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ABSTRACT 

Pneumatic Conveying Recirculated Dryer (PCRD) is one of many driers used for drying wet sago starch. The most 

important components of this PCRD machine are the vertical pipe and the u-bend. The vertical pipe and the u-bend 
are the primary drying spaces. They must have a good temperature distribution and air velocity dryer. To observe the 

process of temperature distribution and the air velocity dryer in the vertical pipe and u-bend, Computational Fluid 
Dynamics (CFD) analysis is required. The research was aimed to analyze the temperature distribution and the air 

velocity dryer flow in the recirculated pipe of PCRD machine by using CFD analysis. The analysis was based on the 

variance of the temperature, the air velocity, and the height of the vertical pipe in PCRD machine. The analysis was 
conducted using Ansys Workbench Fluid Flow ver. 15. This software was used to simulate the temperature and the 

air flow velocity in the vertical pipe and the u-bend. However, the flow characteristics and patterns of the wet sago 
starch were not included in the discussion. The turbulence model used in the simulation was the Reynold Stress Models 

(RSM). The result of the simulation showed that the temperature along the vertical pipe and the u-bend was distributed 
evenly. The error value between the result of the simulation and the observation was low (0.10–2.04%). The average 

test value with paired t-test showed that the simulation and observation result was not significantly different. This 

results indicated that the simulation fit well with the observation value or the real condition in the PCRD machine. The 
distribution of the temperature and the air velocity dryer in the vertical pipe and the u-bend were able to reduce the 

moisture content on sago starch from 31% (wb) to 9% (wb). Therefore, the vertical pipe and the u-bend design was 
appropriate to use in PCRD machine for drying wet sago starch.  
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INTRODUCTION 

Pneumatic conveying dryer (PCD) is one of the drying 
machines widely used in food processing industry, 

specifically flour-based products. One of the 

developments on PCD machines is the addition of material 
recirculation process to reduce the length of the vertical 

pipe used. Therefore, in this research a pneumatic 
conveying recirculated dryer (PCRD) has been designed 

to dry wet sago starch or generally referred to as wet sago 

flour. The PCRD machine consists of seven main 
components, namely heating furnace, with 12 kg LPG 

fuel; blower and disintegrator; feeder; recirculation pipe; 
recirculation cyclone; output cyclone; and controller 
(Jading et al., 2016). However, the most essential 

component in determining the material recirculation 
process is the length of vertical pipe and the u-bend, 

therefore, the focus of this research is on the vertical pipe 

(upriser and downcomer) and the u-bend. According to 

(Bhattarai, et al., 2014), on a pneumatic system dryer, 
the vertical pipe also functions as the main drying 

chamber, therefore, the temperature distribution and 

drying air speed in the vertical pipe is determinant for 
the quality and quantity of drying results. To analyze the 

temperature distribution and the speed of drying air in 
the vertical pipe and u-bend of the PCRD machine for 

drying wet sago starch, a simulation is performed using 

a computational fluid dynamics (CFD). Dyah et al. (2003) 
argued that the CFD method is widely used to analyze 

temperature distribution because it has advantages such 
as the ability to solve 2 dimensional or 3 dimensional 

equations faster and can be performed simultaneously. 

Furthermore, the development of computation 
technology has made the CFD method as one of the 

main powers and devices to design and optimize 
pneumatic dryers (El-Behery et. al., 2013; Norton and 

Sun, 2006). One of the software that supports CFD is 
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ansys fluent, which has capability to analyze fluids flow 

system; heat transfer; and combustion, with computer 

simulation based on volume method up to finite volume 
method (El-Behery et al., 2013). Ansys fluent has been 

developed into a software package, namely ansys design 
modeler; ICEM; and fluent (Ansys Fluent, 2013).  

There are several assumptions used to simulate 

temperature distribution and drying air speed using CFD 
with ansys fluent software. First, in the recirculation pipe 

of PCRD machine, which is the model, the air flow in the 
vertical recirculation pipe and the u-bend is turbulent. 

Second, the air flows in steady; adiabatic condition; the 

physical characteristics of drying air (density, heat type, 
conductivity, and viscosity) is constant. Third, the 

environmental temperature is constant; the air flow speed 
is uniform; there is no mix between environmental air and 

the hot air which enters into the vertical pipe and the u-
bend. Fourth, the characteristics and pattern of wet sago 

starch flow in the pipe is neglected. Based on the above 

assumptions, then the model used to analyze temperature 
distribution and drying air speed is the Reynold Stress 

Model (RSM). 
The RSM model is a turbulence model which is most 

precise on fluent and is close with Navier-Stokes’ equation 

by solving transport equation for Reynold’s tension 
together with dissipation rate. The RSM model is suitable 

for in-pipe flow and cyclone which pass a revolving track 

or recirculation. RSM model can accommodate 

anisotropy of turbulence that has an important influence 
on the main flow (Caroko and Suyitno, 2008; Tuakia, 

2008). RSM model is derived from Navier Stokes’ 
equation (Kornev, 2013). 

This research aimed to analyze the distribution of 

temperature and speed of dryer air flow inside the 
vertical recirculation pipe (upriser, u-bend, and 

downcomer) and u-bend based on the variation of dryer 
air temperature, dryer air speed, and the height of 

vertical pipe in the PCRD machine to dry wet sago starch 

using ansys fluent software. 

RESEARCH METHOD 

Materials and Tools 

The materials used in this research were wet sago 

starch or commonly referred to as wet sago flour with 
31% (wb) initial water content, particle diameter 2.36 

mm, 550 kg/m3 density, and 2.1 kJ/kg C specific heat. 

The vertical and u-bend pipes used on PCRD machine 

were constructed from stainless steel with a 0.1016 m 
(4 inches) diameter. The vertical pipe (upriser) was 

connected to the u-bend and vertical pipe (downcomer) 

 

  
Figure 1. Schematic depiction of PCRD machine 
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continuously through two curvatures with 0.30 m (r = 15 

cm) diameter, with u-bend pipe angle of 15. The 

schematic picture of PCRD machine is described in Figure 

1 (Jading et al., 2016; Jading et al., 2018). In this 
research, three variations of vertical pipe length were 

used, namely 5.8 m; 6.8 m; and 7.8 m (upriser, u-bend, 

and downcomer). To measure the temperature and speed 
of the drying air in the vertical and u-bend pipes, a digital 

thermometer with type-K thermocouple (4 channel  TM 
946 LUTRON-Taiwan) and an air flow meter (flexible 

thermo-anemometer KW06-562 KRISBOW-Indonesia) 
were used. Meanwhile, the software used for simulation 

was ansys fluent (Ansys, Inc. 2014-USA) free software for 

student which consists of ansys design modeler, ICEM, 
and fluent. To perform the vertical and u-bend pipe’s 

geometry, an Autodesk AUTOCAD version 2016 
(Autodesk, Inc. 2015-USA) free software for student 

installed in a laptop with Core i3-4030u, 1.9 GHz Intel 

CPU, 4GB memory, and 500GB hard disk. 
  

Research Procedures 

This research was conducted in two stages. First, the 

measuring and observation of temperature and speed of 
drying air in the vertical and u-bend pipes of the PCRD 

machine. The next stage was simulation the temperature 

and speed of drying air in the vertical and u-bend pipes 
of the PCRD machine using ansys fluent. The drying air 

temperature and speed measurement was performed on 
6 point (T1-T6) inside the vertical and u-bend pipes of the 

PCRD machine. The temperature measurement was 

conducted using a digital thermometer with a type-K 

thermocouple. The air speed was measured using an air 

flow meter. The points for measurement of temperature, 

drying air speed, geometric shape, and vertical and u-
bend pipes mesh of the PCRD machine can be seen in 

Figure 2. 
The variable value of drying air temperature (Tu1), 

drying air speed (vu), and vertical pipes’s length (upriser 

and downcomer) of the recirculation pipe (Lpv), are as 
presented in Table 1. The simulation of drying air 

temperature distribution and speed inside the vertical 
and u-bend pipes of the PCRD was performed using 

ansys fluent software version 15. Whereas the formation 

of vertical and u-bend pipes’ geometry uses AUTOCAD 
Version 2016 software. The procedure of simulation 

process applied in this research can be seen in Figure 3.  
One of the most important stages in the simulation 

using ansys fluent is determining the boundary 
conditions. The boundary conditions include inlet, outlet, 

wall, and other variables, and inputting information or 

data into the determined boundaries (Fluent, 2013b; 
Tuakia, 2008). In this research, boundary conditions 

have been determined based on the characteristics of 
drying air flow inside the pipe. So, the inlet velocity was 

chosen as inlet, pressure outlet as outlet, and the 

stainless steel vertical and u-bend pipes as wall. The 
inlet value used is temperature, drying air speed, and 

the vertical pipe length of the PCRD machine. The inlet 
value used can be seen in Table 1. 

Fluids physical characteristics value (drying air) and 
materials used in this research are secondary data 

obtained from Singh and Heldman, (2009). The values 

can be seen in Table 2. 

 
 
Figure 2. Vertical and u-bend pipes: a) geometric form and temperature observation points (T1-T6), and b) mesh 
form and ansys fluent results 
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Figure 3. Procedure of drying air temperature and speed using Autocad version 2016 and ansys fluent version 15 

Start 

Creating circulation pipes geometry (vertical and u-bend) on PCRD machine using 
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Validation between Simulation and Observation 
Temperature  

To determine the accuracy level of simulation results, 
validation is performed based on the methods used by 

Yani et al. (2007) and Anisum et al. (2016). The validation 

is performed by comparing between simulation output 
(predicted value) with observation by calculating the error 

value. In this research, the error value between 
simulation result and observation is calculated using 

Equation 1. 

 

e=
Tu-sim-Tu-obsv

Tu-sim
×100    (1) 

 

in which e is the discrepancy (error) between simulation 

result and observation or measurement (%), Tu-sim is the 

drying air temperature in simulation (C), and Tu-obsv is the 

temperature of drying air as the result of PCRD machine 

measurement (C). Then, a statistics analysis is 

performed using a paired samples t-test with SPSS 23 
(IBM Corporation 2015-USA) free software for student, to 

determine the comparison between the average output 

values of simulation and observation, with an assumption 

that the variance of both samples are similar. 

RESULTS AND DISCUSSION  

Distribution of Drying Air Temperature and Speed 
Based on Tu1 Variation 

The simulation results of drying air temperature 

distribution and speed based on drying air temperature 
variation (Tu1) inside the vertical and u-bend pipes of the 

PCRD machine can be seen in Figure 6. The Tu1 variations 

are 75 C, 100 C, and 125 C, with drying air speed (vu) 

and vertical pipe length (upriser-u-bend-downcomer) and 

u-bend or (Lpv) as constant, that was, 28 m/s and 7.8 m. 
Figure 4 shows the contour and the graphic of output 

drying air temperature and speed based on Tu1 75 C 

variation. The simulation result showed that the 

temperature was evenly distributed in the vertical and 

u-bend pipes, but experiences a reduction from 75 C to 

73 C (inlet to outlet). The drying air speed inside the 

vertical and u-bend pipes at the inlet to outlet is around 

0 – 8.383 m/s. Results of CFD simulation using ansys 
fluent software version 13 performed by (Bhattarai et 

al., 2014) based on drying air variation show that the 

drying air temperature along the vertical pipe of the PCD 
machine experiences a reduction. In this study, the 

temperature value along the vertical and u-bend pipes 

of PCRD machine were: T1 (0 m) 75 C; T2 (2.25 m) 74,1 

C; T3 (4,5 m) 73,8 C; T4 (5,1 m) 73,5 C; T5 (5,7 m) 

73,2 C; and T6 (7,8 m) 72,9 C. It indicated that there 

was reduction along the vertical and u-bend pipes just 
like the one researched by Bhattarai et al. (2014).  

Figure 5 and Figure 6 showed the output contour and 
graphic of drying air temperature and speed based on 

Tu1 variation of 100 C and 125 C. The simulation results 

showed a similar distribution pattern Tu1 variation of 75 

C, in which the temperature was evenly distributed 

along the vertical and u-bend pipes with temperature 

reduction values between 100–93 C, and 125–122 C. 

The drying air speed value based on Tu1 variation of 100 

C and 125 C was similar with the Tu1 variation value of 

75 C, that was, 0-8.383 m/s (from inlet to outlet). The 

temperature value along the vertical and u-bend pipes 

based on Tu1 variation of 100 C and 125 C also 

experience a reduction, namely T1 (0 m) 100 C and 125 

C; T2 (2.25 m) 99.8 C and 124 C; T3 (4.5 m) 99.7 C 

and 123.4  C; T4 (5.1 m) 99.3 C and 123 C; T5 (5.7 

m) 98.9 C and 122.9 C; and T6 (7.8 m) 98 C and 122.5 

C. It showed that drying air temperature variation (Tu1)  

Table 1. Inlet variables for ansys fluent simulation 
 

Inlet variables Variation value Constant variable value 

Drying air temperature, Tu1 (C) 75, 100, 125 vu 28 m/s, and Lpv 7.8 m 

Drying air speed, vu (m/s) 15, 28, 31 Tu1 100 C and Lpv 7.8 m 

Vertical pipe height, Lpv (m) 5.8, 6.8, 7.8 Tu1 100 C and vu 28 m/s 

 
Table 2. Fluids physical characteristics value (air) and materials used in ansys fluent simulation 
 

Fluids 
Density,  

(kg/m3) 
Heat type, 
cp (j/kgK) 

Viscosity, µ 
(kg/m.s) 

Heat Conductivity, K 
(W/mK) 

Sound speed, 
M (m/s) 

Mach Count 

Temperature 75 
C 

0.982 1048.5 2.0594×10-5 0.0289 374 1.1 

Temperature 
100 C 

0.916 1022.0 2.1673×10-5 0.0307 387 1.1 

Temperature 
125 C 

0.848 1026.0 2.2948×10-5 0.0325 400 1.2 

Material 
Density,  
(kg/m3) 

Heat type, 
cp (j/kgK) 

Electric 
Conductivity 

(1/ohm) 

Heat Conductivity, K 
(W/mK) 

- 
 
- 

Stainless steel 8030 50.48  8,330,000 16.27 - - 
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Figure 4. Drying air temperature and speed distribution with Tu1 variation of 75 C : a) temperature contour, and b) speed 

contour 
 

 

 
Figure 5. Drying air temperature and speed distribution with Tu1 variation of 100 C: a) temperature contour, and b) speed 

contour 
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was evenly distributed along the vertical and u-bend pipes 
(7.8 m), but experience a reduction at the end or outlet 

of pipe (Bhattarai et al., 2014).  

Drying Air Temperature and Speed Distribution 
Based on vu Variation 

Figure 7 and Figure 8 described drying air temperature 
and speed distribution inside the vertical and u-bend pipes 

as long as 7.8 m in the PCRD machine. The varied input 
variable is the drying air speed (vu) 15 m/s and 31 m/s 

with Tu1 constant, at  100 C. Figure 8 and Figure 9 

indicated that drying air temperature and speed was 

evenly distributed along the vertical and u-bend pipes. 
However, the temperature value between inlet and outlet 

was decreasing from 100 C to 96 C and from 100 C to 

98 C. Drying air speed between inlet and outlet was 

around 0–4.668 m/s and 0–9.381 m/s. It showed that 

drying air speed influences the temperature value at the 
end (outlet) of the vertical and u-bend pipes, but the 

distribution was still even. The bigger the value of air 
speed, the bigger the value of temperature at the end of 

the pipe or outlet (Bhattarai et al., 2014). The 

temperature measurement on the vertical and u-bend 
pipes based on vu variation of 15 m/s and 31 m/s also 

experience a reduction from inlet to outlet, namely T1 (0 

m) 100 C; T2 (2.25 m) 99 C; T3 (4.5 m) 98.7  C; T4 (5.1 

m) 98.4 C; T5 (5.7 m) 98.1 C; and T6 (7.8 m) 98 C. 

Drying Air Temperature and Speed Based on Lpv 

Variation  

Figure 9 and Figure 10 described the drying air 

temperature and speed distribution inside the vertical 

and u-bend pipes of the PCRD machine based on the 
vertical pipe (upriser-ubend-downcomer) lengths (Lpv) 

5.8 m and 6.8 m. Drying air temperature and speed was 

constant, that is, Tu1 100 C and vu 28 m/s. Simulation 

results showed that the temperature in the pipe was 

evenly distributed with a reduction in temperature value 

from inlet to outlet from 100 C  to 99 C and from 100 

C to 98 C. The speed of drying air was between 0-

8.505 m/s and 0–8.321 m/s. This shows that vertical and 
u-bend pipes’ length variation does not influence 

temperature distribution along the pipes, except at the 
end of pipe (outlet), in which the temperature 

decreases. The observation result temperature values 

along the 5.8 m and 6.8 m vertical and u-bend pipes at 
the PCRD were similar. The values were: T1 (0 m) 100 

C, T2 (1.75 m) 99.9 C, T3 (3.5 m) 99.7 C, T4 (4.1 m) 

99.4 C, T5 (4.7 m) 98.9 C, and T6 (5.8 m) 98.3 C.  

Tu1, vu, and Lpv showed that drying air temperature 

inside the pipes from the beginning (inlet) end to 
finishing (outlet) end was evenly distributed. However, 

the drying air temperature value experiences reduction.  

 
Figure 6. Drying air temperature and speed distribution with Tu1 variation of 125 C: a) temperature contour, b) speed 

contour 
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Figure 7. Drying air temperature and speed distribution with vu variation of 15 m/s: a) temperature contour, and b) speed 
contour  
 

 
Figure 8. Drying air temperature and speed distribution with vu variation of 31 m/s: a) temperature contour, and b) speed 
contour  
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Figure 9. Drying air temperature and speed distribution with Lpv variation of 5.8 m: a) temperature contour, and b) speed 
contour 
 

 
 
Figure 10. Drying air temperature and speed distribution with Lpv variation of 6.8 m: a) temperature contour, and b) speed 
contour  
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The reduction of drying air temperature value did not 

influence the temperature value needed to reduce the 

water content of wet sago starch from 31% (wb) to 9% 
(wb) (Jading et al., 2018). This showed that the final 

water content of sago starch produced from the vertical 
and u-bend pipes design has fulfilled the required final 

water content set by Indonesia National Standard (SNI) 

for dry sago starch, that is, 13% (wb) (Badan Standar 
Nasional (BSN), 2008). 

Validation  

Figure 11 described validation. The error value 

produced was as follows: for Tu1 75 C was 1.21–2.88 %; 

Tu1 100 C was 0.20–2.04 %; and Tu1 125 C was 0,81–

2,04 %. It was quite small, that is, less than 5%. Statistics 

analysis using paired samples t-test with Tu1 75, 100, and 
125 °C showed that there was no significant difference 

between the results of simulation and observation along 
the vertical and u-bend pipes. Because the probability 

value obtained was greater than  0.05. The probability 

value obtained by Tu1 75, 100, and 125 °C variations are, 

consecutively, 0.09; 0.064; and 0.09. 
 

The comparison between simulation output and 

observation measurement (error) for drying air speeds 

of 15 m/s and 31 m/s, with a constant drying air 

temperature of 100 C, can be seen in Figure 12. The 

temperature error value of each drying air speed of vu 

15 m/s and vu 31 m/s was similar, that is, 1.01–2.04%. 

Just like in the temperature variations, the drying air 
speed variation error was also quite small, that is, less 

than 5%. The probability value or sig (2-tailed) for vu 15 
m/s and 31 m/s is 0.08. T-test showed that there was 

no significant difference between the result of simulation 
and observation. 

The error value between the result of simulation and 

observation, based on the variation of vertical pipe 
lengths (Lpv) of 5.8 m and 6.8 m can be seen in Figure 

13. The error value of each of vertical pipe length 
variation was also quite small, that is, less than 5%. The 

error value of temperature for Lpv 5.8 m variation is 0.1–

1.7%, and Lpv 6.8 m variation is 0.15–1.8%. The 
probability value or sig (2-tailed) of the pipe’s length was 

0.064. This showed that there was no significant 
difference between the results of simulation and 

observation. 

 
 
Figure 11. Comparison between drying air temperature as the result of simulation and observation: a) Tu1 75 C, b) Tu1 

100 C, and c) Tu1 125 C 
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The validation results showed the error value of 

temperature produced by each variation of Tu1, vu and Lpv 

treatments was quite small, that is, less than 5%. 

Similarly, statistics analysis indicated that the probability 

value was greater than  0.05 value. So, there was no 

significant difference between the ansys fluent simulation 
output and the observation results, although the results 

of observation temperature measurement along the 
measurement points in the vertical and u-bend pipes of 

the PCRD machine experiences reduction. This was 

caused by a diabatic process along the vertical and u-
bend pipes by the outer surface of the pipes is not 

equipped with isolator. Moreover, the temperature 

reduction inside the pipes was also caused by the wet 
sago starch used throughout the testing process. This 

phenomenon in consistent with the results of a research 
by (Jading et al., 2018; Skuratovsky et al., 2005). 

 
Figure 12. Comparison between drying air speed as the result of simulation and observation: a) vu 15 m/s, and b) vu 31 m/s 
 

 
 

 

 

 
 

Figure 13. Comparison between drying air temperature as the result of simulation and observation: a) Lpv 5.8 m, and b) Lpv 6.8 m 
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CONCLUSION 

Simulation showed that the heat along the vertical and 

u-bend pipes was well distributed, in which the error value 
between simulation and observation temperatures was 

quite small (0.1-2.04%). Average paired t-test sample 
test showed that the ansys fluent simulation and 

observation were not significantly different. It indicated 

that the simulation results were close with the observation 
values or the real condition at the PCRD machine. The 

drying air temperature and speed distribution along the 
vertical and u-bend pipes coulb reduce water content of 

wet sago starch from 31% (wb) to 9% (wb). Therefore, 

the vertical and u-bend pipes design on the PCRD 
machine was feasible to be used in the drying process of 

wet sago starch. 
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