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Jacobson radical algebras with quadratic

growth

Agata Smoktunowicz∗

and Alexander A. Young †

Abstract

In this paper, it is shown that over every countable algebraically

closed field K there exists a finitely generated K-algebra that is Jacob-

son radical, infinite dimensional, generated by two elements, graded,

and has quadratic growth. We also propose a way of constructing

examples of algebras with quadratic growth that satisfy special types

of relations.

2010 Mathematics subject classification: 16N40, 16P90
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Introduction

Algebras with linear growth were described by Small, Stafford and Warfield

in [6]. In [3] (pp. 18) Bergman proved that algebras with growth function

smaller than f(n) = n(n+1)
2

have linear growth. What properties would al-

gebras with a growth function close to f(n) = n(n+1)
2

satisfy? Examples

of primitive algebras with very small growth functions were constructed by

∗ The research of the first author was supported by Grant No. EPSRC EP/D071674/1.
† The research of the second author was partially supported by the United States Na-

tional Science Foundation.
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Usi Vishne using Moorse trajectories [9]. In [1] Bartholdi constructed self-

similar algebras with very small growth functions over the field F2 which are

graded nil. In fact, all algebras constructed in [1] are primitive and hence

not Jacobson radical (as mentioned in [8]).

We will construct an example with growth function bounded above by

n2 + 4n + 3 which are both infinite dimensional and Jacobson radical. It is

unclear whether this algebra is nil. We will also present a way to construct

other examples which are bounded above by the same growth function.

Recall that non-nil Jacobson radical algebras with Gelfand-Kirillov di-

mension two were constructed in [8], and nil algebras with Gelfand-Kirillov

dimension not exceeding three were constructed in [5]. It is not known if

there are nil algebras with quadratic growth, or more generally with Gelfand-

Kirillov dimension two.

Our first main result is the following:

Theorem 0.1. Let K be an algebraically closed field. Let A = K⟨x, y⟩ to be

the free noncommutative algebra generated (in degree one) by the elements

x, y. Let H(n) ⊂ A be the homogeneous subspace of degree n ≥ 0. Finally,

for any F ⊆ H(n), let:

ℰ(F ) =
n−1∩
j=0

∞∑
k=0

H(kn+ j)FA.

For any sequence {Ni}i∈ℕ of strictly increasing natural numbers and any

sequence {Fi}i∈ℕ of homogeneous subspaces such that Fi ⊆ H(2Ni) and dimFi <
1
2
(Ni−Ni−1 + 1), the quotient algebra A/⟨ℰ(Fi)⟩i∈ℕ can be homomorphically

mapped onto an infinite dimensional graded algebra with quadratic or linear

growth. Moreover, the dimension of this algebra’s homogeneous subspace of

dimension n would be bounded above by 2n+ 2.

In other words, there’s a graded ideal E ⊲ A such that
∪
i∈ℕ ℰ(Fi) ⊆ E

and A/E is infinite dimensional and has quadratic growth. Specifically, 1 ≤
H(n)/(E∩H(n)) ≤ 2n+2 for each n ≥ 1. As a corollary we get the following

result.
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Corollary 0.2. Over every countable, algebraically closed field K there exists

a finitely generated K algebra that’s Jacobson radical, infinite dimensional,

generated by two elements, graded and has quadratic growth.

We also propose a new way of constructing examples of algebras with

quadratic growth satisfying special types of relations.

The general path of the proof is as follows:

∙ Subspaces U(2n), V (2n) ⊆ H(2n) are constructed, depending on U(2i),

V (2i) for i < n. This part bears resemblance to results from [4]. Prop-

erties that the V (2n) spaces exhibit include V (2n−1)2 ⊆ V (2n) and

dimV (2n) = 2, the latter being instrumental in establishing quadratic

growth. We assure that sets {Fi}i∈ℕ are contained in our sets U(2n).

∙ In section 3 we introduce ideal E, whose construction uses the sets

U(2n), in order to arrive at our desired quotient A/E. Note that the

ideal E is defined differently than in [4]. We then find an upper bound

of the growth of A/E.

∙ In sections 4 and 5 we show that for some appropriate choice of sets

{Fi}, the constructed algebra A/E is Jacobson radical.

We wrap up the proof of Theorem and its corollary in section 5.

1 Notation

In what follows, K is a countable field and A = K⟨x, y⟩ is the free K-algebra in

two non-commuting indeterminates x and y. The monomials in this algebra

will be the products of the form x1 ⋅ ⋅ ⋅xn, with each xi ∈ {x, y} (whereas the

monomials with coefficient will be of the form kx1 ⋅ ⋅ ⋅ xn with k ∈ K). The

degree of a monomial is the length of this product. For any n ≥ 0, H(n)

will denote the homogeneous subspace of degree n: the K-space generated

by the degree-n monomials. Finally, Ā =
∑∞

n=1H(n) will be the K-space of

polynomials with no constant term.
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2 Constructing sets U(2n) and V (2n)

Suppose we have a strictly increasing sequence of naturals {Ni}∞i=0 with N0 =

1 and a sequence of homogeneous subspaces {Fi}∞i=0 with each Fi ⊆ 2Ni and

F0 = (0).

In this section, we address the question: does there exist, for every i ≥
0, a subspace Ui ⊂ H(2i) and two monomials (with non-zero coefficient)

vi,1, vi,2 ∈ H(2i) such that, for each i ≥ 0:

1. Ui ⊕Kvi,1 ⊕Kvi,2 = H(2i).

2. There exists a v ∈ Kvi,1 + Kvi,2 such that Ui+1 = H(2i)Ui + UiH(2i) +

vH(2i).

3. Fi ⊆ UNi
.

We will eventually set Vi = Kvi,1 + Kvi,2, so that Ui ⊕ Vi = H(2i).

We shall attack the problem with induction. For the base case, set U0 as

an arbitrary subspace of H(1) with dimU0 = dimH(1)− 2, and set v0,1, v0,2

as two linearly independent monomials such that U0 +Kv0,1 +Kv0,2 = H(1).

For the inductive step, assume the existence of UNi
, vNi,1, vNi,2 for some

i ≥ 0, and find possible Uk, vk,1, vk,2 for all Ni < k ≤ Ni+1.

Let W ∼= K2(Ni+1−Ni) be a K-space with indices {xk,1, xk,2}Ni+1−1
k=Ni

, let Wk

be the subspace of all elements where (xk,1, xk,2) = (0, 0), and let W =

W∖
∪Ni+1−1
k=Ni

Wk.

Given some vector w⃗ ∈ W , define Uk(w⃗), vk,1(w⃗), vk,2(w⃗) recursively for

each Ni ≤ k ≤ Ni+1, as follows: first, set UNi
(w⃗) = UNi

, vNi,1(w⃗) = vNi,1,

vNi,2(w⃗) = vNi,2.

Then, assuming Uk(w⃗), vk,1(w⃗), vk,2(w⃗) are defined for some Ni ≤ k <

Ni+1:

Uk+1(w⃗) = H(2k)Uk(w⃗)+Uk(w⃗)H(2k)+(xk,2(w⃗)vk,1(w⃗)−xk,1(w⃗)vk,2(w⃗))H(2k).

If xk,1(w⃗) ∕= 0, set:

vk+1,1(w⃗) = xk,1(w⃗)−1v2k,1(w⃗),
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vk+1,2(w⃗) = xk,1(w⃗)−1vk,1(w⃗)vk,2(w⃗),

and if xk,1(w⃗) = 0, then xk,2(w⃗) ∕= 0, so set:

vk+1,1(w⃗) = xk,2(w⃗)−1vk,2(w⃗)vk,1(w⃗),

vk+1,2(w⃗) = xk,2(w⃗)−1v2k,2(w⃗).

For any w⃗ ∈ W , this clearly satisfies conditions (1-2).

Lemma 2.1. For any Ni ≤ k < Ni+1, a, b ∈ {1, 2}, w⃗ ∈ W ,

vk,a(w⃗)vk,b(w⃗) ∈ xk,a(w⃗)vk+1,b(w⃗) + Uk+1(w⃗)

Proof. If xk,1(w⃗) ∕= 0, and a = 1, vk,a(w⃗)vk,b(w⃗) = xk,a(w⃗)vk+1,b(w⃗).

If xk,1(w⃗) ∕= 0, and a = 2,

vk,a(w⃗)vk,b(w⃗) = xk,a(w⃗)vk+1,b(w⃗)+xk,1(w⃗)−1(xk,2(w⃗)vk,1(w⃗)−xk,1(w⃗)vk,2(w⃗))vk,b(w⃗).

If xk,1(w⃗) = 0 and a = 1,

vk,a(w⃗)vk,b(w⃗) = xk,2(w⃗)−1(xk,2(w⃗)vk,1(w⃗)− xk,1(w⃗)vk,2(w⃗))vk,b(w⃗).

And if xk,1(w⃗) = 0 and a = 2, vk,a(w⃗)vk,b(w⃗) = xk,2(w⃗)vk+1,b(w⃗).

Let P = K[xk,1, xk,2]
Ni+1−1
k=Ni

, i.e. the (commutative) algebra of polynomial

functions W → K. Let Q =
∏Ni+1−1

k=Ni
(Kxk,1 + Kxk,2)2

Ni+1−k−1

be a homoge-

nous subspace of P .

Theorem 2.2. For any sequence {sk}2
Ni+1−Ni

k=1 of {1, 2}, there exists some

ps ∈ Q such that for any w⃗ ∈ W ,

2Ni+1−Ni∏
k=1

vNi,sk ∈ ps(w⃗)vNi+1,s
2
Ni+1−Ni

(w⃗) + UNi+1
(w⃗).

Proof. We will use induction to show that, for any 0 ≤ ℎ ≤ Ni+1 − Ni and

any sequence {sk}2
ℎ

k=1 of {1, 2},
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2ℎ∏
k=1

vNi,sk ∈

⎛⎝ℎ−1∏
j=0

2ℎ−j−1∏
k=1

xNi+j,s2j(2k−1)
(w⃗)

⎞⎠ vNi+ℎ,s2ℎ
(w⃗) + UNi+ℎ(w⃗),

with the end result of the theorem proven when ℎ = Ni+1 −Ni.

The base case is simply vNi,s1 ∈ vNi,s1(w⃗) + UNi
(w⃗).

For the inductive step, let {sk}2
ℎ+1

k=1 be a sequence of {1, 2}, and assume

the inductive statement is true for {sk}2
ℎ

k=1 and {sk}2
ℎ+1

k=2ℎ+1
. Lemma 2.1 shows

that:

vNi+ℎ,s2ℎ
(w⃗)vNi+ℎ,s2ℎ+1

(w⃗) ∈ xNi+ℎ,s2ℎ
(w⃗)vNi+ℎ+1,s

2ℎ+1
(w⃗) + UNi+ℎ+1(w⃗).

Therefore,

2ℎ+1∏
k=1

vNi,sk ∈

⎛⎝⎛⎝ℎ−1∏
j=0

2ℎ−j−1∏
k=1

xNi+j,s2j(2k−1)
(w⃗)

⎞⎠ vNi+ℎ,s2ℎ
(w⃗) + UNi+ℎ(w⃗)

⎞⎠ ⋅
⎛⎝⎛⎝ℎ−1∏

j=0

2ℎ−j−1∏
k=1

xNi+j,s2j(2k−1)+2ℎ
(w⃗)

⎞⎠ vNi+ℎ,s2ℎ+1
(w⃗) + UNi+ℎ(w⃗)

⎞⎠ ⊆
⎛⎝ℎ−1∏
j=0

2ℎ−j∏
k=1

xNi+j,s2j(2k−1)
(w⃗)

⎞⎠xNi+ℎ,s2ℎ
(w⃗)vNi+ℎ+1,s

2ℎ+1
(w⃗) + UNi+ℎ+1(w⃗) =

⎛⎝ ℎ∏
j=0

2ℎ−j∏
k=1

xNi+j,s2j(2k−1)
(w⃗)

⎞⎠ vNi+ℎ+1,s
2ℎ+1

(w⃗) + UNi+ℎ+1(w⃗).

Corollary 2.3. For any f ∈ H(2Ni+1), there exists p, q ∈ Q such that ∀w⃗ ∈
W, f ∈ p(w⃗)vNi+1,1(w⃗) + q(w⃗)vNi+1,2(w⃗) + UNi+1

(w⃗).

Proof. First, note that:

H(2Ni+1) = (UNi
+ KvNi,1 + KvNi,2)

2Ni+1−Ni
=
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(KvNi,1 + KvNi,2)
2Ni+1−Ni

+
2Ni+1−Ni∑

k=1

H((k − 1)2Ni)UNi
H(2Ni+1 − k2Ni)

And for each f ∈ H(2Ni+1), there exists a f ′ ∈ (KvNi,1 + KvNi,2)
2Ni+1−Ni

such that, for any w⃗ ∈ W , f ∈ f ′ + UNi+1
(w⃗).

Since f ′ can be written as a linear combination of the elements of the

form
∏2Ni+1

k=1 vNi,sk , it’s sufficient to prove the corollary over these elements,

which is done in theorem 2.2.

Let d = dimFi+1, let {fk}dk=1 be elements that generate Fi+1, and let

{pk, qk} ⊆ Q be such that ∀w⃗ ∈ W, fk ∈ pk(w⃗)vNi+1,1(w⃗) + qk(w⃗)vNi+1,2(w⃗) +

UNi+1
(w⃗), as detailed in corollary 2.3. If there exists a w⃗ ∈ W such that each

pk(w⃗) = qk(w⃗) = 0, then we can set (Uk, vk,1, vk,2) = (Uk(w⃗), vk,1(w⃗), vk,2(w⃗)),

and condition (4) can be satisfied.

Let G =
∑d

k=1Kpk +Kqk ⊆ Q be the vector space generated by {pk, qk}.
Our remaining goal is to show ∃w⃗ ∈ W : G(w⃗) = (0).

Let R be the algebra generated by Q, i.e. R =
∑∞

k=1Q
k.

Lemma 2.4. If G, P are defined as above, then:

R ∩GP ⊆ G+GR.

Proof. Let M be the set of all monomials of P (without coefficient). Let MQ

be the monomials that generate Q, let MR =
∪∞
j=1M

j
Q be the monomials

that generate R, and let M ′
R = M∖(MR ∪ {1}). P can be decomposed:

P = K⊕R⊕KM ′
R.

Note that for any m ∈ MQ and any m′ ∈ M ′
R, mm′ ∈ M ′

R. As R is

generated by monomials, R ∩QM ′
R = (0).

Let g ∈ G, and let p ∈ P have the decomposition p = k + r + s, with

k ∈ K, r ∈ R and s ∈ KM ′
R. Suppose that gp ∈ R. Since gk + gr ∈ R,

gs ∈ R∩QM ′
R = (0). Therefore, gp ∈ Kg+ gR, and R∩GP ⊆ G+GR.

Theorem 2.5. If {w⃗ ∈ W : G(w⃗) = (0)} ⊆ W∖W =
∪Ni+1−1
k=Ni

Wk, then

d ≥ 1
2
(Ni+1 −Ni + 1).
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Proof. Let Z be the affine variety function of P : if I ⊲ P is an ideal, then

Z(I) = {w⃗ ∈ W : I(w⃗) = (0)}. It’s our goal to show that if Z(GP ) ⊆∪Ni+1−1
k=Ni

Wk, then d ≥ 1
2
(Ni+1 −Ni + 1).

Since Q annihilates each Wk, it must annihilate Z(GP ) as well. Hilbert’s

nullstellensatz states that since K is algebraically closed, for each q ∈ Q,

there must be an exponent q� ∈ GP .

Using lemma 2.4, q� ∈ R ∩ GP ⊆ G + GR, and so the quotient algebra

R/(G+GR) is nil. Since G2 ⊆ GR, R/GR is nil as well. All finitely generated

commutative nil algebras are finite dimensional, so applying Lemma 3.2 in

[2] several times gives 2d ≥ GKdimR. Recall that Lemma 3.2 [2] says that

if R is a commutative finitely generated graded algebra of Gelfand-Kirillov

dimension t, and I is a principal ideal generated by a homogeneous element

then R/I has Gelfand-Kirillov dimension at least t− 1.

Remember that for any j ≥ 0, Qj =
∏Ni−1−1

k=Ni
(Kxk,1 + Kxk,2)j2

Ni+1−k−1

,

and:

dimQj =

Ni+1−1∏
k=Ni

(j2Ni+1−k−1 + 1) ≥ 2
1
2
(Ni+1−Ni−1)(Ni+1−Ni)jNi+1−Ni ,

therefore GKdimR ≥ Ni+1 −Ni + 1.

We can thus conclude that as long as dimFi+1 <
1
2
(Ni+1−Ni + 1), there

is a w⃗ ∈ W such that G(w⃗) = 0, and we have appropriate spaces {Uk}
and monomials {vk,1, vk,2} for all k ≤ Ni+1. If this holds for all i ≥ 0, the

induction can proceed.

3 Constructing the ideal E

For any i ≥ 0, let Vi = Kvi,1 + Kvi,2, let vi ∈ Vi be such that Ui+1 =

H(2i)Ui + UiH(2i) + viH(2i), and let Qi = Ui + Kvi. If vi,1 /∈ Kvi, let

Wi = Kvi,1, otherwise, Wi = Kvi,2. This way Qi ⊕ Wi = H(2i), Ui+1 =

H(2i)Ui +QiH(2i), and Vi+1 = WiVi.
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Proposition 3.1. For any j > i and any k ≤ 2j−i − 1,

H(k2i)UiH(2j − (k + 1)2i) ⊆ Uj

Proof. Apply induction on the value of j by using H(2i)Ui + UiH(2i) ⊆
Ui+1.

For any n > 0, let m ≥ 0 be maximal such that 2m ≤ n, and define:

R(n) = {x ∈ H(n) : xH(2m+1 − n) ⊆ Um+1}

L(n) = {x ∈ H(n) : H(2m+1 − n)x ⊆ Um+1}

Also, set R(0) = L(0) = (0).

Proposition 3.2. For any n > 0 and any M such that 2M > n,

R(n)H(2M − n) ⊆ UM

H(2M − n)L(n) ⊆ UM

Proof. Apply simple induction onM , using the fact thatH(2M)UM+UMH(2M) ⊆
UM+1.

Proposition 3.3. For any n > 0, R(n)H(1) ⊆ R(n + 1) and H(1)L(n) ⊆
L(n+ 1).

Proof. Let m ≥ 0 be maxiamal such that 2m ≤ n. If 2m+1 − 1 < n, then:

R(n)H(1) ⋅H(2m+1 − n− 1) = R(n)H(2m+1 − n) ⊆ Um+1,

and R(n)H(1) ⊆ R(n+ 1).

If 2m+1 − 1 = n, then:

R(n)H(1) ⋅H(2m+2 − n− 1) ⊆ Um+1H(2m+1) ⊆ Um+2,

and R(n)H(1) ⊆ R(n+ 1).

By symmetry, H(1)L(n) ⊆ L(n+ 1).
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Define the space R′(n) ⊆ H(n) recursively; if n = 0, set R(0) = K, and

otherwise, m be maximal such that 2m ≤ n and set:

R′(n) = WmR
′(n− 2m)

Note that dimR′(n) = 1.

Proposition 3.4. For any n ≥ 0, R(n)⊕R′(n) = H(n).

Proof. Use induction on n. The base case n = 0 is trivial.

For the inductive step, n ≥ 0, let m be maximal such that 2m ≤ n, and

assume that R(n − 2m) ⊕ R′(n − 2m) = H(n − 2m). Proposition 3.2 can be

used to confirm that:

QmH(n− 2m) ⋅H(2m+1 − n) = QmH(2m) ⊆ Um+1,

H(2m)R(n− 2m) ⋅H(2m+1 − n) ⊆ H(2m)Um ⊆ Um+1,

R(n) +R′(n) ⊇ QmH(n− 2m) +H(2m)R(n− 2m) +WmR
′(n− 2m) = H(n).

Since dimR′(n) = 1, either R(n) ⊕ R′(n) = H(n) or R′(n) ⊆ R(n).

However, the latter option implies R(n) = H(n) and that H(n) ⋅H(2m+1 −
n) ⊆ Um+1, a clear contradiction. Therefore, R(n)⊕R′(n) = H(n).

Proposition 3.5. For any n ≥ 0,

0 < dimH(n)/L(n) ≤ 2

Proof. Let m be maximal such that 2m ≤ n.

If H(n)/L(n) were zero, then L(n) = H(n) and H(2m+1 − n)H(n) ⊆
Um+1, a contradiction.

Using proposition 3.2, R(2m+1 − n)H(n) ⊆ Um+1. By proposition 3.4,

L(n) = {x ∈ H(n) : R′(2m+1 − n)x ∈ Um+1}

Let p ∈ H(2m+1 − n) be an element that generates R′(2m+1 − n), and let

� : H(n)→ H(2m+1)/Um+1 be the K-linear transformation:

� : x 7→ px/Um+1

So that L(n) = ker�. Since the image of � is at most dimension 2, dimH(n)/L(n) ≤
2.



Jacobson radical algebras with quadratic growth 11

Let L′(n) ⊆ H(n) be a space such that L(n)⊕L′(n) = H(n). Proposition

3.5 shows that dimL′(n) is either 1 or 2.

Define the space E(n) ⊆ H(n) as:

E(n) =
n∩
i=0

L(i)H(n− i) +H(i)R(n− i)

Lemma 3.1. For any n > 0, E(n)H(1) +H(1)E(n) ⊆ E(n+ 1).

Proof. Using proposition 3.3,

E(n)H(1) =
n∩
i=0

L(i)H(n− i) ⋅H(1) +H(i)R(n− i)H(1) ⊆

n∩
i=0

L(i)H(n+ 1− i) +H(i)R(n+ 1− i).

It remains to show that E(n)H(1) ⊆ L(n+1)H(0)+H(n+1)R(0) = L(n+1).

Let m ≥ 0 be maximal such that 2m ≤ n+ 1.

H(2m+1 − n− 1)E(n)H(1) ⊆

H(2m+1 − n− 1)L(n− 2m + 1)H(2m) +H(2m)R(2m − 1)H(1) ⊆

UmH(2m) +H(2m)Um ⊆ Um+1

Therefore, by definition, E(n)H(1) ⊆ L(n+ 1).

H(1)E(n) ⊆ E(n+ 1) can be proven by symmetry.

Let E =
∑∞

n=1E(n).

Theorem 3.2. E is an ideal of A.

Proof. Apply lemma 3.1 to the definition of E.

Proposition 3.6. A/E is infinite dimensional.

Proof.

dimA/E =
∞∑
n=1

dimH(n)/E(n) >
∞∑
n=1

dimH(n)/R(n) =
∞∑
n=1

dimR′(n) =∞
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Proposition 3.7. A/E has quadratic or linear growth.

Proof. Using the fact that (L(i)H(n− i) +H(i)R(n− i))⊕L′(i)R′(n− i) =

H(n), and recalling proposition 3.5,

dimH(n)/E(n) ≤
n∑
i=0

dimL′(i)R′(n− i) ≤
n∑
i=0

2 = 2(n+ 1),

n∑
i=0

dimH(i)/E(i) ≤ n2 + 3n+ 1.

Proposition 3.6 shows algebra isn’t finite dimensional. Bergman’s Gap

Theorem [3] proves that the only growths strictly less than quadratic are

linear and finite, so A/E must have quadratic or linear growth.

4 E ⊇ ℰ(Fi)

Theorem 4.1. For any n > 0, let m be maximal such that 2m ≤ n.

2m+1−n∩
i=0

{x ∈ H(n) : H(i)xH(2m+1− n− i) ⊆ UmH(2m) +H(2m)Um} ⊆ E(n).

Proof. It’s sufficient to show that for any 0 ≤ i ≤ 2m+1−n and any x ∈ H(n)

such that x /∈ L(2m − i)H(n− 2m + i) +H(2m − i)R(n− 2m + i),

H(i)xH(2m+1 − n− i) ⊈ UmH(2m) +H(2m)Um.

x can be uniquely decomposed into x1 + xLxR, with:

x1 ⊆ L(2m − i)H(n− 2m + i) +H(2m − i)R(n− 2m + i),

xL ⊆ L′(2m − i), xR ∈ R′(n− 2m + i)

Under our assumption, xLxR ∕= 0. However,

H(i)x1H(2m+1 − n− i) ∈

H(i)L(2m − i)H(2m) +H(2m)R(n− 2m + i)H(2m+1 − n− i) ⊆
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UmH(2m) +H(2m)Um

Therefore it’s sufficient to show there exists y ∈ H(i) and z ∈ H(2m+1−n−i)
such that yxLxRz /∈ UmH(2m) +H(2m)Um.

As xL /∈ L(2m − i), there must exist a y ∈ H(i) such that yxL /∈ Um. Let

yxL = xLU +xLV , with xLU ∈ Um and 0 ∕= xLV ∈ Vm. Symmetrically, there’s

a z ∈ H(2m+1− n− i) with xR = xRU + xRV , xRU ∈ Um, and 0 ∕= xRV ∈ Vm.

yxLxRz = xLUxRz + xLV xRU + xLV xRV /∈ UmH(2m) +H(2m)Um

For any non-zero homogeneous space F ⊆ H(n), let ℰ(F ) denote the

space:

ℰ(F ) =
n−1∩
j=0

∞∑
k=0

H(kn+ j)FA.

Proposition 4.1. For any non-zero homogeneous space F ⊆ H(n), ℰ(F ) is

an ideal.

Proof. By the definition, it’s clear that ℰ(F ) is right ideal. To prove it’s a

left ideal, it’s sufficient to show that H(1)ℰ(F ) ⊆ ℰ(F ).

H(1)ℰ(F ) =
n−1∩
j=0

∞∑
k=0

H(kn+ j + 1)FA =

n−1∩
j=1

∞∑
k=0

H(kn+ j)FA ∩
∞∑
k=0

H(kn+ n)FA =

n−1∩
j=1

∞∑
k=0

H(kn+ j)FA ∩
∞∑
k=1

H(kn)FA ⊆
n−1∩
j=0

∞∑
k=0

H(kn+ j)FA = ℰ(F ).

Corollary 4.2. For any i ≥ 0, ℰ(Fi) ⊆ E.
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Proof. Since it’s graded, ℰ(Fi) can decomposed into homogeneous subspaces.

If n < 2Ni , ℰ(Fi) ∩H(n) = ∅, and if n ≥ 2Ni ,

ℰ(Fi) ∩H(n) =
n−1∩
j=0

⌊(n−j)2−Ni−1⌋∑
k=0

H(k2Ni + j)FiH(n− (k + 1)2Ni − j)

Let n ≥ 2Ni and let m be maximal such that 2m ≤ n. For any 0 ≤ j ≤
2m+1 − n,

H(j)(ℰ(Fi) ∩H(n))H(2m+1 − n− j) ⊆
⌊(n+j)2−Ni−1⌋∑

k=1

H(k2Ni)FiH(2m+1 − (k + 1)2Ni) ⊆

H(k2Ni)UNi
H(2m+1 − (k + 1)2Ni).

Using proposition 3.1, this is contained in Um+1, and so by thoerem 4.1,

ℰ(Fi) ∩H(n) ⊆ E(n).

5 Enumerating elements

To build a Jacobson radical homomorphic image through this method, we

use a method very similar to used in Theorem 9 in [7], but readapted for our

constraints. First, we require that the field K be countable, so that we can

enumerate the polynomials of Ā. For each such f ∈ Ā, we will find a g ∈ Ā
and a sufficiently ”small” F such that f + g − fg ∈ ℰ(F ).

Let f ⊆ Ā be any polynomial with no constant term, and let d be minimal

such that f ∈
∑d

n=1H(n). f can be decomposed as f = f(1) + ⋅ ⋅ ⋅+ f(d) with

each f(i) ∈ F (i). Recursively define the spaces s(n) ⊆ H(n) for each n ≥ 0

with:

∙ s(0) = 1,

∙ s(n) =
∑min{n,d}

i=1 f(i)s(n− i) for n > 0.

This way,

s(n) =
n∑
k=0

∑
1≤i1,...,ik≤d,i1+⋅⋅⋅+ik=n

f(i1) ⋅ ⋅ ⋅ f(ik).
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Lemma 8 from [8] can be used to prove a simple property:

Lemma 5.1. For any m1,m2 ≥ 0 and any n ≥ m1 +m2 + 2d,

s(n) ⊆
d∑

a,b=1

H(m1 + a)s(n−m1 −m2 − a− b+ 1)H(m2 + b− 1)

Using s, we can build our subspace F . Recall that ∣X∣ is the number of

generators of A.

Theorem 5.2. For any N ≥ 2d, there exists a homogeneous subspace F ⊆
H(N) with dimF ≤

(
∣X∣d−1
∣X∣−1

)2
and a polynomial g ∈ Ā such that f+g−fg ∈

ℰ(F ).

Proof. Let g = −
∑2N+d

n=1 s(n), and let P be the two-sided ideal generated by

{s(2N + i)}di=1. By the recursive construction of s,

g = −
2N+d∑
n=1

s(n) = −
2N+d∑
n=1

min{n,d}∑
i=1

f(i)s(n− i) =

−
d∑

n=1

f(n) −
2N+d∑
n=1

min{n−1,d}∑
i=1

f(i)s(n− i) = −f −
d∑
i=1

2N+d∑
n=i+1

f(i)s(n− i) =

−f −
d∑
i=1

2N∑
n=1

f(i)s(n)−
d∑
i=1

2N+d−i∑
n=2N+1

f(i)s(n) ∈ −f + fg + P

Now, set F =
∑d−1

a,b=0H(a)s(N − a− b)H(b). It is our goal to show that

P ⊆ ℰ(F ). Thanks to proposition 4.1, it sufficient to show that for any

1 ≤ i ≤ d, s(2N + i) ∈ ℰ(F ). Consequently, it’s sufficient to show that for

any 0 ≤ j < N ,

s(2N + i) ∈ H(j)FH(N + i− j) =
d−1∑
a,b=0

H(j+a)s(N−a− b)H(N + i+ b− j),

which can be extracted easily from lemma 5.1.

Finally, recall that dimH(n) = ∣X∣n, where ∣X∣ is the number of genera-

tors of A.

dimF ≤
d−1∑
a,b=0

dimH(a)s(N − a− b)H(b) =
d−1∑
a,b=0

∣X∣a+b =

(
∣X∣d − 1

∣X∣ − 1

)2

.
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In order to make our quotient algebra Ā/E Jacobson radical, for every

f ∈ Ā there needs to be a g ∈ Ā such that f+g−fg ∈ E. As Ā is countable,

we can make an enumeration f1, f2, .... For each fm, let dm be minimal such

that fm ∈
∑dm

n=1H(n). For any Nm ≥ 1 + log2 dm, theorem 5.2 can give us

a gm ∈ Ā and an Fm ⊆ H(2Nm) such that fm + gm − fmgm ∈ ℰ(Fm) and

dimFm ≤
(
∣X∣dm−1
∣X∣−1

)2
.

If each dimFm < 1
2
(Nm − Nm−1 + 1), then we can construct the ideal

E as detailed in section 3. A/E is infinite dimensional (proposition 3.6),

has quadratic growth (because affine algebras with linear growth are PI by

Small-Stafford-Warfield Theorem [6]) with each dimH(n)/E(n) ≤ 2(n + 1)

(proposition 3.7), and contains each ℰ(Fm) (corollary 4.2). Fortunately, each

Nm can be set arbitrarily high in relation to Nm−1. The needed upper bound

of dimension of Fm depends on dm, ∣X∣, Nm and Nm−1, so if each Nm is set

to ⌈sup{1 + log2 dm, 2
(
∣X∣dm−1
∣X∣−1

)2
+Nm−1}⌉, each Fm will be ”small enough”

for the construction of E.
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