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Abstract. Effective human tutoring has been compared to a delicate balancing act.  Students must be 
allowed to discover and correct problems on their own, but the tutor must intervene before the student 

becomes frustrated or confused.  Natural language dialogue offers the tutor many ways to lead the student 

through a line of reasoning, and to indirectly notify the student of an error and use a series of hints and 
followup questions to get the student back on track.   These sequences typically unfold across several 

conversational turns, during which the student can make more errors, initiate topic changes, or give more 

information than requested.   Thus to support tutorial interactions, we require an intelligent information 
presentation system that can plan ahead, but is able to adapt its plan to the dynamically changing 

situation.   In this paper we discuss how we have adapted the three-layer architecture developed by 

researchers in robotics to  the management of tutorial dialogue. 

1. INTRODUCTION 

Much of the work on intelligent information presentation has focused on systems 

that support information-seeking (e.g., providing flight times and fares), assist 

decision-making (e.g., comparison shopping, logistics planning), or describe objects 

and artefacts (e.g., museum guides). In such applications, while we expect that the 

system has more information than the user, we also assume that the user understands 

the domain of discourse and is able to use the information the system provides in 

order to choose an option, or make a decision, or assimilate the information they 

receive. In this paper, we focus on intelligent information presentation in the domain 

of tutoring, where the system is trying to teach the user new concepts and correct 

user misconceptions. To motivate our approach, we describe the unique 

characteristics of human tutorial interaction, and present an architecture for 

intelligent information presentation for tutorial applications. 

1.1 Intelligent Information Presentation for Tutoring 

Studies show that one-to-one human tutoring is more effective than other modes of 

instruction. A meta-analysis of the findings from 65 independent evaluations of 

school tutoring programs found that tutoring raised students' performance by 0.40 

standard deviations (Cohen, Kulik, & Kulik, 1982). Results with good tutors are 

even more promising. For example, the average student who received one-to-one 

tutoring with a good tutor scored 2.0 standard deviations above the average student 
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who received standard classroom instruction, and 1.0 standard deviation above 

students in a mastery learning condition (Bloom, 1984). 

From its inception, the goal of research in computer-based tutoring environments 

has been to model the effective behaviors of good human tutors, and in so doing to 

create an optimal educational tool. There is mounting evidence from cognitive 

psychology that important (or what many call “deep”) learning is most likely to 

occur when students encounter obstacles and work around them, and explain to 

themselves what worked and what did not, and how new information fits in with 

what they already know (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi, de 

Leeuw, Chiu, & LaVancher, 1994; Ohlsson, Rees, 1991; VanLehn, 1990). This is 

consistent with the constructivist movement in education, which argues that students 

learn best when they are active participants in the learning process and construct 

knowledge for themselves. 

 

Debates about what makes human tutoring effective, and how this might be captured 

in a computer-based learning environment, led to several detailed studies of human 

tutoring (Lepper & Chabay, 1988; McArthur, Stasz, & Zmuidzinas, 1990; Merrill, 

Reiser, & Landes (1992); Fox, 1993; Graesser & Person, 1994). The consensus from 

these studies is that experienced human tutors maintain a delicate balance, allowing 

students to do as much of the work as possible and to maintain a feeling of control, 

while providing students with enough guidance to keep them from becoming 

frustrated or confused. Maintaining this delicate balance requires that a tutor be 

flexible. Our and others' analyses of human tutorial interactions show that human 

tutors use a variety of strategies, including hinting (Hume, Michael, Rovick, & 

Evens, 1996), drawing students' attention to an error (often indirectly) and providing 

students an opportunity for repair (Fox, 1993; Lepper & Chabay, 1988), pointing out 

features of the solution that are incorrect, scaffolding (Chi, Siler, Jeong, Yamauchi, 

& Hausmann, 2001), and so on. In addition, human tutors strategically moderate 

their feedback. They sometimes intervene immediately after an error has occurred, 

but at other times allow the student to proceed with the solution, returning to the 

error later (Littman, Pinto, & Soloway, 1990). (Merrill, Reiser, Ranney, & Trafton, 

1992) argue that human tutorial guidance appears to be structured around impasses, 

and the content and timing of feedback are dependent on the error or impasse 

encountered. 

 

Human tutoring is a collaborative process, in which tutor and student work together 

to repair errors. It is a highly interactive process, with the tutor providing constant 

feedback to support students' problem solving. (Merrill, Reiser, Ranney, & Trafton, 

1992) argue that regardless of the timing or content of the intervention, human tutors 

carefully design their feedback to allow students to do as much of the work as 

possible, while still preventing floundering. (Fox, 1993, p. 122) observes that “the 

tutor and student both make use of strategies which maximize the student's 

opportunity to correct his/her own mistake.” In addition, tutors avoid directly telling 

the student that they are wrong or precisely how a step is incorrect. Instead tutors 

indirectly guide students through the process of error detection and correction. 
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Human tutors interact with students via natural language dialogue, sometimes 

including equations or references to diagrams or simulated models of the domain. 

They prompt students to construct knowledge, give explanations, assess the student's 

understanding, and so on, all via natural language. They get and give linguistic cues 

about how the dialogue is progressing. These cues give tutors information about the 

student's understanding of the material, and allow the tutor to determine when a 

strategy is working or when another tactic is needed.  

 

Natural language dialogue is an ideal medium for this type of interaction because it 

offers many indirect techniques for notifying students that a step in the solution 

requires repair. (Fox, 1993) found that tutors provide frequent feedback indicating 

that a step is okay. A short hesitation in responding “okay” typically led the student 

to assume that something was amiss with the current step, and frequently led 

students to repair their own errors. When more explicit help was required, the tutor 

focused the student's attention on the part of the solution that required modification 

or on information that was useful for repairing the error. Although students 

sometimes explicitly request guidance or affirmation that their step is correct, this 

usually is not necessary because the tutor provides such information through hints, 

leading questions, verbal agreement, and other indirect methods. 

1.2 Managing Tutorial Dialogue 

Sect. 1.1 described the benefits of natural language dialogue as a presentation 

modality for tutoring.  In this section, we describe the requirements that must be met 

to build such a system for intelligent information presentation: 

 

 Presentations must unfold over many conversational turns, even when it 

would be possible to present all of the information in a single contribution. 

This is crucial, because the system must give the student opportunities to 

contribute to the solutions and must not ignore student's signs of confusion. 

 

 The tutor system must have the ability to ask students questions that it 

“knows” the answer to, either to prompt the student to provide the 

information to facilitate knowledge construction, or to diagnose the level of 

the student's knowledge. 

 

 The tutor must understand student utterances well enough to respond 

appropriately. 

 

 The tutor system must have the ability to react to unexpected events. By 

evaluating the current dialogue situation, it must be able to revise its current 

plan or postpone the refinement of a sketchy plan until the situation 

provides the necessary information.  In particular, the tutor is required 

 

1. not to ignore student confusion, 
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2. to encourage the student to recognise and correct their own errors, 

3. to abandon questions that are no longer relevant, 

4. to handle multiple student actions in a single turn, and 

5. to deal with student-initiated topic changes. 

 

These five sub-requirements stress the need for a tutorial agent to monitor the 

execution of its dialogue strategies. In the case of failure, the agent needs to adapt its 

plan to the new situation: inserting a plan for a sub-dialogue to handle student 

confusion or a student misconception (1+2), deleting parts of a dialogue plan 

because their effects are now irrelevant or already achieved (3+4), or reorganising 

sub-plans to handle topic changes (5). 

 

Consequently, there is no need for tutorial dialogue managers to generate elaborate 

discourse plans in advance. Given the dynamics of tutorial dialogue ─ the large 

number of potential student actions at any point and the limited ability of the tutor to 

predict them – it is a more viable approach to enter a tutorial conversation with a 

sketchy high-level dialogue plan. As the dialogue progresses, the dialogue manager 

then refines the high-level plan into low-level dialogue activities by considering the 

incrementally constructed dialogue context. The dialogue manager therefore 

interleaves high-level tutorial planning with on-the-fly situation-adaptive plan 

refinement and execution. 

 

In addition to these tutoring specific requirements, the fact that the computer is 

participating in conversation with a human means it must perform the following 

dialogue management tasks as described by (Lewin, Rupp, Hieronymus, Milward, 

Larsson, & Berman, 2000) – turn-taking management: determining who can speak 

next, when, and for how long; topic management: determining what can be spoken 

about next; utterance understanding: understanding the content of an utterance in 

the context of previous dialogue; intention understanding: understanding the point 

or aim behind an utterance in the context of previous dialogue; context maintenance: 

maintaining a dialogue context; intention generation: generating a system objective 

given a current dialogue context; and utterance generation: generating a suitable 

form to express an intention in the current dialogue context.  Although we focus on 

intention generation here, the other topics are discussed briefly as they are all inter-

related, and are sometimes conflated in the literature.  In the next section, we discuss 

the state of the art in dialogue management and why it is not sufficient to meet the 

requirements for managing tutorial dialogue. 

2. STATE-OF-THE-ART DIALOGUE MANAGEMENT 

We review three industrial-strength models of dialogue processing, namely,  finite 

state machines (FSMs), form-filling, and VoiceXML, as well as an interesting cross-

breed of FSMs and planning. 

 

In the FSM approach, dialogue management is performed by a set of hierarchical 

FSMs that represent all possible dialogues. The top-level FSM is typically based on 
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the structure of the task to be performed (e.g., flight information, phone banking 

transactions). For each state of the FSM, the dialogue engineer needs to specify its 

transitions to successor states, many of which handle numerous exceptions (e.g., 

user help and cancel requests, timeouts). The dialogue engineer thus manually 

defines all possible dialogue flow; all alternative routes are drawn in full. 

Consequently, the construction of FSMs is not only domain specific but also labour 

intensive and prone to error. On the positive side, FSMs run in real time, and a well-

designed FSM can produce help messages and issue re-prompts that are sensitive to 

the task context. On the negative side, the dialogues are system-driven: turn-taking 

as well as system feedback are hardwired, and there is only a limited and well-

defined amount of dialogue context stored in each state of the network. This makes 

it hard to produce responses sensitive to unexpected input or to the linguistic 

context, and to provide personalised or customised advice or feedback.  Also, it 

makes it hard to port a FSM-based dialogue system to a new domain. The size of a 

FSM is practically, not theoretically limited. A typical industrial dialogue system in 

the area of banking has circa 1500 states (personal communication, Arturo Trujillo, 

Vocalis plc). FSM construction is supported by various toolkits, e.g., AT&T's FSM 

library (Mohri, Pereira, & Riley, http://www.research.att.com/sw/tools/fsm). 

 

Form-filling is a less rigid approach to dialogue management. Instead of anticipating 

and encoding all plausible dialogues, the dialogue engineer specifies the information 

the dialogue system must obtain from the user as a set of forms composed of slots. 

The structural complexity of possible dialogues is limited only by the form design 

and the intelligence of the form interpretation and filling algorithm. This algorithm 

may be able to fill more than one slot at a time, maintain several active forms 

simultaneously, and switch among them. In contrast to a FSM-based dialogue 

system, the user of a form-filling dialogue system can therefore supply more 

information than the system requested (the system performs question 

accommodation), or start a task before the system has offered to perform it (the 

system performs task accommodation). 

 

VoiceXML (W3C, 2002) augments the form-filling approach with an XML-based 

specification language and support for speech input and output. It is an evolving 

industry standard that is designed for modeling audio dialogues including 

synthesised speech, digitised audio, spoken and DTMF key (“touch-tone”) input, 

and mixed-initiative conversations. A VoiceXML document or set of documents 

defines a space of possible human-computer dialogues. Two types of dialogues are 

supported: forms that collect values for variables, and menus that present the user 

with a choice of options. Each dialogue specifies the next dialogue in the sequence; 

if there is no successor, execution stops. Subdialogues provide a mechanism for 

modularising common tasks such as confirmation sequences. Like a subroutine in a 

computer program, once the subdialogue is complete, the form interpreter returns to 

the place in the document where it was invoked. Subdialogues can be used to build 

libraries of short interactions shared among documents comprising a variety of 

applications. The acquisition and processing of normal input is complemented by an 

event handler that uses application-specific XML code to cope with user help and 

http://www.research.att.com/sw/tools/fsm
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cancel requests as well as with no input or no match situations. VoiceXML-based 

dialogues can be less rigid than our description suggests. The order in which the 

machine collects the information from the user is not entirely pre-determined. 

Mixed-initiative dialogues allow the user to provide information in a flexible order 

or to provide multiple pieces of information in succession without the interruption of 

intermediary prompts. 

 

A major advantage of these three approaches is the robustness of their language 

understanding capabilities. Each approach has strong expectations about user input 

based on the state of the system. In the FSM approach, the nodes of the network can 

be associated with special grammars and language models; in the form-filling 

approach, one can associate actions with slot-filling events, for example, controlling 

the activation and combination of scoped grammars; in the VoiceXML approach, 

user input, provided in response to a system generated utterance produced by the 

interpretation of the contents of the <prompt> tag, is recognised using the grammar 

supplied by the associated <grammar> tag. The form elements <help> and 

<catch> are used to cover cases where the user fails to supply input or where the 

user input is not covered by the associated grammar. 

 

All three approaches discussed so far face the problems of choosing among multiple 

refinements of a task, identifying which task the user is currently trying to perform, 

and detecting user-initiated switches among tasks or abandonment of tasks. These 

problems remain difficult and open. Moreover, FSM and form-filling approaches do 

not facilitate per se the maintenance of a dialogue history, which can then be 

exploited to support the generation of natural and effective feedback. The 

specification of VoiceXML, however, defines five distinct levels of variable scope 

(session, application, document, dialogue, and anonymous), allowing, in principle, 

the maintainance of a dialogue context. Used together with VoiceXML’s conditional 

statements, they enable a dialogue engineer to implement a proper handling of, say, 

meta-dialogues and other linguistic phenomena (e.g., generation of anaphora, 

ellipses). 

 

In each of the three approaches, all plausible dialogues (FSMs) or their content 

(form filling, VoiceXML) have to be specified in advance. None of the approaches 

involve a deliberative component that can generate dialogue plans to achieve 

underlying goals, albeit (complex) forms can be seen as instantiated plans. A 

deliberative component also proves useful in cases where the execution of the first 

planned dialogue strategy fails and re-planning is needed. 

 

Dialogue management in the AUTOROUTE system combines the power of 

deliberative planning with the benefits of FSMs in a two-tier approach (Lewin, 

1998). The bottom-tier consists of dialogue games, which are generic FSMs. 

Dialogue games encode typical adjacency pairs (e.g., a question is followed by an 

answer which may be followed by a confirmation and an acknowledgement) that do 

not specify the content of the dialogue moves they contain. In the top-tier, a 

deliberative agent treats the I/O behaviour of a dialogue game as a primitive action. 
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Given a goal, it generates a plan that has instantiated dialogue games as its primitive 

steps (e.g., to pay a bill, obtain the date, amount, and bill-type; to obtain a date, play 

a question/answer game). Thus far, the AUTOROUTE approach has only been 

applied to the genre of information-seeking dialogues. Its planning architecture has 

not been fully exploited, and its re-planning capabilities allow only trivial cases of 

question and task accommodation. Moreover, turn taking is hardwired into the 

FSMs, which makes it hard to cope with situations where the user grabs the turn. 

Thus, the AUTOROUTE approach is a move in the right direction but more 

flexibility is required to handle tutorial dialogue. 

3. A 3-LAYER  ARCHITECTURE FOR MANAGING TUTORIAL DIALOGUE  

Our three-layer architecture for managing tutorial dialogue has been inspired by 

studying planning architectures used in robotics. 

3.1  Planning in Robotics 

As we have seen, tutorial dialogue requires an architecture which can support the 

planning of feedback presentations that may consist of a sequence of dialogue 

actions to be delivered over several dialogue turns.  During the multi-turn 

presentation, the system must monitor the success of the presentation, and respond 

effectively to events that indicate that extensions or modifications to the plan are 

necessary. 

In the mid 1990's, a consensus architecture emerged in robotics. This architecture 

grew out of the realisation that reactive systems and hierarchical planning were not 

at odds with one another, but rather that in order to yield robust, flexible, and 

generalisable behavior, the strengths of these two methods needed to be combined. 

In purely reactive systems, robustness is gained at the expense of flexibility and 

adaptability. Action and perception are addressed, but cognition is ignored, limiting 

these robots to mimicking low-level life forms (Arkin, 1989). Extending the 

behaviors of such systems to more meaningful problem domains, requires memory 

and dynamic representations of the environment, as well as a representation of the 

goals the system is pursuing. This realisation led to the development of three-layer 

architectures that have become prevalent in robotics, and which we have adapted to 

the domain of dialogue. 

 

(Bonasso, Firby, Gat, Kortenkamp, Miller, & Slack, 1997) describe a 3-layer 

planning architecture consisting of a controller (reactive component), a sequencer 

(hybrid component), and a deliberator (deliberative component). The controller is 

the component that interacts with the physical world. It possesses a library of 

primitive behaviors that it can execute. The controller’s policy is to detect failure 

rather than to avoid it. The sequencer is a reactive plan execution and monitoring 

unit. In order to achieve tasks, it selects and sequences primitive behaviors (for 

execution by the controller) by taking the current situation or context into account. 

The sequencer has the capability to respond to contingencies (e.g., a failure of a 
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primitive behaviour can be replaced by another primitive behaviour or a sequence 

thereof) and also to manage parallel interacting tasks. The deliberator is the planning 

component of the 3-layer architecture. It produces plans for the sequencer to refine 

and execute. It also looks for optimisations in the sequence maintained by the 

sequencer and can repair plans in response to exceptions. 

 

To see this architecture in action, consider an office robot that is given the goal to 

take a worker’s coffee mug to the kitchen sink. The robot’s 3-layer planning 

architecture has the following division of labour. First, the deliberator decomposes 

the original goal and generates a high-level plan, say, (i) search the office for a 

coffee mug; (ii) find the door; (iii) exit safely; (iv) go to the kitchen; and (v) put the 

mug in the sink. This sequence of high-level steps is then passed to the sequencer, 

which performs a situation-dependent plan refinement. For example, the sequencer 

may refine step (iii), exit safely, to: (iii.a) move to the center of the office; (iii.b) 

point toward the door; (iii.c) follow the current heading with obstacle avoidance 

activated. Once the current step in the sequence is refined, its expansion is passed to 

the controller. The controller then executes primitive behaviours like obstacle 

avoidance, wall finding, wall alignment, following headings, and wandering. 

 

Now reconsider Sect. 1.2, which contains our discussion of the many different tasks 

of managing dialogue in general, and tutorial dialogue, in particular.  Given the 

proposed planning archicture, we need to identify the appropriate boundaries for the 

subdivision of functionality between the three planning layers. Also, we need to 

determine how we can achieve an effective coordination between the three layers. In 

order to address these questions and to validate and propagate our answers, we have 

built BEETLE, the Basic Electricity and Electronics Tutorial Learning 

Environment. In the next section, we give an introduction to BEETLE’s planning 

architecture. Sect. 4 then presents BEETLE’s intelligent information presentation 

strategies from the perspective of its users.  

3.2 A 3-layer Architecture for Managing Tutorial Dialogue. 

Fig. 1 displays BEETLE’s underlying generic and modular architecture for the 

management of tutorial dialogue. It is divided into four major parts (from left to 

right): external knowlege sources, the information state, the update engine, and the 

three-layered planning and execution architecture.  
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Figure 1. BEETLE’s Dialogue Management Architecture. 

BEETLE’s architecture emphasises the importance of clearly separating the 

knowledge sources involved in tutorial dialogue. This aims to minimise the re-

representation of knowledge in different parts of a tutor system. In addition, each 

knowledge source can be transparently accessed from other modules of the tutoring 

system via the information state (see below). The information state establishes an 

interlingua among modules with varying representations. The deliberator, for 

instance, can thus easily access domain knowledge, student modeling expertise, 

learning goals, and pedagogical strategies. Moreover, this design emphasises and 

encourages the reusability of components. 

3.2.1 The Information State and the Update Module. 

The information state (IS) captures the overall dialogue context and interfaces with 

external knowledge sources as well as with the planning modules. In particular, the 

IS contains a dialogue history that records all prior dialogue moves and the common 

ground. Dialogue moves refer to the conversational actions performed by an 

utterance. For example, the statement “I didn’t understand you” requests information 

and signals non-understanding of the previous speaker’s utterance.  The common 

ground refers to the set of propositions that both dialogue participants have agreed 

upon in prior discourse. The IS also contains a list of salient objects to facilitate the 

treatment of linguistic phenomena such as anaphora. Moreover, the IS maintains a 
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stack of any pending discourse obligations, allowing the system to deduce the issues 

that it needs to, or intends to address in future dialogue continuations.  

 

The IS is maintained by the update module. After each tutor and student turn, which 

usually consists of more than one dialogue move, this module is activated. Its update 

rules encode conversational expertise and define how to update the current context 

given a new dialogue move. Two example update rules are given below: 

 

    doDiagQuery: 

     precond:  latest turn contains move of type DIAG_QUERY 

     effects:       add DIAG_QUERY move to CDU             

add obligation for hearer to address move to CDU 

    doAssert: 

precond:  latest turn contains move of type ASSERT 

asserted content addresses a previous DIAG_QUERY or 

INFO_REQ, say Q1 

     effects:  add ASSERT move to CDU 

        remove speaker's obligation to address Q1 

add hearer's obligation to address assertion 

add that speaker is committed to propositional content of 

assertion 

add that if hearer accepts assertion, then add assertion to 

common ground 

 

The update rule engine fires the rule doDiagQuery if the latest turn contains a 

diagnostic query dialogue move. If so, that move would be entered into the current 

discourse unit (CDU), and an obligation for the hearer to address this move would 

be created. The rule doAssert fires if the latest turn contains an assertion and if its 

asserted content addresses a previous diagnostic query or information request. If this 

is the case, then the assertion is added to the CDU, the speaker's obligation to 

address the question is deleted, the hearer is now obliged to address the assertion, 

and the propositional content of the assertion is a candidate for entering the common 

ground. 

3.2.2 Response Generation Using the 3-layer Architecture 

The response generation module computes appropriate tutorial moves and 

synthesises tutorial feedback as text or other modalities. It uses the 3-layer planning 

architecture: a deliberative planner that projects the future and anticipates and 

solves problems (top layer); a sequencer or plan execution and monitoring system 

that performs adaptive on-the-fly refinement (middle layer); and a controller or 

perception/action system that interprets student actions and performs primitive tutor 

actions (bottom layer). 

 



 INTELLIGENT INFORMATION PRESENTATION FOR TUTORING SYSTEMS 11 

schema do_instruct_procedure; 
vars  ?lab  = ?{type learning_goal}, 

 ?args  = ?{satisfies listp}, 

 ?domain_plan = ?{satisfies listp}; 

expands {instruct_procedure ?lab ?args}; 

conditions  only_use_if {teaching_mode} = SOCRATIC, 

  compute {beer (has_planp ?lab ?args)} = t, 

  compute {beer (activate_plan ?lab ?args)} = success, 

compute {beer (active_plan)} = ?domain_plan; 

nodes 1 action {open_lab ?lab}, 

  2 iterate action {instruct_step ?step} 

         for ?step over ?domain_plan, 

  3 action {close_lab ?lab}; 

orderings 1 ---> 2, 2 ---> 3; 

effects {student_knows (lab ?lab)} = true at end_of self; 

end_schema; 

 

Top-layer: Deliberative Planning. The deliberation component synthesises plans 

from action descriptions, or operators, at the highest possible level of abstraction. 

This abstraction minimises wasted effort by allowing the middle layer to perform a 

maximum of situation-adaptive plan refinement.  High-level planning results in a 

structured sequence of tasks that are passed to the task agenda of the middle layer; 

for each task, there is a reactive action package (see below) that achieves it, if 

successfully executed. The deliberator is explicitly activated in two cases: when the 

tutor begins a tutorial dialogue, and during the dialogue when the middle layer 

encounters a failure during plan execution and requests that the top layer performs a 

plan repair. However, the deliberative component also has a permanent background 

activity. It regularly inspects the agenda of the middle layer for two reasons: 

verifying whether pending discourse obligations (as recorded in the IS) are covered 

by the contents of the agenda, and anticipating problems or optimising the agenda's 

content. In both cases, the top layer can add or delete items from the task agenda as 

well as reorganise or aggregate them. The top and middle layer therefore need to 

synchronise their access to the agenda. 

 

Fig. 2 depicts the operator do_instruct_procedure that can be used to instruct a 

student on how to perform a procedure. Its application leads to a high-level 

discourse plan with three main parts: first, it plans to open the discourse by 

communicating some initial thoughts about the procedure (open_lab); second, for 

each step in the domain plan, a discourse plan step instruct_step is generated; and 

third, after each step of the procedure has been instructed, close_lab evaluates the 

student’s performance and terminates the lab with closing remarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A High-Level Plan Operator for Instructing a Procedure (in OPLAN syntax) 

The operator do_instruct_procedure is written in the task description language of 

OPLAN, the Open Planning Architecture (Currie & Tate, 1991). Consider its four 
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preconditions. The first condition, {teaching_mode} = SOCRATIC, ensures that it is 

only applied if the tutor is using a Socratic tutoring style. The other conditions 

interface with an external domain reasoner for Basic Electricity & Electronics, 

called BEER, which is queried three times. The first query checks whether BEER 

has a domain plan for the procedure the student is to perform; the second condition 

checks if BEER is able to activate the plan (NB: if a plan is activated, then BEER 

can be used to track the student’s progress through its steps); and the third condition 

asks BEER to return a sequential representation of the domain plan. This plan is 

used to instantiate the instruct_step operator. 

 

Fig. 3 displays a simplified version of the operator instruct_step. It consists of six 

steps: In the first four steps, it is planned that the tutor takes the turn, makes an 

assertion (namely that the next step is ?step), issues a directive telling the student to 

perform that step, and finally gives away the turn. It is then planned that the tutor 

waits for the student to react (get_student_input), and subsequently supplies 

feedback (supply_feedback) addressing the student’s answer(s) or action(s).  

 

 

 

 

 

 

 

 

Figure 3. Instructing a Step 

Currently, there is only one realisation of instruct_procedure, but there are several 

other realisations of instruct_step. An example of another decomposition asks the 

student whether he knows the next substep rather then simply asserting what the 

next substep is. 

 

Middle-layer: Context-Driven Plan Refinement. Reactive Action Packages, 

introduced by (Firby, 1989), are the basic building blocks of a situation-driven plan 

refinement system. A reactive action package (RAP) groups together and describes 

all ways to carry out a specific task in different situations. In BEETLE, we are 

representing a RAP as a set of possible OPLAN action decompositions. 

schema do_instruct_step; 

vars   ?step = ?{satisfies listp}, 

?s_input = ?{satisfies listp}; 

expands  {instruct_step ?step}; 

nodes 1 action {take_turn}, 

  2 action {assert (next_step ?step)}, 

  3 action {direct (do ?step)}, 

  4 action {give_away_turn}, 

  5 action {get_student_input ?s_input}, 

  6 action {supply_feedback ?s_input}; 

orderings  1 ---> 2, 2 ---> 3, 3 ---> 4, 4 ---> 5, 5 ---> 6; 

effects {student_knows (next_step ?step)} = true at end_of 2, 

  {student_performs (do ?step)} = true at end_of 3;   

end_schema; 
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Our sequencer, the OPLAN execution and monitoring environment, executes the 

contents of the agenda, as filled by the deliberator. First, it selects the next task to be 

performed from the agenda. Then, it checks the selected task against the information 

state to see whether its effects have already been achieved. If this is the case, the 

task is deleted. Otherwise the sequencer identifies the RAP that can achieve the task. 

The methods of the identified RAP are checked, and the most appropriate of them is 

selected.  If the chosen method results in a primitive action or a sequence thereof, 

then it is delegated to the bottom layer for execution; if the method is a complex 

task, then each of its subtasks is put on the agenda, and a new interpretation cycle 

starts. 

The execution of a RAP can fail for three reasons: its preconditions are not met, 

none of its methods are applicable, or the execution of one of its primitive methods 

fails.  The sequencer can cope with some failures, e.g., it can try another applicable 

method. In the other cases, it has to call the top layer to cope with the failure. 

 

Fig. 4 shows a RAP consisting of two OPLAN operators for the provision of tutorial 

feedback.  The first operator is used to provide positive feedback to a correct student 

answer or GUI action; the second operator is applicable if the student’s answer is 

incorrect. There are several other supply_feedback operators that cover cases where 

the student is partially correct, incorrect, or stuck and take other tutorial parameters 

(e.g., student  performance, tutor verbosity) into account as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4. Two Decompositions for Supplying Feedback. 

schema do_supply_positive_feedback; 

     vars   ?step   = ?{satisfies listp}; 

     expands  {supply_feedback ?step}; 

     conditions  

        only_use_if {answer_correctness ?step} = CORRECT at begin_of self; 

     nodes  1 action {play_positive_feedback_game ?step}; 

end_schema; 

 

schema do_supply_feedback_question_certainty; 

     vars   ?step   = ?{satisfies listp}, ?aut, ?app =?{satisfies number}; 

     expands {supply_feedback ?step}; 

     conditions        

        only_use_if  {answer_correctness ?step} = INCORRECT at begin_of self, 

        compute {beesm (get_aut_app)} = {?aut, ?app}, 

        compute {?aut ~ 0.45} = t, compute {?app ~ 0.4} = t; 

     nodes  1 action {take_turn}, 

2 action {diag_query (question_certainty ?step)}, 

3 action {give_away_turn}, 

4 action {get_student_input}; 

end_schema; 
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Bottom-layer: Perception/Action System. The bottom layer is responsible for the 

interpretation of student input and for the execution of primitive dialogue actions.  

The interpretation module allows the student to interact with the system via text and 

graphical means. It identifies the meaning and intention behind a student utterance. 

This includes its syntactic analysis, the construction of a representation of its 

propositional content, the recognition of its speech act (e.g., statement), the 

recognition of the intent behind the utterance (i.e., assertion and answer), and an 

evaluation of the student's utterance or action for correctness. 

The generation system gets a sequence of elementary dialogue moves and micro-

plans the generation of multi-modal feedback (natural language utterances and GUI 

actions). The bottom layer is supported by a sentence and media planner, which both 

have access to the full dialogue context. In particular, these components consult the 

list of salient objects and the contents of the previous and current discourse unit to 

generate natural feedback that makes use of elliptical constructions and anaphoric 

expressions. Action execution fails if the sentence or media planner fails. 

3.2.3 Turn-Taking Management.  

The tutoring agent releases the turn after it asks a question or requests that the 

student perform an action. In all other cases, the sequencer “cycles” until a question 

or action request is generated. If the student takes the initiative and grabs the turn, 

then this dialogue move will be recorded in the IS, generating an obligation for the 

tutor to address the last student utterance. The top-layer then deliberates over the 

new situation and may change the contents of the agenda accordingly. Similarly, if 

the student fails to react within a certain time limit, then the interpretation module 

generates an appropriate dialogue act, which the update engine processes, generating 

an obligation for the tutor to address the student's silence. The deliberative planner 

can then decide to either give the student more time, or to take the turn to supply 

help. 

3.3 Implementation Status 

We have built BEETLE, a prototype implementation of our computational 

framework for managing tutorial dialogue that serves to both validate and propagate 

our ideas. It is primarily based on two technologies, the TRINDIKIT dialogue 

system shell (Larsson & Traum, 2000) and the Open Agent Architecture (OAA) 

(Martin, Cheyer & Moran, 1999).  

BEETLE’s information state is entirely maintained and updated using TRINDIKIT. 

We were able to re-use the conversational expertise that was implemented in an 

information-seeking TRINDIKIT-based dialogue system, namely EDIS (Matheson, 

Poesio, & Traum, 2000). Many update rules were used unchanged; some were 

adapted for the purpose of tutoring, and new ones were written that capture dialogue 

moves that are only present in the tutorial dialogue genre (e.g., hinting moves). 

TRINDIKIT also helps to glue together the different components of the system. Its 

language allows us to define the flow of control, and the information state serves as 
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a representation of the dialogue context that is shared among the various system 

components. Moreover, all major system components have been agentified with 

OAA wrapper code. OAA enables the dialogue system engineer to use components 

that are written in a variety of programming languages and run on different 

platforms. In line with our goal to provide a flexible, modular, and thus reusable 

architecture, domain reasoning is performed by a single agent. The BEER agent 

encodes BEETLE's knowledge about basic electricity and electronics. It has a rich 

LOOM (see http://www.isi.edu/isd/LOOM/LOOM-HOME.html) representation of 

BEE concepts, can perform basic inferences in this domain, and has explicit 

representations of domain plans. BEETLE's deliberative planner, OPLAN creates 

instantiated dialogue plans from its general dialogue strategies by accessing the 

relevant domain knowledge represented in BEER. As we described, OPLAN is used 

on both the top layer and the middle layer. Its deliberative capabilities have been 

extended by a plan execution and monitoring environment that implements a good 

part of the functionality of the sequencer: selecting the next element in the sequence, 

passing it down to the bottom layer, and monitoring its success. The sequencer can 

handle failures by asking the deliberative component to perform a plan repair. 

However, we need to extend the sequencer with a situation-adaptive plan refinement 

capability. At the time of writing, fully-fledged discourse plans are executed by the 

sequencer, frequently fail, and are therefore equally frequently repaired.  

 

We have implemented an agent (BEESM) that determines the values for two 

variables that are used in constructing the system’s response: autonomy and 

approval. Following (Brown & Levinson, 1987), autonomy captures the freedom of 

action and freedom of imposition by other agents; approval captures a positive 

consistent self-image that is appreciated and approved of by other agents. Applied to 

tutoring, for example, the tutor can ask the student whether he knows what to do 

next (high autonomy) or tell the student what to do next (low autonomy). 

Furthermore, a high approval response would be to praise a student answer whereas 

a low approval response would be to simply go on to the next topic. Autonomy and 

approval are determined by a Bayesian network that combines evidence from 

several situational factors derived from a study with teachers (e.g., aptitude, 

correctness, material left, time left) (Porayska-Pomsta, Mellish, & Pain, 2000). 

BEEGLE, the user interface agent sends BEESM messages when relevant GUI 

actions occur (e.g., button presses, lab actions) to allow BEESM to infer evidence of 

the presence of the situational factors. 

 

BEETLE's perception and action system includes NUBEE, a natural language 

understanding module based on the CARMEL toolkit (Rose, 2000) and 

BEETLEGEN, an XSLT-based  (W3C, 1999) sentence realiser. 

The CARMEL toolkit comes with a spelling corrector, a robust parser, and a wide 

coverage English grammar and lexicon (COMLEX).  The output of CARMEL is 

disambiguated and translated into BEETLE's logical form format, and references to 

objects are resolved.  Reference resolution works by querying BEER for suitable 

objects matching the input description. In case of ambiguity, NUBEE can query the 

information state to determine which objects are most salient.  Although CARMEL 
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has a wide coverage lexicon, it only contains syntactic and not semantic information.  

Thus, NUBEE's vocabulary is limited to the words for which we have provided 

semantics. As a start, we have covered common expressions for the elements in 

BEER and are now adding vocabulary such as "need", "think", and "want" not 

directly related to BEE concepts.  In addition, we use Wordnet (Miller, 1990) to 

look for known synonyms of unknown words to help expand the coverage. 

The natural language generation component, BEETLEGEN, performs pipelined 

XML-transformations for different stages of the generation process. The basic idea 

is to use XSLT stylesheets to transform a semantic input tree provided by OPLAN 

into a syntactic output tree that includes lexical items. The first step of the 

generation pipeline is to match the semantic input tree and build-up an initial 

syntactic structure, using a hybrid template-based and rule-based approach. The 

following stages perform NP-realization and make decisions about 

pronominalization as well as forming ellipses. The next step then performs lexical 

lookup including inflection for the non-canned parts of the generated tree structure. 

The last stage reads off the lexical items from the tree and produces polished English 

text (including proper punctuation and capitalization). BEETLEGEN's context-

dependent pronominalization, its lexical variation, and its capability to omit 

redundant speech acts is supported by two agents, namely, the information state 

agent and the rudimentary student modelling agent BEESM. 

 

4. THE BE&E TUTORIAL LEARNING ENVIRONMENT (BEETLE) 

4.1 The Graphical User Interface 

The starting point for BEETLE’s graphical user interface was a course on basic 

electricity and electronics, which was written in HTML and the VIVIDS authoring 

environment (Munro, 1994) at the Navy Personnel Research and Development 

Center. This course included nine multiple-choice quizes and  four labs requiring 

students to make basic measurements using a multimeter in a simulated 

environment. Two more complex labs involving building simple circuits and solving 

equations were added later (Rosé, Moore, VanLehn, & Allbritton, 2000). To 

integrate this curriculum with the rest of our system, it was necessary to 

reimplement the quizzes and labs and build an HTML viewer. This graphical 

interface, which also includes a chat  window allowing typed dialogue with the 

system, is written in Tcl/Tk and uses add-on packages for the HTML display.  

 

In interacting with BEETLE, students read textbook-style lessons written in HTML 

and then perform labs using the graphical user interface (GUI). In this section, we 

discuss in more detail the HTML pages, the quizes, and the labs. 

 

BEETLE features a set of BEE lessons, each of which consists of hypertext pages 

that contain instructive text as well as static illustrations and animated images. Fig. 5 
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displays part of the hypertext lesson “characteristics of current”. It features an 

animated image that illustrates the directed flow of current in a circuit. The 

illustration is supplemented by a paragraph of instructive text. 

 

 

Figure 5. A  BEE Hypertext Lesson Page on Measuring Current 

The student can browse through the hypertext pages at his own pace, using the left 

and right arrows. Many pages such as the one in Fig. 5 are animated and some 

hypertext pages contain links that allow the student to explore the material in greater 

detail. The material is structured into lessons each of which has several sub-lessons 

ending in a progress check, a multiple-choice quiz designed to assess the student’s 

understanding of the sub-lesson.  Fig. 6 shows an example. 

 

 

Figure 6. A Multiple-Choice Question. 

Note, currently BEETLE has no tutorial strategies for helping students with the 

quizes but in future work these will be used to help students when they get a wrong 
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answer, click “Don’t know” or “Help on Question”. Currently, the student is simply 

told to try again if he gets a wrong answer and given the correct answer if he clicks 

“Don’t know”. 

The current tutorial strategies focus on the labs. After the student successfully 

completes the theoretical part of a lesson (that is, reading a sequence of sub-lessons 

and answering the associated multiple-choice questions), he must complete a 

practical exercise, a so-called lab. Fig. 7 displays a screenshot of BEETLE while 

going through the lab measure current with a student. The screen is divided into 

four large areas: (top left) lessons done so far, (top right) the measuring current lab, 

(middle) the dialogue box, and (bottom) the student input entry window. 

 

 

Figure 7. BEETLE Engaging in Tutorial Dialogue on Measuring Current. 

The student can interact with the BEETLE interface in two ways. He can perform 

actions in the lab (e.g., open the switch of the circuit, remove a wire, set the function 

switch of the multimeter) or type his questions and answers in English in the student 

input window. For example, the student can address a tutor question of the form “do 

you know what to do next” by typing his answer into the student input window, or by 

performing a GUI action that he thinks is the next step in the current procedure. 

BEETLE then supplies tutorial feedback in English by displaying it in the dialogue 

window. 
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4.2 Example Dialogue 

Fig. 8 depicts an excerpt from a human-human tutorial dialogue, as it occurs in our 

BEE corpus. Note that this is a dialogue with a human tutor set within the VIVIDS 

learning environment.
1
 The dialogue’s topic is the multi-step procedure for 

measuring current. Earlier, the student read the relevant BEE lesson and answered a 

number of associated multiple-choice questions. 

 

 

 

 

 

 

Figure 8. An Example Dialogue. 

The excerpt is part of a larger dialogue context. Before this dialogue fragment 

began, the student interacted with the VIVIDS software. The student received a 

sequence of instructions and simple positive and negative multi-modal feedback. 

The student encountered no problems in successfully carrying out the first three 

instructions of the procedure measure current (de-energise the circuit, set the 

multimeter switch to CDC, and remove a wire), but then has problems connecting 

the leads of the multimeter to the appropriate places in the circuit. A human tutor 

then initiated the dialogue in Fig. 8. We now explain how the 3-layer architecture of 

the BEETLE system can play the role of the tutor in the dialogue. 

                                                      
1 (Rosé, Moore, VanLehn, & Allbritton, 2000) describe an experiment where students go 

through BEE lessons and labs with the guidance of a human tutor.  The video signal from the 

student's computer was split so the tutor who was hidden behind a partition could watch the 

student's progress.  The tutor and student were allowed to type messages to each other 

through a chat interface.  We are using the logs of this chat interface, the BEE dialogues, to 

identify teaching tactics to be used by our tutor and plan to use them to train our system. The 

BE&E dialogues are publically available for download from our website 

(http://www.cogsci.ed.ac.uk/~jmoore/tutoring/dialogue-corpus.html) and also from the 

CIRCLE archives (http://www.pitt.edu/~circle/Archive.htm). 

[1]    T: Now connect the leads of the multimeter to the circuit! 

[2]    S: <student floundering>    

[3a]  T: OK, 

[3b]      can you tell me what the goal of this lab is? 

[4]    S: where do i connect the red lead? 

[5]    T: Before I answer that, answer the question I just asked you. 

[6]    S:  to connect the multimeter in series 

[7a]  T: Good, 

[7b]       and what is the purpose of doing that? 

[8]    S:  to measure current 

[9]    T: And do you remember what it means to hook something up in series? 

[10a] S: yes, 

[10b]     i had to think for a minute. 

[10c]     let me try again 

[11a] T: OK, 

[11b]    go ahead. ... 

http://www.cogsci.ed.ac.uk/~jmoore/tutoring/dialogue-corpus.html
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When the tutoring session begins, the deliberative planner, OPLAN, is given the 

initial learning goal of teaching the student the procedure for measuring current. The 

planner, informed by its knowledge sources (e.g., the BEER domain reasoner that 

provides a domain plan for measuring current) generates a high-level discourse plan: 

 

     T1: open_lab(“measuring current”) 

     T2: instruct_step(“de-energise circuit”) 

     T3: instruct_step(“set multimeter switch to CDC”) 

    T4: instruct_step(“remove a wire”)  

T5: instruct_step(“connect multimeter leads”)  

     T6: instruct_step(“energise the circuit”)  

     T7: instruct_step(“take meter reading”)  

     T8: close_lab(“measuring current”)  

 

While the high-level step open_lab can be fleshed out by the deliberative planner, 

the step close_lab has the effect of summarising the student's performance, and 

therefore cannot be planned in advance. In a similar vein, the deliberator does not 

need to expand any of the instruct_step tasks since the instruction of a step may 

depend on the student’s prior performance. Once a high-level plan has been 

constructed, the deliberator then passes the sequence of tasks to the agenda of the 

the sequencer, which then starts processing the agenda's content. 

 

Assume that the sequencer has successfully processed the tasks T1–T4, and that it is 

now choosing to process T5. The task instruct_step is complex, that is, not a 

primitive behaviour that can be executed by the controller. It must therefore be 

refined. Given the current dialogue situation, an applicable method for its 

decomposition is identified, and the sequencer produces the agenda:
2
 

 

     T51: sequence assert(next_step(“connect multimeter lead”))  

                    direct(do(“connect multimeter lead”)) 

   T52: supply_feedback(did(“connect multimeter lead”)) 

   T5:   instruct_step(“connect multimeter lead”)  

     T6:   instruct_step(“energise the circuit”)  

    T7:   instruct_step(“take meter reading”)  

     T8:   close_lab(“measuring current”)  

 

After the sequencer starts another processing cycle, assume it chooses to process 

T51 only, which is an elementary task, and is therefore passed down to the bottom 

layer. The controller’s feedback generator takes the assert and direct dialogue moves 

and generates a single English sentence to achieve their intended effects, in turn [1] 

of Fig. 8. Here, the assert move has been realised as an indirect effect of  the 

directive. T51 is deleted from the agenda, and the update module adds the tutor's 

turn to the information state. Update rules, triggered by the turn, update the previous 

                                                      
2 The task T5 will be popped from the agenda only when the tasks T51 and T52 are finished. 
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and current discourse units and add an obligation for the student to address the 

tutor's action directive. 

 

The tutor releases the turn. Assume now that the student performs a number of GUI 

actions, none of which is connecting the multimeter leads to the circuit in a 

systematic and correct manner, and assume that the controller’s interpret module 

posts the dialogue act “student floundering”. The update module updates the 

information state by deleting the student's obligation to address the tutor's directive 

(the student did address the utterance, but was unable to perform it), and by adding 

an obligation for the tutor to address the student's floundering move. 

 

If the task agenda contains a RAP designed to handle this event, then the sequencer 

will simply execute one of its applicable methods. Otherwise, the sequencer informs 

the top-level that it has no contingency for the situation and asks for a plan repair. 

Let us assume that the RAP supply_feedback can indeed handle the student's 

floundering, and that one of its applicable methods is to apply the   

subgoal_reification_strategy. The sequencer expands T52 into the tasks T521, T522, 

and T523, and we obtain: 

 

    T521: make_salient_goal_structure(“measure current”)  

    T522: make_salient(howto(“connect multimeter leads”))  

    T523: direct(“connect multimeter leads”)  

 

Task T521 is selected, it is decided that the goal structure is not yet or no longer 

salient, and T521 is expanded into: 

 

   T5211: diag_query(“can you tell me what the goal of this lab is”) 

   T5212: supply_feedback(answered(“can you tell me what the goal of this lab is”)) 

 

Task T5211 is primitive, and therefore, it is passed to the bottom layer. The 

feedback generator now generates the utterances [3a] and [3b] of Fig. 7. Note that 

the sentence planner generates “OK” to resolve the tutor's pending low-level 

dialogue obligation to acknowledge the student's last move. It is now the student's 

turn, and he utters [4] instead of resolving his obligation to address the tutor's 

question. The update module therefore creates an obligation for the tutor to address 

this question, and obviously, T5212 is not applicable, nor are any other pending 

tasks in the agenda. The sequencer therefore calls the deliberator to cope with the 

situation. 

 

The deliberator inspects the contents of the agenda as well as the IS and decides to 

resolve its obligation to address the student question by postponing its answer. Since 

the student did not address the tutor's question, the deliberator also decides to remind 

the student to answer its question [3b]. These two tasks are inserted into the task 

agenda, and since the sequencer identifies them as primitive, passes them to the 

feedback generator, yielding [5]. 
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The controller’s interpret module identifies the student's utterance in [6] as a 

partially correct answer to [3b]. The update module deletes the student's obligation 

to address [3b] and creates an obligation for the tutor to address the student's answer. 

The sequencer is able to address the new obligation by executing T5212. The RAP 

supply_feedback is expanded by a multi-turn tutoring strategy that is successfully 

carried out in [7a,7b,8]. 

The task T522 is to ask the student if he knows how to connect the leads; the sub-

tasks T5221 (diag_query}) and T5222 (supply_feedback) are generated and 

executed to accomplish T522. Note that the sentence planner realises T5221 as [9] 

using the prior context, especially the student's utterance [6]. The student answers 

[9] with [10a], [10b], and [10c], the first two of which can be handled by T5222, 

producing [11a]. In [10c], the student asked the tutor for permission to try again, and 

the update module generated an obligation to address the student's request.  Here, 

the planning engine falls back into deliberation since this obligation was not 

anticipated. The task T523 is replaced by the task T524, grant_permission(“connect 

multimeter leads”). The bottom layer produces [11b] to accomplish T524, and the 

resulting agenda is then: 

 

T52: supply_feedback(did(“connect multimeter leads”)) 

     T5:   instruct_step(“connect multimeter leads”)  

     T6:   instruct_step(“energise the circuit”)  

     T7:   instruct_step(“take meter reading”')  

     T8:   close_lab(“measuring current”)  

 

The tutor then waits for the student to connect the leads.  

Note that the student could have reacted differently in each of his turns [2,4,6,8,10]. 

A flavour of BEETLE’s dialogue flexibility and robustness can be gained from the 

interaction depicted in Fig. 7. Here, the student defied the system’s expectations 

most of the time. BEETLE was able to handle each of the cases by a discourse plan 

repair in the planning engine or a low-level communication management action (a 

generation of a request_rephrase move) in the update module. 

5. RELATED WORK IN TUTORIAL DIALOGUE SYSTEMS 

In Sect. 2, we focused on previous work on dialogue management with sound 

theoretical underpinnings.  This work was done in relatively simple domains such as 

information-seeking dialogues (e.g., getting travel information) and action-seeking 

dialogues (e.g., phone banking transactions). The work on tutorial dialogue 

management is more ad hoc; we discuss it here to show that a more principled 

approach is necessary. We review the dialogue management in the tutoring systems 

AUTOTUTOR (domain: computer literacy) (Graesser, Wiemer-Hastings, Wiemer-

Hastings, Kreuz, & Tutoring Research Group, University of Memphis, 1999), 

ATLAS-ANDES (Newtonian mechanics) (Schulze, Shelby, Treacy, Wintersgill, 

VanLehn, Gertner, 2000), and CIRCSIM/APE (circulatory system) (Khuwaja, 
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Evens, Michael, Rovick, 1994; Freedman, 2000) as well as in the EDGE explanation 

system (electrical devices) (Cawsey, 1989). 

 

AUTOTUTOR's dialogue management can be regarded as an adaption of the form-

filling approach to tutorial dialogue; to solve the feedback generation problem, it 

adds feedback moves to slots. AUTOTUTOR's dialogue management relies on a 

curriculum script, a sequence of topic formats, each of which contains a main focal 

question, and an ideal complete answer. The ideal complete answer consists of 

several sub-answers, called aspects. Each aspect includes: a good answer for that 

aspect, a list of anticipated bad answers corresponding to misconceptions and bugs 

along with corrections for those misconceptions and bugs; lists of prompts and hints 

that can be used to get the learner to contribute more information; and elaboration 

and summary moves that can be used to provide the learner with additional or 

summarising information.  All of the moves are hard coded in English. 

Using latent semantic analysis, AUTOTUTOR evaluates the student's answer to the 

main focal question against all the good answers of its ideal complete answer, and 

the anticipated bad answers. AUTOTUTOR gives immediate feedback based on the 

student's answer, and then executes dialogue moves that get the learner to contribute 

more information until all answer aspects are sufficiently covered. The category and 

content of tutor dialogue moves are computed by a set of 20 fuzzy production rules 

and an algorithm that selects the next answer aspect to focus on. 

While AUTOTUTOR's dialogue management performs well in the descriptive 

domain of computer literacy, it is unclear how well this approach will work in 

problem-solving domains such as algebra or circuit trouble-shooting. In these 

domains student answers will often require the tutor to engage the student in a multi-

turn remediation sub-dialogue. Curriculum scripts are not nested and do not allow 

the representation of multi-turn dialogues. 

 

The dialogue manager of ATLAS-ANDES operates in the domain of Newtonian 

mechanics and thus must address AUTOTUTOR's aforementioned limitations.  It 

uses a combination of knowledge construction dialogues (KCDs), which are 

recursive FSMs (Jordan, Rosé, & VanLehn, 2001) and a generative planner 

(Freedman, 2001). The grammar of a KCD definition bears many similarities to an 

AUTOTUTOR curriculum script. A student answer to a tutor question can be 

divided into correct and incorrect sub-answers with associated tutorial remediations. 

Unlike AUTOTUTOR, this feedback may extend over multiple turns through the 

use of recursive KCDs. 

While AUTOTUTOR requires a pre-defined and hand-crafted curriculum script, the 

ATLAS-ANDES approach allows on-the-fly generation of nested KCDs, using the 

APE discourse planner. The ATLAS-ANDES architecture is therefore similar to the 

2-tier AUTOROUTE architecture: its KCDs are dialogue games that are more 

complex but domain-specific. The simple generic question-answer pair is replaced 

by a recursive automaton that can deal with a specific question and many anticipated 

possible correct and incorrect sub-answers. A compiler then maps KCDs into plan 

operators. APE is then used to combine KCDs into larger recursive FSMs. The 

developers of ATLAS-ANDES propose a solution to the rigidity that is typically 
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associated with FSM-based systems. The reactive component of APE can skip 

around in the recursive KCD, for example, it can pop sub-networks that ATLAS-

ANDES believes contain intentions that were already dealt with in prior dialogue. 

 

In contrast, dialogue management in EDGE and CIRCSIM/APE is purely plan-

based. EDGE provides two types of (STRIPS-like) operators: discourse and content 

operators. Discourse operators model Sinclair & Coulthard's four levels of discourse, 

namely, transaction, exchange, move, and act (Sinclair & Coulthard, 1975). Content 

operators specify how to construct explanations.  For example, “to describe a device: 

explain its function, its structure, and its behaviour”. EDGE's content operators are 

quite general; their bodies contain abstract domain references that interface with a 

knowledge representation module.  EDGE incrementally builds and executes plans.  

Before each tutor turn, the deliberative planner expands the current unfinished step 

with either a complex sub-plan or an elementary plan step. Elementary plan steps are 

then executed using simple template driven generation. Thus, planning is delayed as 

much as possible so that the most current student model can be consulted. 

CIRCSIM/APE also incrementally constructs and executes plans, and uses simple 

template driven generation for realising elementary plan steps. However, a major 

drawback of CIRCSIM/APE (for others, see (Freedman, 2001)) is that it embeds 

control in operators, unlike traditional planners, where control is separated from 

action descriptions. This makes writing operators difficult and puts an additional 

burden on the planner. 

 

Although previous and ongoing work in tutorial dialogue systems has striven to 

support unconstrained natural language input and multi-turn tutorial strategies, there 

remain limitations that must be overcome: teaching strategies, encoded as 

curriculum scripts, KCDs, or plan operators, are domain-specific; the purely plan-

based systems embed control in plan operators or, necessarily, conflate planning 

with student modeling and maintenance of the dialogue context; and all current 

tutorial dialogue systems except EDGE mix high-level tutorial planning with low-

level communication management. These limitations can make systems difficult to 

maintain, extend, or reuse. 

  

Looking at dialogue systems built by computational linguists and speech 

researchers, we see the opposite problem (Lewin, 1998; Allen, Byron, Dzikovska, 

Ferguson, Galescu, & Stenton, 2000; Pieraccini, Levin, & Eckert, 1997; Larsson, 

Ljungloef, Cooper, Engdahl, & Ericsson, 2000; Rudnicky & Wu, 1999; Chu-Carroll, 

1999).  These systems do not allow for conversational moves extending over 

multiple turns and the resulting need to abandon, suspend, or modify these moves.  

However, these systems aim for dialogue strategies that are independent of dialogue 

context management and communication management concerns. These strategies 

contain no domain knowledge; they query domain reasoners to fill in necessary 

details. Furthermore, in systems explicitly performing dialogue planning, control is 

never embedded in plan operators.  In BEETLE, we have combined these beneficial 

features (modularity and re-usability) with the flexibility and robustness seen in 

tutorial systems. 
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6. CONCLUSION 

In the introduction we argued that natural language dialogue is a critical modality 

for intelligent information presentation in the tutoring domain.  This modality allows 

for multi-turn remediation subdialogues where students are encouraged to solve 

problems and detect and correct errors on their own.  However, these subdialogues, 

while making this modality effective, also make it difficult to implement.  Some 

current tutorial dialogue systems are able to support multi-turn remediation 

subdialogues; however, they do so by using carefully hand-crafted tutorial strategies 

that encode an initial question to ask and anticipated student responses and 

associated tutorial goals. The architecture for BEETLE splits the tasks necessary for 

supporting multi-turn remediation subdialogues among a set of independent modules 

that coordinate through a shared knowledge source (the information state).  All 

domain knowledge is stored in the domain reasoner; all communication-

management knowledge is encoded in the update module.  We are currently 

populating a database of domain-independent tutorial strategies; we will test their 

effectiveness and portability against current domain-dependent approaches. 
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