tails than the normal distribution. The BCPE 

distribution is able to model this feature of the data [11]. As the BCPE is only defined for positive 

values, we add a constant δ =11 to the data before fitting, based on the minimum deviance found over a 

grid of δ−values using the profile likelihood. 

All models for Z are given by:  

Z ~ BCPE(µ, σ, ν, τ) 

 

µ = α1j + h1(x)         (4) 

log(σ) = α2j + h2(x) 

ν = h3(x) 

log(τ) = h4(x) 

with h1(x) and h2(x) are smooth functions of x whose degree of freedom is to be specified, and where 

h3(x) = α3 + β3x and h4(x) = α4 + β4x are linear in x. As results were largely insensitive to the type of 

smoother, we chose the fastest method (in terms of computer processing time), orthogonal polynomials, 
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for model exploration, and cubic splines for the final models. The model allows for different constant 

intercepts α1j and α2j for the countries in the models for each of µ and σ  respectively. The model 

allows that countries can differ in their mean level and their variation on the Z score scale, but not in 

other aspects.  

The model requires a specification of the degrees of freedom, df(µ), df(σ), df(ν), and df(τ). It is 

essential to assess the fit of the models at the country level since the composition of the sample can 

differ from that of the regional population. We studied the behavior of the worm plots at the country 

level, with its vertical range set equal to -0.5 to +0.5. Smoothing coefficients were fixed at the point at 

which no major improvements in fit occurred anymore for successively df(µ), df(σ), df(ν) and df(τ). 

Table 3 lists the settings of the Z score models. After fitting, all results were back-transformed into the 

original body weight scale. 

Figure 5 is a scattergram of the estimates of µj against σj. For males, the median weight of the country 

is between -1 SD and -2 SD below the CDC reference. For females, the range drops -2 SD and -3 SD, 

with Bangladesh females being the lightest of all at -2.78 SD. The variance Z is high for Laos and 

India, and low for Vietnam.  

3.3. Comparison of the raw score and Z score models to define Y 

Figure 6 shows the fitted median weight curves of six countries under both models. In the raw score 

models, the curves are proportional to each other, except for Thailand. In the Z score model, the 

medians are shifted versions of each other in the Z scale, again except for Thailand. Despite substantial 

differences in the model, both methods resulted in very similar estimates of the age conditional weight 

Page 16 of 46Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

 

17 

distribution. For external comparison, Figure 6 includes the median and the -2 SD line of the CDC 

references.  

We also compared the worm plots and the centiles of the raw score and Z score models. As an example, 

Figure 7 contains the worm plots for Bangladesh males under both models. The use and interpretation 

of worm plots as diagnostic tools for modeling growth reference curves has been described in detail 

elsewhere.[8] While some differences are certainly present, both model solutions are largely, if not very 

comparable.  

Table 4 contains the percentage of persons that fall below the 3
rd

, 10
th
, 50

th
, 90

th
 and 97

th
 centiles of the 

country for both models. We calculated the percentages from the test data, which were not used to 

estimate the model. Table 4 indicates that most percentages are located within 1 or 2 percent points of 

the expected value. Larger differences may occur when sample size is low (e.g. Philippines). It was not 

possible to estimate the percentages for Bhutan. There is not much difference between the raw score 

and Z score models. Table 4 provides evidence that the fitted country level references adequately model 

the empirical distributions in each country. 

4. Combining countries into a regional weight-for-age distribution 

On completion of the country-level modeling, the regional distribution is determined by mixing the 

smoothed country-level distributions. To do this, let fj(y)[=fj(y|X=x)] be the distribution of Y given X=x 

for country j, for j=1,2,…,J. The regional distribution fY(y)[=fY(y|X=x)] is a finite mixture distribution 

with known mixture weights wj proportional to the population size Pj, given by 
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 fY(y)= ∑ =

J

j jj yfw
1

)(  where 

1

j

j J

j

j

P
w

P
=

=

∑

 for j=1,2,…,J.    (5) 

Similarly the regional cumulative distribution function FY(y)[=FY(y|X=x)=prob(Y ≤  y | X=x)] is given 

by 

( ) ( )
1

J

Y j j

j

F y w F y
=

= ∑ ,        (6) 

where Fj(y) is the cumulative distribution function of Y given X = x for country j. The regional centile y 

given x, for a specific centile percentage 100p%, is defined by FY(y) = p, or equivalently y= FY
-1

(p), 

requiring the inverse cumulative distribution function FY
-1

(p). A centile curve for y against x, for a 

specific centile percentage 100p%, is obtained by finding the centile y for a sequence of values of x. In 

the raw score model, we mix the country-level distribution of W. In the Z score model, the mixture is 

created using the weight-for-age Z score, and subsequently back-transformed into the kg scale.  

The generated regional centile curves are given in Figure 8 for ages from birth to 50 years. All in all, 

the regional reference from the raw score and Z score model agree quite close, except for the 18 year 

olds males. The primary reason for this is that the available male data are very sparse at this age (cf. 

Figure 1). Thus, the local shape of the model is not steered by empirical evidence. Our use of two 

distinct models highlights where in the model the solution seems to depend on assumptions. Provided 

that the models are flexible enough, we expect such discrepancies to disappear for more dense data, 

e.g., as was indeed the case in the females. 
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5. Application 

The generated growth references may have a range of practical applications. Examples include 

monitoring the nutritional status in a country or a region, estimating age-specific prevalence of 

underweight or overweight, and setting regulations that involve body weight, e.g. maximum number of 

person allowed in a transport vehicle or elevator.  

We developed the method with the specific aim to establish a standardized tool to determine safe and 

effective age-based dosing regimens for antimalarials and other drugs used in the tropics [13]. Malaria 

causes an estimated 300 to 500 million episodes of clinical malaria, resulting in up to 1 million deaths 

each year. The regulatory drug development process for antimalarials typically results in weight-based 

dosing recommendations. In practice, however, the majority of fevers in malaria endemic areas are 

treated with over-the-counter antimalarial drugs without involvement of the formal health sector, or in 

other situations where functioning weighing scales are not available [14]. In these settings age is widely 

used as a proxy for weight. There are currently no standardized procedures to devise age-based proxies 

for the weight-based recommendations that typically result from the regulatory drug development 

process. This has contributed to considerable variability in existing age-based dose regimens for 

antimalarials, at times resulting in poor, but widely-used regimens, particularly in those who bear the 

brunt of the malaria burden, namely young, rapidly growing children [15]. An optimal age based 

regimen corresponds to the lowest risk of over- and under dosing in a given population. In order to 

derive optimal regimens, we need the actual reference distribution of weight by-age in that population, 

rather than the available international growth standards. The proposed method provides a tool to 

estimate these age-conditional distributions of body weight based on the available data. 
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6. Discussion 

We developed a two-step method for fitting centile growth curves for a set of countries. Our method is 

able to model data with widely different age ranges and sample sizes, and produces references both at 

the country level and at the regional level. Within the model, individual countries can vary in location 

and spread. We demonstrated the method by fitting the weight-for-age distribution in twelve countries 

in South East Asia and the Western Pacific, and were able to achieve a good fit between the final model 

and the original data.  

Our two-step finite mixture approach is an improvement over methods that require pooled data for a 

single population. The first step generates country-specific references that extrapolate information from 

similar countries. Given sufficient overlap in the ages, this step allows for extrapolation of the country 

references into age ranges that were not observed. The second step defines the regional reference as a 

finite mixture distribution of the country references. We used mixture weights proportional to country-

level population size, but other choices are certainly possible (e.g. malaria prevalence).  

The two-step approach allows for tremendous flexibility and could be useful for mixing growth 

references within other settings. For example, suppose that we want to create a smooth transition 

between two disjoint references on a given age range. We could chose mixture weights to gradually 

change with age, thus setting (1,0) at the start of the age range setting (0,1) at the end, with a smooth 

transition in between. Alternatively, we could mix different subsamples (e.g. ethnic background, breast 

feeding status) in the appropriate proportions, or estimate secular trend in the distribution as one or 

more model parameters. 
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The country references are well-defined BCPE or BCT distributions, but the regional mixture 

distribution is not. Whether this is a problem depends on the context. In our application for defining 

age-based drug regimens, it was straightforward to calculate the percentage of adequately dosed 

children from the regional centiles. Calculating Z scores relative to the new regional reference would 

require a BCT or BCPE distribution. We fitted BCPE and BCT models to the centiles that approximate 

the regional reference to a high degree of accuracy. This fitted distribution could then be used to 

calculate Z scores. 

We used two definitions for Y, the raw score and the Z score. Despite some methodological differences, 

both approaches resulted in very similar regional and country level estimates, adding credibility to the 

validity and robustness of the procedure. Both approaches appear to have sufficient flexibility built into 

the model, which means that the results are predominantly dictated by the underlying data. Of course, 

this also implies that, as always, care is needed when data are sparse. The choice between modeling raw 

scores or Z scores is primarily a matter of convenience and familiarity. Modeling the raw score 

provides a model in terms of original units, which is convenient. Furthermore, it is the only option if 

appropriate external references are lacking. The Z score model scales data to an external growth 

reference, so that the location of a country can be expressed relative to this reference. The Z score 

model does not need to model the typical age-related shapes (e.g. the growth spurts during infancy and 

puberty, adiposity rebound) that appear in the original scale, thus allowing the use of a simpler model. 

On the other hand, the Z score approach may have difficulty in modeling populations with widely 

different timings. A prerequisite is that the reference used to obtain the Z scores is in phase with the 

new data, so that for example the timing of the pubertal growth spurt is similar in the two. If pubertal 

growth occurs earlier in the target population than in the reference population, this would manifest 
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itself as a rise in Z scores around the start of puberty in the target population, followed by a decrease, 

and leading up to an asymptote that could differ from the pre-pubertal mean. If the timing differs 

between different countries, then smoothing the Z scores tends to flatten out phase differences. This 

might have been the case for the males in Figure 6, where the curves around age 15 are different in 

shape under the two models. We cannot be sure however since there are only few data points around 

that age. In principle, we can allow for phase variation by using more flexible smoothing methods that 

incorporate time shifts, but that requires larger samples around puberty than are currently available. It is 

not known whether the raw score model is more efficient in handling this problem than the Z score 

model. A third option is to follow both routes, as presented here. This is more work, but it provides 

insight into the robustness of the final model under alternative modeling choices.  

The age range for the analysis is 0-50 years. Some countries (Cambodia, Thailand, Bangladesh, India 

and Nepal) have substantial numbers of adult subjects. One concern is that those subjects may dominate 

the analysis, and swamp the child data. We reran our final models on the data that exclude any persons 

>25yr, and compared the results to our original curves. Overall, the results were very similar, with only 

some small differences near the ages close to 25 years, presumably due to edge effects. We prefer the 

analysis 0-50 years since that analysis uses all available data. 

The Z score method requires a growth reference. We have chosen to use the CDC 2000 reference, 

which is a country-specific reference based on the 1977 NCHS data. We initially planned to use the 

new WHO 2007 re-analysis of the NCHS data.[3] The WHO 2007 weight-for-age references only 

includes children up to the age of 10 years, however, and fails to cover the age interval 10-19 years. We 

therefore opted to use the CDC reference instead. The choice of reference, however, does not appear to 

be critical.  Repeating the analysis using the Dutch 1997 reference instead of the CDC reference,[16]  
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resulted in different solutions when viewed in the Z scale (as expected), but similar when those results 

were transformed into the W scale. It thus appears that the Z score method is robust against the choice 

of the reference.  

As part of the model building process we explored the need to fit more complex models. Varying 

slopes for age were initially included in the raw score model for µ in the female data for Bangladesh, 

Cambodia and Nepal. Though this significantly improved model fit, the effect was only noticeable for 

the upper age range. The absolute difference of the fitted median was 0.28 kg when averaged over all 

ages, and 0.1 kg when averaged for ages 0-20 years. The largest deviation, 1.6 kg, occurred for 

Bangladesh females aged 50 years. As the differences of this magnitude are unlikely to have practical 

consequences, we refrained from modeling varying slopes in the final model. Likewise, other model 

parameters that we explored, like study period and country effects for the models of ν and τ, had only 

minor effects and were therefore omitted.  

Our method uses readily available data, which is an affordable and efficient strategy. We are, however, 

cognizant of the limitations of the generated growth reference curves. As with any model, the quality of 

the modeled output depends on the quality and representativeness of the underlying data. Though we 

included only studies where sampling was based on random sampling, the country-level curves we 

derived may not be representative if data are missing over a large age range for that country and if the 

growth rate in the missing age group differs from that in other countries contributing to the model. 

Furthermore, due to the sparsity of data from certain countries, we did not restrict ourselves to recent 

studies only. While most studies were conducted in the last 10 years, there were a few older surveys. 

The generated reference curves thus need to be updated as more recent, complete data becomes 

available.  
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Asia is home to a vast and diverse portion of the world’s population, with differences in weight 

distribution within and between Asian countries linked to ethnicity, social and economic conditions, 

differences in diet, degrees of urbanisation, and nutritional transitions in recent times. Our regional 

reference curves quantify known, but nevertheless striking differences of the actual Asian growth 

relative to the CDC 2000 growth references. Over 50% of the population in Asia is estimated to have 

weights that are below the 3
rd

 percentile of the CDC references.  

There are initiatives to conduct national household surveys like UNICEF’s MICs surveys and Measure 

DHS surveys on a more regular basis (every 3-4 years). Regular high-quality national household 

surveys would offer the opportunity to expand their current collection of representative anthropometric 

data in young children and women of reproductive age, to a wider age range. If such data were to 

become available in the near future, they could readily be taken up into our approach. Doing so would 

help strengthen and solidify the information base of regional growth estimates, and potentially provide 

a tool to monitor country-level and regional changes in nutritional status. Until then, our method based 

on existing anthropometric data is an affordable and efficient strategy to monitor nutrition and health at 

several levels. 
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Appendix: R code for fitting models 

 

Example of data structure of Asian males: 

ID  country   age weight    WAZ  WAZ11 

3  Viet Nam  4.79     50 -2.514  8.486 

9  Viet Nam  5.29     52 -2.186  8.814 

10 Viet Nam  5.56     69 -0.144 10.856 

 

where the column age indicates the square root of age in years, where WAZ is the Z score and where 

WAZ11 = WAZ + 11. The raw score model and the Z score model for the ‘other countries’ (excluding 

Thailand) were fitted in R by: 

 

library(gamlss) 

fit.w <- gamlss(formula = weight ~ cs(age, df = 13) + country, 

    sigma.formula = ~cs(age, df = 7) + country, 

nu.formula = ~cs(age, df = 3, c.spar = c(-1.5,2.5)),  

tau.formula = ~cs(age, df = 0),  

       family = BCT(mu.link = "log"),  

data = asianMRest, c.crit = 0.1) 

 

fit.z <- gamlss(formula = WAZ11 ~ cs(age, df = 8) + country, 

    sigma.formula = ~cs(age, df = 2) + country,  

nu.formula = ~1,  

tau.formula = ~cs(age, df = 1),  

family = BCPE, 

data = asianMRest, c.crit = 0.1) 
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Table 1: Number of cases and age range per country and sex of South-East Asian countries. 

  Females  Males  

Country N  Age range (yrs) N Age range (yrs) N 

Bangladesh          17486             0-4, 15-49 14357   0-4 3129 

Bhutan            368       36-49 212    36-49 156 

Burma         8577           0-4 4278   0-4 4299 

Cambodia           15521             0-49 11938   0-49 3583 

India        165576            0-49 141307  0-49 24269 

Indonesia            2262            9-15 1127   9-15 1135 

Laos            1547           0-4 787    0-4 760 

Nepal      16059             0-4, 15-49 13362   0-4 2697 

Philippines 730            7-30 279    7-31 451 

Sri Lanka         2021           0-4 947   0-4 1074 

Thailand          44024  0-49 24146  0-49 19878 

Viet Nam  8220 0-4, 9-10 3031   0-4, 9-10, 19-48 5189 

      

Total 273270  210747  62523 
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Table 2: Degrees of freedom of smooth functions of x = √age that describe the age-varying 

distribution of body weight (kg) as the four components in the BCT model. 
1 

Other countries’ 

model includes data from Bangladesh, Bhutan, Burma, Cambodia, India, Indonesia, Laos, Nepal, 

Philippines, Sri Lanka, and Vietnam. Cubic splines were used. The default link function was 

changed from identity µ to log(µ).  

 df(µ) df(σ) df(ν) df(τ) 

Male Thailand 14 7 4 0 

Male other countries
1
  13 7 3 0 

Female Thailand 12 6 2 0 

Female other countries
1 

20 12 10 3 

 

 

Page 30 of 46Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 31 

 

Table 3: Degrees of freedom of smooth functions of x = √age that describe the age-varying 

distribution of the Z-score of body weight as the four components in the BCPE model. 
1 

Other 

countries’ model includes data from Bangladesh, Bhutan, Burma, Cambodia, India, Indonesia, 

Laos, Nepal, Philippines, Sri Lanka, and Vietnam. Cubic splines were used. Z-scores were 

calculated relative to the CDC 2000 reference. The BCPE model was fitted to the Z + 11.  

 df(µ) df(σ) df(ν) df(τ) 

Male Thailand 8 1 * 1 

Male other countries
1
 8 2 * 1 

Female Thailand 5 2 1 1 

Female other countries
1
 12 2 * 1 

* includes only the intercept α3 
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Table 4: Percentages of cases below the P3, P10, P50, P90 and P97 centiles per country in the 

test data for the raw score model and the Z score model. The percentages for Bhutan could not 

be estimated due to the low number of cases. 

Country Raw score (W) model  Z score model 

 P3 P10 P50 P90 P97  P3 P10 P50 P90 P97 

Males            

Bangladesh         2.7 9.8 50.9 90.2 96.8  2.6 9.3 51.1 90.2 96.9 

Burma        3.2 9.9 48.2 91.0 96.8  2.7 9.6 48.6 92.2 97.1 

Cambodia          3.5 9.4 49.5 90.8 97.5  3.1 10.5 50.8 91.0 97.5 

India       3.1 10.5 50.6 90.6 97.3  3.0 10.1 50.3 90.9 97.5 

Indonesia           1.3 8.9 50.5 90.8 96.8  1.3 9.8 50.5 92.4 97.1 

Laos           3.2 11.3 52.3 89.2 95.0  2.7 10.8 51.8 91.0 95.5 

Nepal     3.5 10.0 48.6 89.6 97.0  3.8 10.2 48.4 89.9 97.5 

Philippines  4.3 11.4 45.7 89.3 99.3  4.3 10.7 45.7 90.0 99.3 

Sri Lanka       3.3 9.9 45.9 91.3 99.4  3.0 9.3 44.7 91.6 98.8 

Thailand        2.8 9.3 51.6 89.6 97.1  2.3 9.2 51.9 89.7 97.0 

Viet Nam  2.5 9.5 49.0 90.7 97.6  2.6 8.8 49.3 90.8 97.6 

            

Females            

Bangladesh         2.7 10.4 51.7 89.6 96.8  2.4 9.6 51.4 89.4 96.7 

Burma        3.5 10.3 48.6 91.4 97.8  2.3 8.5 50.5 91.9 97.3 

Cambodia          2.8 10.2 51.5 90.6 97.5  3.3 9.3 49.1 90.9 97.7 

India       2.7 9.8 49.9 89.9 97.2  2.7 9.6 49.8 90.0 97.1 

Indonesia           1.4 11.1 49.7 88.1 97.0  1.1 11.9 49.7 88.9 95.8 

Laos           2.5 7.5 51.7 90.0 96.0  2.5 8.5 50.2 91.0 96.5 

Nepal     3.1 9.8 49.9 89.7 97.0  3.0 9.8 49.4 90.1 97.4 

Philippines  6.0 10.7 57.1 94.0 96.4  3.6 15.5 57.1 94.0 97.6 

Sri Lanka       2.6 10.7 50.2 90.6 97.4  2.6 10.5 51.3 90.3 96.6 

Thailand        3.2 10.0 51.4 90.2 96.9  3.1 9.6 51.5 90.2 97.0 

Viet Nam  2.9 8.9 48.3 88.8 96.8  2.5 8.2 49.4 88.4 96.0 
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Figure captions 

Figure 1  Weight (kg) by age (years) of males in 12 Asian countries. Sample sizes and age 

ranges for which data is available vary widely between countries. 

Figure 2  Weight (kg) by age (years) of females in 12 Asian countries. Sample sizes and age 

ranges for which data is available vary widely between countries. 

Figure 3  Mean squared error (MSE) per country for increasingly flexible models for the 

median curve. MSE(β0) quantifies model fit as the squared shape coefficient β0 is 

averaged over 16 worm plot panels. The quantity df(µ) is the degrees of freedom in 

the cubic spline of √age in the median curve. A decreasing trend corresponds to a 

better fit. Note that the fit of Thailand deteriorates for more flexible models.  

Figure 4  Scattergrams of the two country parameters (location and spread) for the raw score 

model, by sex. The horizontal axis is a multiplicative location factor of the common 

µ-component. A larger value indicates a higher median weight of the data. The 

vertical axis is a multiplicative scale factor of the common σ-component. A larger 

value implies a higher level of variability in weight in the data.  

Figure 5  Scattergrams of the two country parameters (location and spread) for the Z score 

model, for males and females. The horizontal axis is the shift in location (in SDS) 

relative to the CDC 2000 reference. A larger value indicates a higher median weight 

of the data. The vertical axis is a multiplicative scale factor of the common σ-

component. A larger value implies a higher level of variability in weight in the data.  

Figure 6  Median (P50) weight-by-age curves per country by model types (raw score and Z 

score) and sex. For comparison purposes, the median and -2SD lines of the CDC 2000 

reference have been added. Note that the Asian people are on average substantially 
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lighter than the CDC 2000 reference. 

Figure 7  Example of worm plot used to assess the accuracy of the model fit for males in 

Bangladesh based on the test data. ‘Flatter worms’ indicate a better fit. The fit of the Z 

score model (top) and the raw score model (bottom) is similar. Similar age-stratified 

diagnostic plots were used by country and sex. Age groups are ordered from the 

lower-left corner panel to the upper-right corner panel. 

Figure 8  Regional centiles (P3, P10, P50, P90, P97) obtained after weighting the fitted country-

specific distributions according to population size. Centiles from the raw score (W) 

model (red) and Z score model (green) are plotted in the same figure. Males (left) and 

females (right). 
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