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1 Introduction: A Standard Musical
| nstrument M odel

A natural starting point for the study of any physical
system is linearisation—leading to great simplification is

terms of analysis, and also, in the computer age, to design

flexibility and algorithmic simplification in simulation. fie
acoustics of musical instruments is no exception.
guestion, then, is: how much of the behaviour of a given

instrument can be linearised? The only clear answer is:

definitely not all of it. The production of musical sound
by an instrument, whether it is struck, blown, or bowed,
relies critically on a nonlinear excitation mechanism. One

One

formation in acoustic tubes is discussed in Section 4, and
next the exotic and very new area of distributed collision

between musical instrument components is briefly outlined
in Section 5. Finally, in Section 6, some very general

perspectives on the use of passivity concepts in simulation
are presented.

2 Strings

Linear string vibration, particularly in the case of motion
in one transverse polarisation, and includinfieets of
bending sfifness and loss, has served as a useful starting
point for many investigations in musical acoustics [7, 8, 9]

standard model of the musical instrument, then, relies on 5,4 is also extensively used in synthesis [6]. Nonlinear

a subdivision of the instrument into a nonlinear excitation

models of string vibration have a long history—the first

mechanism, which is to a good approximation lumped, and a mqodels can be attributed to Kirchfio[10] and Carrier

linear resonator which is distributed, and characterized b

[11], and involve a very rough approximation to the

number of natural frequencies, or modes. Such a model has jnteraction between transverse and longitudinal motiam—i
been employed, for many particular cases, for some time—a fact, [ongitudinal motion is not explicitly included in sic

powerful unified picture emerged, however, with the article

models, and its féects (which may be viewed in terms

by Mcintyre, Schumacher and Woodhouse [1]. See Figure qf eijther an increase on string length, or an increase in
1. Such a characterisation has been enormously useful, not string tension) are included as an amplitude-dependent
only in investigations in musical acoustics, but also as a ¢qrrection to the global wave speed. The primafieet

means of arriving atf@icient synthesis methods, using modal

of the use of such a model, then, is an increase in pitch

representations [2, 3], methods based on transfer function \yith vibration amplitude—or, when losses are present, to

descriptions [4], or to spectaculaffect for certain systems
in 1D when a traveling wave formulation is available,
leading to the digital waveguide formalism [5, 6].

Resonator
(linear)

Energy
Source

downward pitch glides as amplitude decreases, as in the
case of a pluck or strike. See Figure 2. Such models, after
lengthy investigations by various authors outside of malsic
acoustics [12, 13, 14] were employed in musical acoustics
studies by Legge and Fletcher [15] and, for two transverse
polarisations, by Gough [16]. In the synthesis settinghsuc
effects are sometimes referred to as "tension modulation,”
and have been employed in digital waveguide [17, 18],
\olterra series-based [19, 20] and finiteffdience [21]

Figure 1: A diagram representing the constituent parts of a Models of high-amplitude string vibration.

standard musical instrument model [1].

Yet, over the past 20 years, the view of the role of the
resonator has slowly shifted, atiirent rates, for all musical
instrument types, to include nonlinedfexts. In many cases
the modifications are minor, leading ultimately to slight
differences in timbre, or changes in pitch—but in others,
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they are dominant, and a linear model of the resonator Figure 2: Spectrograms of sound output, for a plucked string

is grossly instficient to capture the perceptually salient
features of the instrument sound. Linked to the introdurctio
of such nonlinearities in the resonator is the loss of many

useful simulation techniques based on linear system theory

(though under weakly nonlinear conditions, some intemgsti
extensions are available, as will be indicated). Neveetel

under increasing excitation amplitudes, exhibiting tgpic
pitch glide dfects.

The tension modulation nonlinearity does allow for
characteristic changes in string pitch with amplitude—but
more subtle audibleffects require a complete modeling of

simulation research has proceeded apace; one interestingipe coupled longitudingransverse system. In this case,

unifying concept underlying many new developments has

the longitudinal dynamics are no longer averaged away,

been the notion of passivity, or the maintenance of an energy p ;¢ coupled, pointwise, to the transverse motion. Though

balance—when transferred to a discrete time algorithnm suc
a concept leads to robust and flexible algorithm designs.
This paper is intended as a non-technical review of of
some of the interesting and relatively new developments in
research into resonator nonlinearities in a wide variety of
musical instruments. Nonlinear string vibration is covere
first, in Section 2, and then the natural extension to the
vibration of thin plate structures in Section 3. Shock wave

the dfects of longitudinal vibration in strings had been
examined previously (see, e.g., [22]), nonlinear "mixitd”
transverse and longitudinal vibration was later identifisd

a source of so-called phantom partials in strings vibrating
at high amplitudes by Conklin [23, 24]. See Figure 3. A
model of such nonlinear coupled vibration had long been
available; see, e.g., the concise treatment in Morse and
Ingard [25]. Such a model was later employed by Bank and



Sujbert [26, 27] in a simplified form as a starting point for

a variety of synthesis techniques allowing the emulation of
phantom partials in piano tones. Even more recent work
has concentrated on complete physical models of the grand
piano, incorporating such longitudiri@hnsverse string
models [28].
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Figure 3: Spectra for lossless string vibration, undekistg
conditions of increasing strength, exhibiting the appeega
of phantom partials.

3 Platesand Membranes

Perhaps the strongest distributed nonlinearity in musical
acoustics is that occurring in thin flat structures, whicéypl
the role of the resonator in instruments such as cymbals and
gongs. When the vibration amplitude is large compared
to the thickness, a linear model is grossly iffimient
to characterize the behaviour of the instrument. Various
characteristic features, including the spontaneous génar
of modes, and the dramatic migration of energy towards
high frequencies were examined, from an experimental and
phenomenological point of view, by various authors (and
especially Rossing [29] and Legge and Fletcher [30]).

As in the case of strings, various models are available.
A direct generalisation of the "tension modulated” string
model, where longitudinalfiects are averaged to yield an
effective change in tension, is that due to Berger [31], which

Low amplitude

High amplitude ‘

time ———

< @
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Figure 4: Time evolution of a square plate, initialised ® it
first linear mode shape (under simply supported conditions)
under linear conditions (at top), and nonlinear conditiats
bottom).

Interestingly, recent simulation and experimental work
[39, 40] indicates that sucHfects are also at work in drums
as well (where tension, rather thanfistess is the main
restoring force)—though not leading to the same degree of
departure from the linear model, it is clear that the bright
and noisy timbres of instruments such as toms or bass drums
when struck at high amplitudes are dependent on such
nonlinear &ects.

4 Acoustic Tubes

The standard linear model of wave propagation in a
wind instrument is invariably a descendant of the model
of Webster [41], which models one-dimensional wave
propagation in a tube of variable cross-section, and
terminated by a condition modeling radiation—for tubes of
small cross-section, viscothermal wall losses play a non-
negligible role in determining the widths of the impedance
peaks in the spectrum, which in turn is strongly related to
playability, particularly in brass instruments. A varied
such models are available, generally posed in the frequency
domain in terms of impedance and admittance—see, e.g.,
[42, 43, 44].

At high amplitudes, however, it is now generally accepted
that nonlinear steepeningffects occur along cylindrical
segments of the bore. See Figure 5. Such work was initiated
by Hirschberg et al. [45], after earlier observations by
Beauchamp—see [46] for a review. Synthesis applications
were developed by Msallam et al. [47], and Vergez and
collaborators [48]. Such steepeninffeets are intimately
related to "brassy” timbres at high blowing pressures
[49, 50].

Numerical modeling in this case is diiliult challenge—

has been used in modal-based synthesis methods for drumsthough numerical techniques for shock capturing of course

[32]. In the case of strings, the use of more complex models
leads to relatively subtlefkects (such as, e.g., phantom
partials). In the case of thin plates, however, such models a
essential. The use of the Foppl-von Karman model [33] for

vibration at moderate amplitudes to explain such phenomena (such as, e.g., artificial viscosity [52]).

in musical instruments is relatively recent—see, e.g.z&ou

et al. [34], and has opened the way towards simulation
methods for such objects, through methods such as finite
difference schemes [35], and also modal approaches [36],

have a very long history (see the early review by Sod [51]),
the difficulty in the musical setting is to design a method
such that the solution is not distorted, perceptually, as
may be the case for certain commonly used techniques
Thisflitulty is
alleviated somewhat by the relatively weak strength of
the shocks which form (pressure deviations in a brass
instrument rarely exceed 10% of atmospheric). A greater
difficulty is the complexity of the model, particularly when

and may be extended to the case of curved plates (or shells) variation of the bore profile and viscothermal wall losses

[37, 38] in order to model instruments such as cymbals.
See Figure 4, illustrating the spontaneous generation of
higher frequencies given a smooth initial shape, and a highe
gross rate of vibration. Needless to say, computationdscos
associated with such simulations are extreme, regardfess o
the method employed.

are taken into account. Partial models are available in
this case—see, e.g., [53], for the case of lossless ducts.
Various simulation strategies have been proposed: hamoni
balance techniques are discussed in [54], and time-stgppin
methods, for unidirectional waves in [55]. In general, &nit
volume methods [56] would appear to be well-suited to this



particular problem.
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in a cylindrical tube, illustrating shock wave formation. e m) om)
5 Distributed Collisions Figure 6: Snapshots of the time evolution of a string catiigi

with a rigid parabolic barrier.
Collisions play an obvious role in keyboard and
percussion instruments, in which case a hammer [8, 9, 57]

or mallet [58, 59], usually modelled as lumped, comes 6 Concludlng remarks: Passive
into contact with a resonating body such as a string, bar, Representations and Numerical
membrane or plate. The interaction is nonlinear, and often

modelled using a variant of Hertz's law of contact (or a Methods

power-law nonlinearity in the compression of the striking
object), perhaps includingffects of loss, as per the model
of Hunt and Crossley [60]. For such interactions, the main
effect is that of the reduction in contact time (which is
generally quite short, and on the order of 1-10 ms for most
instruments) with striking velocity, leading to a percalve
brightening of timbre.

But it is clear that there is a wide variety of other
situations in which collisions play an important role, and i

which one or both of the objects in contact must be modelled > :
as distributed. A basic example is the interaction of agtrin  cONcepts (leading to structures based on the ue of delay line

in free vibration against a rigid barrier [61], as in the case ©F Shifts, and norm-preserving operations such as adaptors
of the sitar or timbura [62, 63, 64]. See Figure 6. In these ©F Scattering junctions). Non-wave based methods may also
cases, beyond a brightening of timbre, because the contact P& Written in a passive form, as in the case of, e.g., finite
region is distributed there is a time-varying change in tiegp ~ difference schemes [72], or other newer formalisms such as
sometimes accompanied by changes in pitch if thective port-Hamiltonian methods [73] applied to musical systems

length of the string is shortened at high amplitudes. Other L[74]- of course, outside of musical acoustics, such methods
examples include the pinning of a string against a barrier by have.a Io_ng hlstory in mainstream simulation, in the form of
a finger as in the case of the bowed string family [65], and Hamiltonian integrators [75, 76, 77].
also against more elaborate barriers such as the fretboard A 9eneral passive system obeys a power balance of the
in the case of the guitar [66]. Perhaps the most dramatic '™ dH
example of all is that of the snare drum [67], in which case i -Q+P (1)
a multitude of distributed wires are in partial contact wath
membrane, which must also be modelled as distributed.
The collision interaction in these cases is far from
linear—and furthermore, the nonlinearity is not even
approximately smooth, in contrast to the case of inherent
nonlinearities in strings and plates. Such systems have bee
approached occasionally in synthesis applications [68, 69
see [70] for some recent numerical work on a variety of
musical systems involving collisions.

Though there is not space in this short review for a full
look at numerical methods for distributed nonlinear system
it is worth taking a look at the concept of passive systems
is miniature, as such representations form a solid design
strategy for various nonlinear systems in musical acosistic
such representations are heavily used in varioderdint
guises in acoustics simulations, and particularly in sound
synthesis—scattering structures such as digital waveguid
[6], as well as wave digital filters [71] all employ such

where hereH = H(t) > 0 is the total stored system energy,
Q(t) > 0 is power loss, an@(t) is input power. When the
system is lossless and unforced, it is often referred to as
a Hamiltonian system, an#i(t) (the Hamiltonian) itself

is non-negative and conservedt(t) itself may be broken
down asH = T + V, whereT(t) is the system kinetic
energy (almost always a positive definite quadratic form in
the system velocities), and the potentift), which, for
nonlinear systems, is usually not a quadratic form, but tvhic
remains non-negative.



[2] D. Morrison and J.-M. Adrien.

If the non-negativity ofH and the loss ternQ may be

transferred to discrete time, in such a way that the power
balance is preserved from one time step to the next, i.e., as

1

” (Hn+1 _ Hn) — _Qn +p" (2)

where nowH", Q" andP" are time series indexed by integer
n, and wherek is a time step (possibly varying, but usually
fixed to a given sample rate in acoustics and synthesis
applications), then such a representation becomes a useful [©]
means of bounding of solutions, leading to numerical
stability conditions.
For musical systems, though, some more care is required.
Usually, the system of interest can be linearised—leaving
aside the question of nonlinear loss for the moment, this is
general implies a decomposition of the potential energy as

3)

V' = Viinear + Vnonlinear

where Viinear iS Necessarily a quadratic form. Ideally, one
would like to be able to treat these two terms separately, so
as to be able to design a fine-grained design for the linear
part of the system, and then add in nonlinefieds as a

refinement. This is most straightforward if the linear and
nonlinear potential energy components are separately non-
negative. In other words, the nonlinearity is of a "hardefiin

variety. While this is true for some systems (such as, ég., t
Kirchhoff-Carrier system, the Foppl-von Karméan system,
and some collision models), it is not true for others such
as the system describing coupled longitudinal-transverse
motion of a string. Coming up with anffecient design
under these conditions then becomes a much mdfiewt

problem, and constitutes a major design challenge.
Figure 7.
D Resonator
Energy : = -
Source - Linear Part :

Figure 7: A revised diagram representing the constituent
parts of a standard musical instrument model, with a
subdivision of the resonator into its linear and nonlinear
parts.
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