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Abstract

African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a
vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The
specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific,
immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge.
Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of
establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this
phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP
protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in
response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome
infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African
trypanosomiasis.
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Introduction

African trypanosomes are protozoan parasites that cause

sleeping sickness in humans and nagana in domestic livestock in

sub-Saharan Africa. An epidemic involving several hundred

thousand people that spread through Sudan, the Central African

Republic, DRC and Angola in the 1990’s, demonstrated how

socially and economically devastating these diseases are [1].

Trypanosomes kill more than 3 million cattle annually and those

animals that survive display low productivity due to the wasting

effects of the disease [2]. The annual losses from trypanosomiasis

in cattle amount to more than US $4.5 billion [3]. Trypanosomes,

by influencing food production, natural resource utilization and

the pattern of human settlement, are thus seen by the African

Union as one of the greatest constraints to Africa’s socio-economic

development [4].

African trypanosomes are cyclically transmitted by tsetse flies

(Glossina spp.). Trypanosoma brucei and T. congolense undergo a

complex cycle of development in the tsetse beginning almost

immediately after ingestion of an infected bloodmeal when

trypanosome bloodstream forms (BSF) differentiate to the

procyclic form in the fly midgut lumen [5,6,7]. For the first three

days following infection all flies contain trypanosomes. Between

days 4 and 5 trypanosome infections are eliminated from most flies

[7] through a process we term self-cure. The identified factors that

influence vector competence (the ability to transmit parasites)

include the age of the fly, the number of bloodmeals taken and the

activation of fly immune processes, with both antimicrobial (host

defense) peptides [8], and lectins [9,10,11] implicated in parasite-

vector interactions. More recently, antioxidants have been shown

to increase fly susceptibility when administered to flies in an

infective bloodmeal [12]. Most mature tsetse are resistant to

trypanosome infection although the mechanisms involved in

elimination of trypanosomes from the fly midgut (self-cure) are

not understood [13].

As T. brucei BSF trypanosomes transform in the tsetse midgut

the trypanosome surface coat changes from variant surface

glycoproteins (VSG) to procyclins. At first the procyclins are a

mixture of GPEET and EP forms and then expression of GPEET

becomes repressed [14]. Our attention has been drawn to a fly

protein called tsetse EP (accession number CAC86027), named for

the extensive glutamic acid-proline dipeptide repeats that in

Glossina morsitans morsitans comprise more than 40% of its length.

The repeat section of this molecule shows remarkable sequence

identity to the repeat section of the EP form of procyclin surface

coat molecules of T. b. brucei [14]. These repeats are very rare in

the protein databases and their co-incidence in two species

showing such a close biological relationship is remarkable. Our

knowledge of tsetse EP is limited although we do know that it is

strongly up regulated following fly challenge with Gram-negative

bacteria [15] suggesting a possible function in the insect immune

response. In addition up regulation of the immune response by

injection of E. coli also leads to a significant reduction in

trypanosome prevalence [8,16]. For these reasons we have
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undertaken a series of experiments to see if these observations are

connected. We provide evidence that tsetse EP protein has a

powerful role in protecting the tsetse fly midgut from trypanosome

infection.

Results

Where is tsetse EP protein produced within the midgut
of the fly?

Tsetse midguts were carefully dissected into distinct structural

regions (Figure 1, Panel A) to determine the location of tsetse EP

mRNA and protein. Tsetse EP transcripts were detected in all

sections tested. However, lower levels were consistently observed

in the proventriculus (PV) (Figure 1, Panel B). The Western blot

(Figure 1, Panel C) overlay of the nigrosine-stained PVDF with the

autoluminogram revealed the strong presence of tsetse EP protein

in all tissues except for the PV. Given the presence of tsetse EP

transcript in the PV we conclude that tsetse EP protein was either

not produced in PV, was rapidly turned over in that organ or was

rapidly translocated from there into the anterior gut. Similarly,

tsetse EP transcript was detected in salivary glands from teneral

and fed flies [17] but tsetse EP protein was only weakly detected by

immunoblotting suggesting it may be rapidly translocated to

midgut.

Design of dsRNA for tsetse EP knockdown
Tsetse EP protein appears to be ubiquitous in Glossina spp. as its

presence was confirmed in eight species of tsetse previously

examined by Western blotting with the anti-EP repeat antibody

(mAb 247) [15]. Using the available sequence analysis of the

amino acid sequence of tsetse EP protein [15,17] we designed

effective double stranded RNA for knockdown experiments

(Figure 2). A protein sequence comparison (87% similarity)

between two species (G. m. morsitans and G. p. palpalis) revealed

that the outstanding sequence difference was in the length of the

C-terminal EP repeat region [15]. The tsetse EP protein is

probably a preproprotein containing a short (19 mer) hydropho-

bic, N-terminal signal sequence as predicted by SignalP 3.0 [18].

Amino acids 20–48 appear to be removed from the remaining

peptide during an undefined maturation process as determined by

mass spectrometry and N-terminal sequencing [17,19]. The EP

rich domain is extremely hydrophilic, and thus almost certainly is

highly soluble in aqueous solvents. It is interesting that all 8 of the

cysteine residues are situated up stream of the EP rich C-terminus,

suggesting that this region may be highly folded. For our

experiments, we designed dsRNA to target in RNA interference

the homologous region 23 residues downstream from the N-

terminus of the mature protein (Figure 2, red highlighted region:

GKFASDKCAQEGQ). The dsRNA target varies only slightly

between G. m. morsitans and G. p. palpalis (4/39 nucleotides differ

and these are shown in yellow lettering in Figure 2). Consequently

the same dsRNA construct was used to achieve gene knockdown

in both species.

Tsetse EP protein levels are greatly reduced following
gene knockdown by RNA interference

During RNAi experiments mRNA levels are often extrapolated

to predict protein expression levels. However, this is often

misleading as the correlation between transcript abundance and

protein expression levels can often vary as much as 30 fold or

more, leading to a grossly distorted analysis of a biological system

[20] and this may be especially true in the midgut of blood sucking

insects where post-transcriptional regulation may be a common

phenomenon [21]. Consequently, we measured tsetse EP levels at

both the mRNA and protein levels. We show that injection of

dsRNA leads to significant reductions in transcript levels

compared to controls (Figure 3A). In addition, immunoblot

analysis using the anti-EP repeat monoclonal antibody (mAb247)

to detect the tsetse EP protein in midguts of knockdown flies

showed complete elimination of the endogenous protein following

a single injection of 4 or more mg of dsRNA (Figure 3B).

Parasite infection is increased by RNAi-mediated
knockdown of tsetse EP protein

We employed a reverse genetics approach to determine if tsetse

EP influences parasite establishment in the midgut of the fly. We

injected double-stranded RNA (dsRNA) into the thoracic

haemocoel of male flies of different ages. Typically the flies were

allowed to recover for 36–48 h after injecting dsRNA. This

provides enough time for the dsRNA to start silencing tsetse EP

protein transcription and for endogenous protein levels to decline

[22]. After this point, flies were offered an infective bloodmeal

containing virulent strains of either T. b. brucei (TSW196) or T.

congolense (1/148) BSF. Seven days after the infectious meal the

midguts were dissected, examined microscopically, snap frozen,

and the number of infections was recorded (Table 1). A

complicating feature of this insect system is a natural decrease in

susceptibility in older flies termed the teneral phenomenon.

Typically more than 50% of flies establish midgut infections when

fed trypanosomes in the first bloodmeal. However, if infected in

the second bloodmeal, this susceptibility declines to ,30% of the

population. By the third bloodmeal, tsetse populations are

predominantly refractory to infection with typical midgut

establishment rates of 10% or less (Table 1). So, we investigated

flies with differing feeding histories. Tsetse EP knockdown flies,

infected at all feeding time points investigated, showed statistically

significant increases in susceptibility to T. b. brucei establishment in

the midgut when compared to the controls (Table 1).

To determine if this phenomenon was present in other tsetse

species we also investigated G. p. palpalis. Table 1 shows there are

statistically significant increases in T. b. brucei establishment in the

midgut of tsetse EP knockdown G. p. palpalis. We also conducted

experiments to determine if the phenomenon extending to other

trypanosome species. T. congolense also establishes higher midgut

infections in EP knockdown flies (Table 1). Based on our current

and previous [15] observations, the increase of vector competence

to midgut inhabiting trypanosomes in tsetse EP knockdown flies is

possibly a genus-wide phenomenon in Glossina.

Author Summary

In Africa, tsetse flies transmit the trypanosomes causing
the devastating diseases sleeping sickness in man and
nagana in domesticated animals. These diseases are major
causes of underdevelopment in Africa. Paradoxically, most,
but not all, flies are resistant to infection with trypano-
somes, but we do not have a clear picture of how flies fight
off trypanosomes. Here we show that a particular, tsetse-
specific immune responsive protein called tsetse EP acts as
a powerful antagonist of trypanosome establishment in
the fly midgut. It is known that starvation of flies leads to
an increase in their susceptibility to trypanosomes and this
may be a considerable factor in the epidemiology of the
disease in Africa. Here we demonstrate that starvation
leads to a decrease in tsetse EP levels, which may explain
how starvation of the fly works to increase its susceptibil-
ity.

Tsetse EP Protein and Trypanosomes
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Tsetse EP protein levels decrease with fly starvation
Male tsetse received 5 bloodmeals prior to starvation. Flies were

killed at 24 h time points, up to 7 days after the last blood meal, and

individual midguts were assayed by immunoblotting using an anti-

EP antibody (mAb247) (Figure 4). After 3 days of starvation a clear

decline in tsetse EP protein levels is evident (Figure 4, asterisks). Fat

body atrophy was also apparent in these flies when viewed with a

dissection microscope. Tsetse EP protein levels increase again in

flies 24 hours after feeding following a previous starvation period of

7 days (Figure 4, lane 8). We have no data to show if the starvation-

induced decrease in tsetse EP protein is specific or part of a general

lowering of protein levels in the midgut in response to starvation.

Discussion

Although RNA interference is an exquisite genetic technique to

knockdown target genes, the success in achieving this post-

transcriptional silencing appears to be gene-specific with variabil-

ity due, in part, to the half-life of endogenous target protein and

unexpected lethal secondary effects from depletion of gene specific

product [23]. Our unpublished observations in Glossina reveal that,

for some genes, transcript knockdown cannot be achieved

regardless of the construct designed. This may relate to the lack

of a spreading mechanism in Diptera and the difficulty of dsRNA

reaching cells in complex organs [22]. We have previously shown

Figure 1. Levels of tsetse EP transcripts and proteins in sectioned midguts were determined by semi-quantitative RT-PCR and
immunoblotting. (A) Photograph of tsetse midgut depicting dissection lines. (B) Transcript profiles of midgut sections probed with tsetse EP and
GAPDH (control) primers. (C) Immunoblot of midgut tissues (collected from a pool of five male G. m. morsitans) using mAb 247 (anti-EP repeat). PV =
proventriculus; A1 = midgut anterior to the bacteriome; Y = bacteriome; A2 = anterior midgut posterior to the bacteriome; M = mid-midgut; P =
posterior midgut.
doi:10.1371/journal.ppat.1000793.g001
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and confirm here that thoracic injections of microgram amounts of

specific dsRNA can effectively depress tsetse EP transcription in

the tsetse midgut for up to 2 weeks [22]. Thus, the effect of

persistent tsetse EP knockdown on trypanosome midgut establish-

ment (7–10 day experiment) could be confidently measured by

microscopic examination. The data we present here shows that a

tsetse molecule, tsetse EP protein, plays a role in protecting the

midgut from infection with trypanosomes.

Computer analysis of the translated protein sequences from

both G. m. morsitans (CAC86027) and G. p. palpalis (AAL82540),

using multiple alignment tools and protein prediction algorithms,

revealed that these proteins are highly conserved [15]. Including

its signal peptide, tsetse EP protein from G. m. morsitans has a mass

of 35.7 kDa and appears to form dimers and trimers and

potentially larger oligomeric aggregates within the fly [15,17].

Apart from the EP sequence the tsetse EP protein has no currently

defined protein domains [17]. However a possible clue to function

may be suggested by the preliminary observation of weak

agglutinating activity of the large molecular complex towards

freshly collected, washed rabbit red blood cells, suggesting tsetse

Figure 2. G. m. morsitans tsetse EP protein. The top panel is a schematic of the tsetse EP protein. SP = signal peptide. R AGT indicates the N-
terminus (tryptic cleavage site) resulting in the mature protein. The dark blue represents the mature protein and the highlight red region (bracketed
with arrows) indicates the target region for RNAi. In the sequence below, the predicted signal peptide is shown in lower case. |A indicates the N-
terminus (tryptic cleavage site) resulting in the mature protein. The grey highlighted section indicates the region amplified for RNA interference. The
residues in yellow indicate sequence differences in the G. p. palpalis sequence when compared with the sequence of G. m. morsitans. The monoclonal
antibody, mAb 247, will recognize EPEPEP, and thus will bind along the entire length of the C-terminal rich region (E195–P306). S* indicates potential
O-glycosylation sites.
doi:10.1371/journal.ppat.1000793.g002
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EP putatively has some lectin activity [17]. In addition it has been

demonstrated that tsetse EP protein is strongly up regulated

following immune stimulation with E. coli [15] providing good

evidence that it is part of the immune response system. Given this

it is interesting to note that the Imd immune regulatory pathway

mainly responds to gram negative organisms [24] and the Imd

pathway has been implicated in the response of dipterans to

parasite infections [16,25].

Although all species of tsetse studied to date express tsetse EP

protein [15], orthologues are not found in the Anopheles, Aedes, Apis

or Drosophila genomes. A search of non-redundant databases

revealed only two eukaryotic protein hits (apart from the

procyclins): gi|94390895 [Mus musculus] and gi|109464874 [Rattus

norvegicus]. These hypothetical proteins contain significant contin-

uous EP repeat regions: e.g. 115 dipeptide repeats, representing

75% coverage of the rat protein. Unfortunately, no further

functional information is available for these proteins. Remarkably,

extensive regions of EP repeats (also varying in length) are

contained in several procyclins that form the surface coat of

procyclic trypanosomes of the T. brucei group [14,26,27]. Given

the scarcity of EP repeats in organisms the chances of this

happening coincidentally in trypanosomes and tsetse flies seem

remote.

To examine the possibility that the tsetse EP protein and the EP

procyclins from T. b. brucei were involved in antigenic mimicry we

investigated another trypanosome species that lacks EP procyclins.

The procyclic coat of T. congolense contains no extensive dipeptidyl

EP repeats although similar anionic motifs are present [28].

Despite the absence of EP repeats, establishment of T. congolense is

similarly affected by tsetse EP protein knockdown (Table 1). Our

experiments demonstrate that tsetse EP protein can partially

Figure 3. Tsetse EP mRNA and protein levels following
injection of tsetse with dstsetseEP. Teneral flies were injected with
dsRNA, fed two bloodmeals and then starved for three days prior to
dissection. Five midguts were pooled for each sample and the quantity
of RNA and protein per lane was adjusted accordingly. (Panel A)
Northern blot: lane 1: dstsetse EP knockdown midguts; lane 2: NFW
injected midguts; lane 3: control midgut tissue from non-injected flies.
The lower section represents GAPDH mRNA loading controls. (Panel B)
Immunoblot: Gel-separated midgut proteins (1/2 midgut equivalent)
isolated from male G. m. morsitans injected with 2 mL of dsRNA were
separated on a 12.5% gel and blotted with mAb 247 (anti-EP repeat).
Lane 1: NFW control, lane 2: 8 mg dsAmp control, lane 3: 2 mg dstsetseEP,
lane 4: 4 mg dstsetseEP, lane 5: 6 mg dstsetseEP, lane 6: 7 mg dstsetseEP,
lane 7: 8 mg dstsetseEP, lane 8: 10 kDa molecular mass ladder, lane 9:
10 mg dstsetseEP.
doi:10.1371/journal.ppat.1000793.g003

Table 1. Mean (6 S.E.) prevalence of midgut infections in male G. m. morsitans (Gmm) or G. p. palpalis (Gpp) after RNAi knockdown
using dstsetse EP.

Infective
Bloodmeal No. Reps

dstsetse EP
() = number of flies

dsAmp
() = number of flies

NFW* or dseGFP
() = number of flies Chi-squared p value

Gmm 1st 3 72.067.4 (100) 54.367.2 (108) - 4.68 0.042

Gmm 3rd 3 15.165.6 (180) 5.662.3 (113) - 5.94 0.020

Gmm 4th 3 32.460.6 (62) 12.062.3 (60) - 5.38 0.028

Gmm 5th 3 26.061.0 (87) 3.761.7 (97) - 18.24 ,0.001

Gmm 10th 1 18.8 (32) 2.9 (35) - - -

Gpp 1st 4 55.160.4 (125) 30.369.0 (99) 39.469.5 (99)* 16.02 ,0.001

Gpp 5th 1 11.1 (36) 0 (31) - - -

Gmm 5th 3 29.767.2 (120) 1.661.6 (110) 0.960.9 (97) 52.65 ,0.001

Gmm 10th 1 8.2 (49) 3.9 (26) 2.3 (44) - -

Controls were either dsAmpicillin, dseGFP or nuclease free water*. Flies were infected with either T. b. brucei TSW196 or T. congolense 1/148 (italics) blood stream forms
in the indicated bloodmeal.
doi:10.1371/journal.ppat.1000793.t001

Figure 4. Immunoblot film lies below the nigrosine-stained
PVDF. There is a decline in tsetse EP protein levels in midguts over a 7
day starvation period following the 5th bloodmeal. 24 h = Flies starved
for 7 days, fed a blood meal and then sacrificed 24 hours later. L =
molecular mass ladder. Midgut proteins (1/2 midgut equivalent from
pool of 5) were blotted with mAb 247.
doi:10.1371/journal.ppat.1000793.g004
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protect against the midgut establishment of trypanosomes from

both the Trypanozoon and Nannomonas group trypanosomes and

thus, strictly sequence-specific interactions in tsetse and trypano-

some are not likely at play.

To assess if trypanosome establishment is altered by tsetse EP

gene knockdown in tsetse species other than our G. m. morsitans

laboratory model, we tested our RNAi protocol on G. p. palpalis.

Knockdown of tsetse EP protein in G. p. palpalis also led to an

increase in midgut infections (Table 1), confirming that tsetse EP

protein influences trypanosome midgut establishment in both of

these major vectors of trypanosomiasis. Given that tsetse EP has

been demonstrated in a wide variety of Glossina species [15] this

data suggests it may be a genus wide phenomenon.

It has been demonstrated that up regulation of the immune

response by injection of E. coli leads to a significant reduction in the

ability of trypanosomes to establish in the tsetse midgut [8,16]. We

have already demonstrated that tsetse EP protein is strongly up

regulated upon introduction of Gram-negative bacteria into the fly

[15]. Our demonstration here that knockdown of tsetse EP leads to

increased fly susceptibility suggests that upregulation of tsetse EP

protein upon injection of E. coli may be one explanation for the

subsequent decrease in the susceptibility of the fly to trypanosomes.

It is interesting to note that older flies in field populations show

unexpectedly high levels of susceptibility compared to laboratory

reared flies where susceptibility rapidly declines following eclosion

[29,30] (Table 1); the reasons remain unexplained. We have

demonstrated here that starvation reduces tsetse EP levels in flies

(Figure 4). It has already been demonstrated that starvation of

mature flies results in an increase in parasite survival in the midgut

[31,32,33]. Consequently, starvation, which is likely to be a

common phenomenon in the field, could explain the differences in

susceptibility seen between field and laboratory populations of

flies. The observed reduction of tsetse EP protein expression and

loss of parasite resistance upon starvation may have considerable

epidemiological significance in African trypanosomiasis.

In summary, this paper provides direct evidence for a tsetse-

specific midgut molecule (tsetse EP), which is an antagonist of

trypanosome survival in the vector. RNAi-induced knockdown of

the midgut-associated, immunoresponsive tsetse EP protein

increased the frequency of trypanosome establishment in the fly

midgut up to more than six fold. The precise mechanism by which

tsetse EP protein influences the refractorial capacity of the midgut

remains to be elucidated.

Materials and Methods

Flies and trypanosomes
Tsetse (G. m. morsitans) were maintained in laboratory colony at

the Liverpool School of Tropical Medicine (LSTM) at 26uC and

65–70% relative humidity. Glossina palpalis palpalis were supplied as

puparia from the International Atomic Energy Agency (IAEA)

Entomology Laboratories, Siebersdorf, Austria. Every 48 hours,

male flies were fed horse blood through silicone membranes. For

infectious bloodmeals blood stream forms (BSF) of Trypanosoma

brucei brucei TSW196 MSUS/CI/78/TSW196 [CLONE A],

which is a fully fly-transmissible clone and able to undergo genetic

exchange [34], and T. congolense 1/148 (Lister 1/148; isolated from

a Zebu ox, Dongo River, Nigeria, Godfrey, 1960) were added to

sterile defibrinated horse blood (TCS Biosciences Ltd., Bucking-

ham, UK). Typically 200 mL of mouse blood (containing 46106

parasites) were diluted in 5 mL of horse blood. Flies were dissected

6 days after the infectious bloodmeal. Midguts were dissected in

saline on a glass slide and infection status determined by searching

10 random fields by light microscopy (1256magnification).

dsRNA
Double stranded RNA was transcribed using a MEGAscript

High Yield T7 Transcription kit (Ambion, Huntingdon, UK).

tsetseEP templates were available as clones from the tsetse EST

program [35]. A double stranded fragment of the ampicillin

resistance gene (dsAMP) was generated using pBluescript II SK+ as

template. Template DNA was removed from the transcription

reaction by DNase treatment and dsRNA was purified using

MEGAclearTM columns (Ambion) and eluted in nuclease free

water. Eluates were concentrated in a Christ (Osterode, Germany)

2–18 rotational vacuum concentrator to approximately 5 mg per

mL. Primers were designed with the 20 base core T7 promoter

sequence at the 59 end. Primer sequences used were: AmpT7A

TAATACGACTCACTATAGGGTTGCCGGGAAGCTAGA-

GTAAGTA; AmpT7B TAATACGACTCACTATAGGGAAC-

GCTGGTGAAAGTAAAAGATG; EPT7A TAATACGACT-

CACTATAGGGTTCTGGCAAACCCTCAAT; EPT7B TAA-

TACGACTCACTATAGGGCTACGATAAATATGTCCCTC-

TAAT.

Borosilicate glass capillaries (2.00 mm outside diameter) were

formed into a fine point using a needle puller (PC10; Narishige,

Japan). To generate tsetse EP knockdowns, male flies were

anaesthetized by chilling and intrathoracically injected with 10 mg

(2 mL volume) of dsRNA buffered in nuclease-free water.

RT-PCR
The primers used in semi-quantitative RT-PCR reactions for

determination of transcript abundance in tsetse tissues were: Gm

GAPDHA CTCAGCTTCTGTGCGTTG (TmuC 67); Gm GAP-

DHB AGAGTGCCACCTACGATG (TmuC 67); GmmEPA AC-

CGTTCGTTCGCTTTACTAC (TmuC 47); GmmEPB AC-

CCGCAGCCGTTTGACTTTC (TmuC 51).

Total RNA was extracted from individual tissues using Trizol

(Invitrogen, Paisley UK) and treated with RQ1 RNase-Free

DNase. RNA was quantified using a Nanodrop ND-1000

(Wilmington, DE) spectrophotometer. A Promega Access RT-

PCR System (Promega, Southampton, UK) was used for

amplification of transcripts. G. m. morsitans GAPDH (Accession

number DQ016434) was used to normalize samples. PCR cycling

conditions were: 48uC for 45 minutes, 94uC for 2 minutes,

followed by 30 cycles of 94uC for 30 seconds, 57uC for 1 minute,

68uC for 2 minutes and a final extension of 68uC for 7 minutes.

TsetseEP gives a product of a larger size when genomic DNA

(indicative of a putative intron) was used as template (approxi-

mately 365 vs 315 bp. respectively) and was used to ensure

genomic DNA was removed from experimental templates.

Immunoblots
Immunoblotting using HybondTM-P polyvinylidene difluoride

(PVDF) transfer membrane (Amersham Biosciences, Amersham,

UK) was performed as previously described [36]. In brief, the

primary antibodies used were either a 1:20 dilution of anti-EP

repeat mouse mAb TRBP1/247 [37]. The secondary (detecting)

antibody was a 1:50,000 dilution of horseradish peroxidase

conjugated goat anti-mouse IgG/IgM (H+L) (Caltag Laboratories,

South San Francisco, CA). Kodak Biomax MR film (Eastman

Kodak Company, Rochester, NY) was used to detect chemilumi-

nescence. After development of the autoluminograms, proteins

were stained on the PVDF membrane with 0.2% (w/v) nigrosine

in PBS. The exposed film was superimposed on the stained PVDF

membrane to reveal the precise location of the immunoreactive

protein bands in relationship to the entire protein profile and to

ensure equivalent protein loading.

Tsetse EP Protein and Trypanosomes
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Northern blots
Tsetse, which had fed twice, were injected on day 4 post

emergence with 7 mg of gene-specific dsRNA (2 ml injection

volume). Flies in the control group were injected with nuclease free

water. Injected flies were fed again on day 5 and midguts dissected

on day 7 were snap frozen in liquid nitrogen in pools of 5. The

NorthernMaxH formaldehyde-based system for Northern Blots

(Ambion) was used. Total RNA (20 mg per lane) was loaded on a

1% formaldehyde-agarose gel. The Strip-EZTM PCR probe

synthesis and removal kit (Ambion) was used to synthesize single

stranded DNA probes, which were labeled with [a32P] dATP (MP

Biomedicals, Stretton Distributors, UK). Membranes were hy-

bridized overnight at 42uC, given 265 minute low stringency

washes and 2615 minute high stringency washes before exposure

to Kodak BioMax MR film.
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