

Edinburgh Research Explorer

Distributed modulo scheduling

Citation for published version:
Fernandes, MM, Llosa, J & Topham, N 1999, Distributed modulo scheduling. in High-Performance
Computer Architecture, 1999. Proceedings. Fifth International Symposium On. pp. 130-134. DOI:
10.1109/HPCA.1999.744349

Digital Object Identifier (DOI):
10.1109/HPCA.1999.744349

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
High-Performance Computer Architecture, 1999. Proceedings. Fifth International Symposium On

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/29013496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/HPCA.1999.744349
https://www.research.ed.ac.uk/portal/en/publications/distributed-modulo-scheduling(a8b5f567-76bb-407f-a0da-54e9689068fc).html

Distributed Modulo Scheduling

Marcio Merino Fernandes

University of Edinburgh, UK

Department of Computer Science

mmf@dcs.ed.ac.uk

Josep Llosa

Universitat Politècnica de Catalunya, Spain

Department d’Arquitectura de Computadors

josepll@ac.upc.es

Nigel Topham

University of Edinburgh, UK

Department of Computer Science

npt@dcs.ed.ac.uk

Abstract

Wide-issue ILP machines can be built using the VLIW

approach as many of the hardware complexities found in

superscalar processors can be transferred to the compiler.

However, the scalability of VLIW architectures is still con-

strained by the size and number of ports of the register file

required by a large number of functional units. Organiz-

ations composed by clusters of a few functional units and

small private register files have been proposed to deal with

this problem, an approach highly dependent on scheduling

and partitioning strategies. This paper presents DMS, an

algorithm that integrates modulo scheduling and code par-

titioning in a single procedure. Experimental results have

shown the algorithm is effective for configurations up to 8

clusters, or even more when targeting vectorizable loops. 1

Keywords: ILP, VLIW, Clustering, Software Pipelining

1. Introduction

Current microprocessor technology relies on two basic

approaches to improve performance. One is to increase

clock rates, resulting in faster execution of machine oper-

ations. The other is instruction-level parallelism (ILP), a

set of hardware and software techniques that allows paral-

lel execution of machine operations. ILP can be exploited

by VLIW architectures [8, 16]. In this case all data depend-

ence analyses and scheduling of operations are performed at

compile time, which simplifies the hardware and allows the

inclusion of a large number of functional units in a single

chip.

1Research work partially supported by Capes (Brazil)

Loop structures usually found in DSP or numeric applic-

ations can take advantage of the available processing power

of a wide-issue machine. In many cases they account for

the largest share of the total execution time of a program.

Several loop optimizations have been developed targeting

ILP machines. One of them is software pipelining [2], a

scheduling technique that allows the initiation of success-

ive loop iterations before prior ones have completed. Mod-

ulo scheduling is a class of software pipelining algorithms

that produces a basic schedule for a single iteration [15].

The basic schedule is structured in order to preserve data

dependencies and avoid machine resource conflicts if it is

issued every Initiation Interval (II) cycles [14].

The drawback of these techniques is that they increase

register requirements [10]. The number of storage positions

alone can be a problem in the design of a register file (RF).

Furthermore, the number of ports required by a VLIW ma-

chine may compromise the RF access time, causing a neg-

ative impact on the machine cycle time [4]. Hence, wide-

issue unclustered VLIW architectures may not deliver the

expected performance, which has motivated us to develop

a clustered VLIW architecture [7]. However, the effective-

ness of such an organization also depends on the code parti-

tioning strategy, as data dependent operations must commu-

nicate results between them. We have developed a scheme

to produce software pipelined code for a clustered VLIW

machine aiming to achieve performance levels similar to an

unclustered machine without communication constraints. It

is called Distributed Modulo Scheduling (DMS), integ-

rating in a single phase both scheduling and partitioning of

operations. The remaining of this paper includes an over-

view of the architecture model targeted by DMS, presents

the algorithm, and shows some experimental results along

with related conclusions.

2. A Clustered VLIW Architecture

The structure of the clustered VLIW architecture tar-

geted by DMS is shown in figure 1. It comprises a collec-

tion of clusters connected in a bi-directional ring topology.

In this paper we focus exclusively on the performance of the

VLIW compute-engine, as it should determine the perform-

ance of execution of the target applications for this kind of

architecture.

Cluster 2 Cluster CCluster C-1Cluster 1

Figure 1. Clustered VLIW architecture

Each cluster contains a set of functional units (FUs)

capable of executing a statically compiled loop schedule.

They connect to a Local Register File (LRF). We have

shown in [5] that loop variant lifetimes produced by a mod-

ulo scheduled loop can be allocated to a queue register

file, resulting in some advantages over a conventional RF.

Hence, all intra-cluster communication takes place via the

LRF, while inter-cluster communication takes place via one

of the Communication Queue Register Files (CQRFs). A

CQRF is a queue register file located between two adja-

cent clusters, providing read-only access to one of them,

and write-only access to the other. Sending a value from

one cluster to another requires only a pair of write/read op-

erations to the appropriate CQRF. Thus, no explicit instruc-

tion is necessary for near-neighbour communication. This is

done by the code generator, which maps lifetimes that span

a cluster boundary onto the corresponding CQRF. One of

the advantages of this communication mechanism is to al-

low fixed timing in the communication process between two

clusters, a desirable feature for static schedulers. Another

motivation for using queues is the possibility of implement-

ing asynchronous data transfer across clusters, which might

be necessary due to clock skewing.

In spite of the distribution of functional units among

clusters, the proposed architecture model still assumes a

single thread of control. This will almost certainly involves

data exchange among FUs located in distinct clusters. Com-

piling for a clustered architecture involves code partition-

ing in order to meet communication constraints. An op-

timal partitioning would yield in the same performance that

would be otherwise achieved by an unclustered architecture.

However, communication constraints may require a group

of operations to be scheduled in a given cluster, which may

not have enough resources for that. In this case, the only

alternative is to increase the II, reducing the net execution

rate.

A number of previous works have dealt with prob-

lems similar to this. The Multiflow Architecture [11] per-

forms code partitioning and then scheduling of operations

in two separate steps. The Limited Connectivity Model

also performs these phases in sequence, though the other

way around [1]. A two-phase approach to partitioning and

modulo scheduling for a clustered architecture is proposed

in [6]. The idea is to partition prior to scheduling, ensuring

that no communication conflicts arise when operations are

scheduled. This problem can be described as a k-way graph

partitioning in which the II is to be minimized. Once the

partitioning is completed, the scheduling can proceed, tak-

ing into account the assignment of operations to clusters.

A similar scheme was also reported in [12]. Experiments

with an algorithm integrating in a single phase both modulo

scheduling and code partitioning was presented in [7]. Al-

though effective for machine models with up to 5 clusters,

the scheme is inappropriate for larger configurations be-

cause it cannot consider communication between indirectly-

connected clusters. That algorithm originated DMS, which

addresses this problem. Another algorithm combining both

tasks in a single phase is UAS [13]. In that scheme cluster

assignment is integrated into a list scheduler, although soft-

ware pipelining is not performed.

3. DMS Algorithm Description

We have used the Iterative Modulo Scheduling (IMS)

algorithm [14] as the basic structure to develop DMS, a

scheme able to deal with distributed functional units and

register files. As defined in [14], we assume that a data de-

pendence graph (DDG) is used to represent the dependen-

cies between operations of the innermost loop to be sched-

uled. A clustered machine model introduces communica-

tion constraints to the scheduling algorithm, in addition to

resource and dependence constraints. We say that a com-

munication conflict occurs when two operations with a

true data dependence are scheduled in indirectly-connected

clusters.

IMS has one basic strategy to find a valid slot to schedule

a given operation OP, which takes into account its sched-

uled predecessors and resource conflicts. The later can lead

to backtracking in order to unscheduled operations to re-

lease a slot for OP. Eventually, successor operations of

OP might also be unscheduled, if a dependence conflict

arises. On the other hand, the DMS algorithm has three ba-

sic strategies to schedule an operation, as seen in figure 2.

Initially DMS tries to find a valid slot to schedule OP in

such a way that no communication conflict arises with its

scheduled predecessors and successors (strategy 1). In this

case a slot is considered valid to schedule OP only if the

communicating operations in the resulting partial schedule

are located in directly connected clusters.

If not possible

If not possible

Schedule Chains

Communication conflicts

Schedule OP

Schedule OP

Dependence conflicts with successors
Resource conflicts

Dependence conflicts with successors
Resource conflicts

Dependence conflicts with successors
Resource conflicts

Strategy 1

Strategy 2

Strategy 3

Communication conflicts

Find a slot avoiding Communication conflicts

Schedule OP
If necessary, unschedule other ops due to:

Create Chain of Move ops to address

If necessary, unschedule other ops due to:

If necessary, unschedule other ops due to:

Figure 2. Overview of DMS algorithm

If that is not possible, strategy 2 is attempted. In this

case DMS tries to insert move operations between OP and

all of its scheduled predecessors, using a structure called

chain. A chain is a string of move operations scheduled in

the clusters between OP and one of its predecessors. This

makes possible to transfer operands between a pair of pro-

ducer/consumer operations located in indirectly-connected

clusters. In the particular architecture model considered in

this paper, a move operation simply read one value from

a CQRF and write it back to another one. Thus, given a

candidate cluster to schedule OP, and the cluster of its pre-

decessor, there are two possibilities to create a chain, each

of them following opposite directions (figure 3). The bi-

directional ring of queues used to connect clusters allows

this flexibility.

Initially any cluster can be considered to schedule OP.

More than one chain might be necessary to schedule OP in a

given cluster because multiple predecessors may be already

scheduled. However, these chains can be built only if there

are enough machine resources to schedule all move opera-

tions in the respective clusters. As above discussed, more

than one option to schedule a chain might exist to address a

given communication conflict. In this case, the selected op-

tion is the one that maximizes the number of free slots left

OP

OP

MV

MV

MV

PredMV

Option 2

Option 1

Pred

Figure 3. Options to create a chain

available to schedule move operations in any cluster. If two

or more possibilities are equivalent regarding this criteria,

the smallest number of move operations defines the choice.

These conditions determine the cluster in which OP will be

scheduled.

Once a valid set of chains is chosen, it can be scheduled

straightforward as the availability of machine resources has

already been verified. The first step involves updating

the DDG to include the new move operations and related

data dependencies. Then move operations are sequentially

scheduled, starting from the first one after the original pro-

ducer operation. This ordering must be enforced to determ-

ine the correct scheduling time of each of them.

If resource conflicts prevent the use of chains to over-

come communication conflicts, OP is scheduled in a arbit-

rarily chosen cluster using a process similar to the one em-

ployed by IMS. The only difference is that the backtracking

process must also unschedule some operations due to com-

munication conflicts (strategy 3).

Special attention must be paid in the implementation of

the backtracking procedures. It might happen that an op-

eration ejected from the partial schedule is part of a chain.

In this case it may also be necessary to unschedule other

operations and update the DDG in order to prevent commu-

nication conflicts with the remaining scheduled operations.

Distinct actions must be taken when the unscheduled op-

eration is the original producer, a move operation, or the

original consumer, respectively.

It is expected that the additional constraints used by

DMS may increase the backtracking frequency. However,

we have found through experimental analysis that the over-

head on the II due to partitioning is tolerable in most of the

cases (section 4). Those results suggest that on average the

backtracking frequency of IMS and DMS are of the same

order. When the backtracking frequency increases it is usu-

ally due to insufficient number of slots to schedule the re-

quired move operations, rather than a lengthy search across

the space of solutions.

Although DMS has been specially developed for the ar-

chitecture model described in section 2, we believe it could

also be used with other clustered VLIW architectures. We

understand that other candidate architectures should possess

three basic characteristics in order to use DMS efficiently:� Directly-connected clusters should communicate

through a mechanism able to ensure fixed timing

constraints, known at compile time.� The number of possible paths to create a chain should

be small, in order to avoid searching through an ex-

cessive number of options.� Some sort of DDG transformation should be made in

order to limit the number of immediate data dependent

successors of an operation.

The CQRF used in the architecture model presented in

section 2 allows a value to be read only once from any

of its FIFO queues. Thus, prior to modulo scheduling, all

multiple-use lifetimes are transformed into single-use life-

times using copy operations, as reported in [7]. This trans-

formation has also the effect of limiting the number of im-

mediate successors of any operation to 2, which simplifies

the code partitioningamong clusters with limited connectiv-

ity. Multiple-use lifetimes would concentrate the number

of move operations around the original producer, possibly

requiring more scheduling slots than available within the

sough II.

4. Experimental Results

We have used an experimental framework to perform

modulo scheduling and register allocation of loops for sev-

eral architecture configurations, some of them presented in

this section. Two architecture models have been considered:

unclustered and clustered, which were scheduled using IMS

and DMS, respectively. The machine configurations range

from 1 to 10 clusters, each of them having 3 functional

units: 1 L/S, 1 ADD, and 1 MUL. In addition, each cluster

has also a Copy FU to perform copy and move operations.

However, these functional units and operations are not con-

sidered to estimate performance figures, as they do not per-

form any useful computation, All eligible innermost loops

from the Perfect Club Benchmark have been used, a total

of 1258 loops suitable for software pipelining. The original

body of many of those loops do not present enough paral-

lelism to saturate the FUs of wide-issue machines. Hence,

loop unrolling was performed to provide additional opera-

tions to the scheduler whenever necessary [9].

As already discussed, a good scheduling/partitioning al-

gorithm should minimize an eventual increase of the II in

relation to the value otherwise achieved for the correspond-

ing unclustered machine. The data in figure 4 shows the

fraction of loops presenting any increase in the II due to

DMS partitioning. Overheads for machines with 2 and 3

clusters are only due to the introduction of copy operations

in the DDG, as no communication conflicts occurs in these

cases. Over 80% of the loops do not present any overhead

for machine models up to 8 clusters (24 FUs). When the

II increases it is mainly because the Copy FUs became the

most heavily used resources, due to an excessive number of

move operations. That could be improved with additional

hardware support.

II Increase
Due to Partitioning

0

AA10

AA20

AA30

AA40

AA50

AA60

AA70

AA80

AA90

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA100

1 2 3 4 5 6 7 8 9 10

L
o
o
p
s

%

Clusters

Figure 4. Overhead on II due to partitioning

Performance analyses regarding the execution of two

sets of loops were done. Set 1 comprises all loops of the

benchmark, while set 2 contains only loops without recur-

rences [14]. The second set was considered because those

loops are highly vectorizable, having characteristics similar

to the ones usually found in DSP applications [3]. Hence,

they can take more advantage of additional machine re-

sources.

The data in figure 5 shows the total number of cycles

(in relative values) required to execute the modulo sched-

uled loops in each machine configuration. The difference

between clustered and unclustered machines shows that the

partitioning process results only in small performance de-

gradation for up to 21 FUs when the set 1 is used. However,

the difference is more accentuated when wider-issue ma-

chines are used. On the other hand, very small differences

are observed if only loops without recurrences are con-

sidered. Furthermore, the results suggest that DMS may be

effective with these loops for even wider-issue machines.

The data in figure 6 shows the number of instructions

issued per cycle (IPC). It was measured taking into ac-

count the iteration counter, including operations from the

kernel code, prologue, and epilogue phases. If all loops

are considered, the IPC value improves for machines up to

21 FUs (7 clusters), however it levels beyond that point.

Loops without recurrences allow improvements for the

whole range of machine models, which confirms that they

are better suited to exploit ILP in this kind of architecture.

Cycle Count
Dynamic Measurement

0

AA10

AA20

AA30

AA40

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA50

AA60

AA70

AA80

AA90

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA100

3 6 9 12 15 18 21 24 27 30

C
y
c
l
e
s

Functional Units

Set 1 - Unclustered Set 1 - Clustered
Set 2 - Unclustered Set 2 - Clustered

Figure 5. Execution time

IPC
Dynamic Measurement

0

AA2

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA4

AA6

AA8

AA10

AA12

AA14

AA16

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA18

3 6 9 12 15 18 21 24 27 30

I
n
s
t
r
u
c
t
i
o
n
s

Functional Units

Set 1 - Unclustered Set 1 - Clustered
Set 2 - Unclustered Set 2 - Clustered

Figure 6. IPC­Instruction per cycle

5. Conclusions

The proposed DMS algorithm is effective for machine

configurations up to 8 clusters, resulting in low overhead

due to partitioning. A larger overhead was observed for

wider-issue machine, although that could be minimized by

using additional FUs to schedule move operations. In most

of the cases, the use of a few move operations is enough

to avoid dead-end states due to communication conflicts.

DMS can produce efficient software pipelined code for

clustered VLIW machines comprising a number of clusters

not previously considered in other works, to the best of our

knowledge. Hence, it can significantly extend the potential

for ILP exploitation in this kind of architecture, which may

be particularly suitable for DSP and numeric applications.

References

[1] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register

files for VLIWs: A preliminary analysis of trade-offs. In

Proceedings of the MICRO-25 - The 25th Annual Interna-

tional Symposium on Microarchitecture, 1992.

[2] A. Charlesworth. An approach to scientific array processing:

The architectural design of the AP120B/FPS-164 family.

Computer, 14(9), 1981.

[3] P. Faraboschi, G. Desoli, and J. Fisher. The latest word

in digital and media processing. IEEE Signal Processing

Magazine, March 1998.

[4] K. Farkas, N. Jouppi, and P. Chow. Register file design con-

siderations in dynamically scheduled processors. Technical

Report 95/10, Digital Western Research Laboratry, 1995.

[5] M. Fernandes, J. Llosa, and N. Topham. Allocating lifetimes

to queues in software pipelined architectures. In EURO-

PAR’97, Third International Euro-Par Conference, Passau,

Germany, 1997.

[6] M. Fernandes, J. Llosa, and N. Topham. Extending a VLIW

architecture model. Technical Report ECS-CSG-34-97, Uni-

versity of Edinburgh, Department of Computer Science,

1997.

[7] M. Fernandes, J. Llosa, and N. Topham. Partitioned sched-

ules for clustered VLIW architectures. In IPPS’98, 12th In-

ternational Parallel Processing Symposium, Orlando, USA,

1998.

[8] J. Fisher. Very long instruction word architectures and the

ELI-512. In Proceedings of the 10th Annual International

Symposium on Computer Architecture, 1983.

[9] D. Lavery and W. Hwu. Unrolling-based optimizations for

modulo scheduling. In Proceedings of the MICRO-28 - The

28th Annual International Symposium on Microarchitecture,

1995.

[10] J. Llosa, M. Valero, and Ayguadé. Quantitative evaluation of

register pressure on software pipelined loops. International

Journal of Parallel Programming, 26(2):121–142, 1998.

[11] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein,

and R. Nix. The multiflow trace scheduling compiler. The

Journal of Supercomputing, July 1993.

[12] E. Nystrom and A. Eichenberger. Effective cluster assign-

ment for modulo scheduling. In Proceedings of the MICRO-

31 - The 31th Annual International Symposium on Microar-

chitecture, 1998.

[13] E. Ozer, S. Banerjia, and T. Conte. Unified assign and sched-

ule: A new approach to scheduling for clustered register file

microarchitectures. In Proceedings of the MICRO-31 - The

31th Annual International Symposium on Microarchitecture,

1998.

[14] B. Rau. Iterative modulo scheduling. The International

Journal of Parallel Programming, February 1996.

[15] B. Rau and C. Glaeser. Some scheduling techniques and

an easily schedulable horizontal architecture for high per-

formance scientific computing. In 14th Annual Workshop

on Microprogramming, 1981.

[16] R. Rau and J. Fisher. Instruction-level parallel processing:

History, overview and perspective. The Journal of Super-

computing, July 1993.

