
Engineering Software Requirements Vol. 1, No. 1, 2018 28

A Comparison Tool For Quality Software

Requirement Specification

Novi Trisman Hadi

Informatics Dept, Institut Teknologi Surabaya

Surabaya, Indonesia

Novi.trisman@itsu.ac.id

Ari Firmanto

Sekolah Tinggi Ilmu Komputer Bali Indonesia

Denpasar, Indonesia

firmanto@lecturer.pelitaindonesia.ac.id

Abstract— Most of the problems in software development

come from a bad requirement specification. Failure on the

requirements gathering phase is usually caused by unclear,

ambiguous, inconsistent or incomplete requirements [1]. Thus,

many researchers work on how to improve the quality of

requirement specification. Even this is not the largest task of a

project, it is really important to provide a flawless requirement

specification

I. INTRODUCTION

Unified Modeling Language is a modeling language
standard that has been known and used by software engineers
for many years. It plays a main role within software
development life cycle of a project [1,2]. The language allows
designers to models the interaction between system and users,
interaction between objects, behavior of objects, and
implementation and logical structure of the system. These
models represent different views and concerns of a single
system. Throughout the life cycle, the models may change and
evolve due to growing knowledge on the problem domain,
lack of knowledge, skills, experience of designers, and
constantly changing requirements. Differences between
models may also be the result of change-propagation on
models of the same software within versions, feature
dissimilarities due to specific characteristics of different
domains, and other aspects regarding project team attributes,
such as experience and skills [3].

This study proposes a method to measure similarity
between two different UML (Unified Modeling Language)
sequence diagrams. The method was adopted from Al-Khiaty
& Ahmed [4]. The result allows further reuse of software

artifacts during the software development process. Thus, it
enables software engineers to develop project not from
scratch, but from an existing project of a similar design. The
goal would be to improve efficiency within a software project.

This approach measured the structural and semantic
similarity between two sequence diagrams. Principally, it
recognizes semantic associations between attributes and
structural similarity of the two diagrams [5, 6]. The similarity
scores of the two diagrams indicate their propinquity. The
semantic similarity draws on three sequence diagram
attributes, i.e. class name, method invocation name, and
message. The structural similarity draws on two sequence
diagram attributes, i.e. neighborhood class name, fan-in, and
fan-out. For both similarity measurements, this study
employed natural language processing to pre-process each
label of attributes.

There are two types of model similarity measurements [4].
The first one is exact similarity measurement. It aims at
strictly measuring the exact similarity between two models or
between two sub-sets or sub-components. It is not lenient to
any alternatives that may exist between them. This type of
similarity measurement is suitable for testing the compliance
between artifacts or for detecting conflicts in sub-versioning
system. The second one is inexact similarity measurement. It
aims at loosely measuring the general similarity between two
models, two sub-sets, or sub-components. It is lenient to any
alternatives or minor variations that may exist between them.
This type of similarity measurement is suitable for model
retrieving in a recommendation system.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Center for Scientific Publication

https://core.ac.uk/display/290095655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Engineering Software Requirements Vol. 1, No. 1, 2018 29

There are a number of previous researches that focused on
developing methods to measure the similarity of two UML
models. Dijkman et al. proposes three metrics for measuring
similarity of process models, i.e. node, structural, and
behavioral similarities [7]. A work by Al-Batran, Schatz, and
Hummel improves normalization techniques in order to cover
not only semantic structure but also behavior clones. They
extends the model to its equivalent unique normal forms
before being measured for similarity [8]. A work by Al-Khiaty
& Ahmed introduces retrieving similar model from repository
based on a query model. It focuses on UML class diagram [4]
and uses a greedy algorithm for measuring the model
similarity. Störrle introduces a model clone detection
algorithm for UML models [9]. He suggests a formal
definition of model clones and uses heuristic algorithm based
indexing function to measure similarity between two models.
His works only focus on four types of UML models, i.e. use
case diagram, class diagram, activity diagram, and state
diagram.

Our proposed solution is an adoption of the work
introduced by Al-Khiaty and Ahmed [4]. They presented a
framework for retrieving similar class diagram from a project
repository by measuring their similarity. The similarity
measurement comprises of various different elements, which
includes lexical name, attributes, operations, internal,
neighborhood similarity, and a combination of them. The
similarity measurement utilizes a deterministic algorithm to
discover the best matching element-pairs of the two class
diagrams. Since their focus was the UML class diagram, the
word ‘model’ henceforth refers to a UML class diagram,
which represents the structural view of a software system.
Additionally, the words “element” and “class” are used
exchangeable in their approach.

Our work focuses on another behavioral view of UML
diagrams, i.e. sequence diagrams. The paper is organized as
follows. The second section introduces the approach we used
to measure the semantic and structural similarity between two
sequence diagrams. Then, the third section provides the test

cases that we used in this research. The fourth section presents
the results and analysis on the experimentation that we have
conducted. The last section presents the conclusion and further
work.

II. SIMILARITY MEASUREMENT METHOD

This section elaborates the adopted method that was
modified for measuring two sequence diagrams. The method
comprises of three different steps, i.e. diagram preprocessing,
sequence diagram’s attributes similarity measurement, and
model similarity measurements.

A. Diagram Preprocessing

In order to measure the similarity of two sequence diagrams,
each diagrams need to be preprocessed. Figure 1 illustrates a
sequence diagram that implement a use case “Request Lift” on
a Lift System. The diagram preprocessing extracts metadata of
each sequence diagram into a sequence diagram metamodel.
For this purpose, we introduce a metadata model for a
sequence diagram as shown in Figure 2. The metamodel are
formed as a set of components. The components can be
grouped as two sets, i.e. objects and timelines. An object is an
instance of a class. It has an object name and class name. The
object has a set of methods and attributes. A method has a
method name and modifier, i.e. private, public, or protected.
An attribute has an attribute name and modifier.

A timeline is a sequence of method invocations, i.e. it is
formed as a series of object-method pairs. The timeline
contains an object callee and the method being invoked. The
order of pairs reflects the sequence the pairs would be
executed. A pair represents any event when an object calls a
private method or a public method of another class. A timeline
may have a set of other timelines being invoked as a
consequence of the respected timeline invocation.

For extracting the metadata, an open source UML modeling
tool was used. The tool converts each graphical model into an
XMI-format diagram file. The XMI tags are parsed to
produces the required sequence diagram metadata. Given M1,
the extracted metadata may contain the following:

Objects
- Object_0 {cn: Visitor}

- Object_1{on:LiftRequestButton, cn:RequestButton,
mi_0{mn:press}}

- Object2 {cn:LiftSystem, mi_1{mn:visitUp, an_0{an:i},
mod: public}, mi_2 {mn:allocateCage, mod:private}}

- Object3 {cn:LiftCage, mi_3 {mn:visit,
an_1{an:i},mod:public}}

Timelines:

 (M1)

Figure 1. A Sequence Diagrams that Implement Use Case

‘Request Lift’

Object

-cn: String

-on: String

Method

-mn: String

-modifier: Modifer

Attribute

-an: String

-modifier: Modifer

Timeline

calls

callee

in
v
o

k
e

d

Figure 2. Metadata of Sequence Diagram

Engineering Software Requirements Vol. 1, No. 1, 2018 30

- Object_0 → mi_0

Object_1 → mi_1

Object_2 → mi_2

Object_2 → mi_3

In M1, there are four objects, Object_0, Object_1, Object_2,
and Object_3. An object in sequence diagram may contain a
class name, an object name, and one or more methods). The
label on represents the name of an object. For example,
Object_1 is labeled with object name “LiftRequestButton”.
The label cn represents the class name of an object. For
example, Object_1 is an instantiation of LiftRequest class;
therefore, its cn is LiftRequeest. Object_1 has one method
invocation, i.e. mi_1. A method may contain a method name, a
returned data type, one or more arguments, and access
modifier. The label mn represents the name of a method. For
example, mi_1 is labeled with method name “press”. An
argument may contain an argument name and argument data
type. The label an represents the name of an argument. For
example, an_1 is labeled with argument name “i”. The label
ad represents the data type of an argument.

Aside from the object, M1 contains four timelines, where
timeline 1 is an event where Object_1 invokes mi_0. It also
has a child timeline, i.e. Object_1 invokes mi_1. It means that
in the body of method LiftRequestButton.press(), there is a
line that calls LiftSystem.visitUp(). Thus, the second timeline
has two children, i.e. Object_2 invokes mi_2 and Object_2
invokes mi_3. Given the above description, we can also
extract the following metadata from M2 as shown in Figure 3.
The extracted metadata can be described as follow.

Objects
- Object_0 {cn: Visitor}

- Object_1{on:LiftRequestButton, cn:RequestButton,
mi_0{mn:press}}

- Object2 {cn:LiftSystem, mi_1{mn:visitUp, an_0{an:i},
mod: public}, mi_2 {mn:allocateCage, mod:private}}

- Object3 {cn:LiftCage, mi_3 {mn:visit,
an_1{an:i},mod:public}}

Timelines:

- Object_0 → mi_0

Object_1 → mi_1

Object_2 → mi_2

Object_2 → mi_3

B. Similarity Measurements

Not like Khiaty and Ahmed [4], the similarity measurement of
sequence diagram utilizes two types of similarity information,
i.e. structural and message-sequence information.
Nevertheless, in the proposed method, the semantic similarity
resided in both types of information is also explored. The
message sequence information is used to measure the
sequences (behaviors) of the two sequence diagrams. The

semantic information is used to measure the labeling similarity
between components of the two sequence diagrams. The
structural information is used to measure the similarity
between components of objects that needed to realize the
intended use case. The object components include object and
class name, attributes, and methods. Each types of similarity
will be aggregated to measure the degree of similarity between
the two sequence diagrams. Since each type may have
different impact on the total similarity score, we introduced
weights. The semantic similarity between two sequence
diagrams is calculated by using a word similarity thesaurus on
labels of objects, attributes, and methods or messages.

As already mentioned, there are two set of similarity
metrics, i.e. structural similarity (strucSim) and message
sequence similarity (msSim). The strucSim measures the
semantic similarity between classes resides in the two
sequence diagrams (i.e. d1 and d2) as specified in equation (1).

𝑠𝑡𝑟𝑢𝑐𝑆𝑖𝑚(𝑑1, 𝑑2) = 𝑀𝑎𝑥 (∑ 𝑜𝑆𝑖𝑚(𝑜𝑖 , 𝑜𝑗)𝑀𝑎𝑥(|𝑂1|,|𝑂2|)
𝑖,𝑗=1) /

(|𝑂1| + |𝑂2|) (1)

where O1 and O2 is the list of object resides in sequence
diagram d1 and d2, respectively. Object similarity of two
objects, oSim(o1,o2), is the semantic similarity between two
objects as specified in (2), where o1 ϵ O1 and o2 ϵ O2.

𝑜𝑆𝑖𝑚(𝑜1, 𝑜2) = 𝑤𝑐 × 𝑐𝑆𝑖𝑚(𝑜1, 𝑜2) + 𝑤𝑚 ×
𝑚𝑆𝑖𝑚(𝑜1, 𝑜2) (2)

where 𝑤𝑐 𝑎𝑛𝑑 𝑤𝑚 are arbitrary weights assigned to class
similarity (cSim) and method similarity (mSim), respectively.
The class similarity measures the semantic similarity of object
names and or class name between the two objects, 𝑜1, 𝑜2. It
collects similarity of tokens from the tokenized strings of the
two objects and calculate cosine similarity values for the two
objects [10].

𝑐𝑆𝑖𝑚(𝑜1, 𝑜2) =

𝑀𝑎𝑥 (∑ 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚(𝑐𝑝𝑖 , 𝑐𝑝𝑗)𝑀𝑎𝑥(|𝐶𝑃1|,|𝐶𝑃2|)
𝑖,𝑗=1) /

(|𝐶𝑃1| + |𝐶𝑃2|) (3)

where 𝐶𝑃1 𝑎𝑛𝑑 𝐶𝑃2 are tokenized strings of class and object
names of 𝑜1 and 𝑜2, respectively. The method similarity
measures the semantic similarity of methods’ properties
between the two objects, 𝑜1, 𝑜2., by calculating their cosine
similarity. The properties include method’s name and
arguments.

𝑚𝑆𝑖𝑚(𝑜1, 𝑜2) = 𝑀𝑎𝑥 (∑ 𝑑𝑚𝑆𝑖𝑚(𝑚𝑖 , 𝑚𝑗)𝑀𝑎𝑥(|𝑀1|,|𝑀2|)
𝑖,𝑗=1) /

(|𝑀1| + |𝑀2|) (4)

where 𝑀1 𝑎𝑛𝑑 𝑀2 are a set of methods of 𝑜1 and 𝑜2,
respectively. The detail method similarity (dmSim) measures
the semantic similarity between two methods, 𝑚1, 𝑚2. The
detail method similarity of two methods, dmSim(m1,m2), is the
semantic similarity between two methods as specified in (6),
where m1 ϵ M1 and m2 ϵ M2.

𝑑𝑚𝑆𝑖𝑚(𝑚1, 𝑚2) = 𝑤𝑚𝑛 × 𝑊𝑢𝑃(𝑚𝑛1, 𝑚𝑛2) +
 𝑤𝑚𝑎 × 𝑎𝑆𝑖𝑚(𝑚1, 𝑚2) (5)

Engineering Software Requirements Vol. 1, No. 1, 2018 31

where 𝑤𝑚𝑛 𝑎𝑛𝑑 𝑤𝑚𝑎 are arbitrary weights assigned to name
similarity of method 𝑚𝑎 and 𝑚2, and attribute similarity
(aSim) of method’s attribute properties, respectively. The
attribute similarity measures the semantic similarity of
attributes’ properties between the two objects, 𝑜1, 𝑜2, by
calculating their cosine similarity. The properties include
name and type.

𝑎𝑆𝑖𝑚(𝑜1, 𝑜2) =

𝑀𝑎𝑥 (∑ 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚(𝑎𝑖 , 𝑎𝑗)𝑀𝑎𝑥(|𝐴1|,|𝐴2|)
𝑖,𝑗=1) /(|𝐴1| +

|𝐴2|) (6)

where 𝐴1 𝑎𝑛𝑑 𝐴2 are a set of attributes of 𝑜1 and 𝑜2,
respectively. The similarity value of two method names is

calculated as mean value of the semantic path length of the
two names (WuP) [10]. If the mean value is equal to zero, than
it is calculated as a difference between two sequences of
string.

While strucSim measures structural similarity between classes
in the two diagrams, The msSim measures the similarity
between two sequences of messages passed between classes
within the two diagrams. Equation 7 shows how to calculate
the msgSim.

𝑚𝑠𝑆𝑖𝑚(𝑑1, 𝑑2) =

𝑀𝑎𝑥 (∑ 𝑚𝑠𝑔𝑆𝑖𝑚(𝑚𝑠𝑖 , 𝑚𝑠𝑗)
𝑀𝑎𝑥(|𝑀𝑆1|,|𝑀𝑆2|)
𝑖,𝑗=1) /

(|𝑀𝑆1| + |𝑀𝑆2|) (7)

where MS1 and MS2 is the sequence of messages invoked
during the realization of use case as stated in sequence
diagram d1 and d2, respectively. Similarity of two messages,
msgSim(ms1,ms2), is the semantic similarity between two
messages as specified in (8), where ms1 ϵ MS1 and ms2 ϵ MS2.

𝑚𝑠𝑔𝑆𝑖𝑚(𝑚𝑠1, 𝑚𝑠2) = 𝑤𝑚𝑠1 × 𝑐𝑆𝑖𝑚(𝑠𝑟𝑐1, 𝑠𝑟𝑐2) +
 𝑤𝑚𝑠2 × 𝑑𝑚𝑆𝑖𝑚(𝑚1, 𝑚2) + 𝑤𝑚𝑠3 ×
𝑐𝑆𝑖𝑚(𝑑𝑠𝑡1, 𝑑𝑠𝑡2) (8)

where 𝑤𝑚𝑠1 , 𝑤𝑚𝑠2, 𝑎𝑛𝑑 𝑤𝑚𝑠3 are arbitrary weight assigned to
source class name (srci), method name (mi), and destination
class name (dst2) similarities, respectively.

Given the similarity values of object properties and message
sequences of the two diagrams, we can measure the similarity
of the two diagrams by agregating both similarity values.
Equation 9 shows the similarity values of two diagrams.

𝑠𝑒𝑞𝑆𝑖𝑚(𝑑1, 𝑑2) = 𝑤𝑜𝑠 × 𝑠𝑡𝑟𝑢𝑐𝑆𝑖𝑚(𝑑1, 𝑑2) +
 𝑤𝑚𝑠 × 𝑚𝑠𝑆𝑖𝑚(𝑑1, 𝑑2) (9)

Figure 3 Sequence Diagram of ‘Withdraw Money’ (SD1)

of Project-1.

Figure 4 Sequence Diagram of ‘Withdraw Money’ (SD2)

of Project-2.

Figure 5 Sequence Diagram of ‘Withdraw Money’ (SD3)

of Project-3.

Engineering Software Requirements Vol. 1, No. 1, 2018 32

where 𝑤𝑜𝑠 , 𝑎𝑛𝑑 𝑤𝑚𝑠 are arbitrary weight assigned to
structural similarity and message sequence similarities,
respectively.

III. EMPERICAL RESULT AND ANALYSIS

The main objective of this study is to compare and then
select the best set of metrics, i.e. lexical information, internal
information, and neighborhood information, to measure the
similarity between two sequence diagrams. In order to provide
initial indication on the possibility to use the set of similarity
measurement metrics, we have conducted experimentation.

The experimentation compares two sequence diagrams of
different projects. We measured the similarity of sequence
diagram pairs from the same application domain, i.e.
automatic teller machine. There are three sequence diagrams.
All of them model the sequence of object interactions that
realize a ‘withdraw money’ use case of Automatic Teller
Machine (ATM) system. Figure 3-5 shows the description of
three different sequence diagrams that implement ‘withdraw
money’ use case.

We measured the similarity of each pair of sequence
diagrams, i.e. SD1-SD2, SD1-SD3, and SD2-SD3. Using
equation 7 and by setting the result of measuring the
similarities between the three diagrams can be calculated.
Table 1 shows that SD1- SD2 pair has the highest similarity
values. Both SD1 and SD2 have relatively the same similarity
values to SD3. The weight of 𝑤𝑜𝑠 𝑎𝑛𝑑 𝑤𝑚𝑠 are set
experimentally to 0.8 and 0.2, respectively

The similarity values of SD1-SD2 are calculated based on
the object property and message sequence similarities of SD1
and SD2. Table 2 shows the object similarity between lifeline
in SD1 and SD2. SD1 has four lifelines, i.e. Customer (o1_1),
ATM (o1_2), Account (o1_3), and CheckInAccount (o1_4).
SD2 also four lifelines, Client (o2_1), ATM (o2_2), Account
(o2_3), and CheckInAccount (o2_4). The weight of
𝑤𝑐 𝑎𝑛𝑑 𝑤𝑚 are set experimentally to 0.2 and 0.8,
respectively. Although the class names of objects in both
diagrams are lexically the same, we can see that not all best
object pairs are considered 100% similar. This is because the
structures of the lexically similar objects are actually different.
By using equation 1, the structure similarity of SD1-SD2 pair
is 0.851. The yellow cells are the best set of object-pair values
given SD1 and SD2 diagrams. We can see that object classes
CheckInAccount, which are both in SD1 and SD2, are the
most similar objects. Additionally, we can observe that the
proposed equation is able to get the best-matched object-pairs.
The proposed method also indicates that the more unbalance
the number of objects resided in each diagram, the less similar

Table 1. Diagram Similarity Between the Three Sequence

Diagrams
Diagram-pairs StrucSim SeqSim Avg

SD1-SD2 0.851 0.81 0.84
SD1-SD3 0.494 0.65 0.53
SD2-SD3 0.561 0.65 0.58

Table 2. Object Similarity between SD1 and SD2
oSim o2_1 o2_2 o2_3 o2_4

o1_1 0.75 0.06 0.04 0.07
o1_2 0.11 0.92 0.30 0.21
o1_3 0.04 0.26 0.73 0.61
o1_4 0.09 0.21 0.51 1.00

Table 5. Message Sequence Similarity between SD1 and SD2

 C
lie

n
t-

e
n

te
rK

in
d

-A
TM

A
TM

-r
e

q
u

es
tA

m
o

u
n

t-

A
TM

C
lie

n
t-

e
n

te
rA

m
o

u
n

t-
A

T
M

A
TM

-p
ro

ce
ss

Tr
an

sa
ct

io
n

-

A
cc

o
u

n
t

A
cc

o
u

n
t-

w
it

h
d

ra
w

Fr
o

m
C

h
ec

kI
n

A
cc

o
u

n
t-

C
h

ec
kI

n
A

cc
o

u
n

t

C
h

ec
kI

n
A

cc
o

u
n

t-

w
it

h
d

ra
w

Su
cc

es
sf

u
ll-

A
cc

o
u

n
t

A
cc

o
u

n
t-

p
ro

ce
ss

Su
cc

es
sf

u
l-

A
T

M

A
TM

-d
is

p
en

se
C

as
h

-A
TM

A
TM

-r
e

q
u

es
tT

a
ke

C
as

e-
C

lie
n

t

C
lie

n
t-

ta
ke

C
as

h
-A

T
M

A
TM

-r
e

q
u

es
C

o
n

ti
n

u
at

io
n

-

C
lie

n
t

C
lie

n
t-

te
rm

in
at

e
-A

T
M

A
TM

-p
ri

n
tR

ec
ei

p
t-

A
T

M

Customer-enterOption-ATM 0.854 0.436 0.789 0.349 0.303

ATM-requestAmount-ATM 0.481 0.960 0.414 0.682 0.409

Customer-enterAmount-ATM 0.834 0.515 0.909 0.268 0.285

ATM-
processTransaction(amount)-
Account

0.295 0.512 0.360 0.923 0.508 0.373

Account-
withdrawFromCheckInAccount-
CheckInAccount

 0.530 0.920 0.511 0.472

Account-success-ATM 0.418 0.517 0.737 0.316

ATM-dispenseCash-ATM 0.257 0.416 0.960 0.744

ATM-requestTakeCase-ATM 0.480 0.654 0.799 0.619 0.639

Customer-takeCash-ATM 0.442 0.909 0.317 0.632 0.470

ATM-requesContinuation-ATM 0.269 0.476 0.799 0.442 0.669

Customer-terminate-ATM 0.632 0.125 0.909 0.350

Table 3. Object Similarity between SD1 and SD3
oSim o3_1 o3_2 o3_3

o1_1 0.70 0.06 0.03
o1_2 0.07 0.82 0.28
o1_3 0.04 0.25 0.45
o1_4 0.08 0.19 0.43

 Table 4. Object Similarity between SD2 and SD3
oSim o3_1 o3_2 o3_3

o2_1 0.95 0.06 0.03

o2_2 0.07 0.74 0.27
o2_3 0.04 0.38 0.55
o2_4 0.08 0.19 0.44

Engineering Software Requirements Vol. 1, No. 1, 2018 33

they become

Beside from calculating the structural similarity between
SD1 and SD2, we have to calculate the message sequences in
SD1 and SD2. Table 5 and 6 shows the result of calculating
the message similarity between messages in SD1 and SD
using equation 8. The weight of 𝑤𝑚𝑠1 , 𝑤𝑚𝑠2 , 𝑎𝑛𝑑 𝑤𝑚𝑠3 are set
experimentally to 0.3, 0.5, and 0.2, respectively. Then using
equation 9, we can calculate the message sequence similarity
between SD1 and SD2 diagram, i.e. 0.74. Given this result, we
can observed that the proposed equation able to get the best
matched message-pairs. The proposed method also suggests
that the more unbalance the number of messages resided in
each diagram, the lesser similar they become.

The proposed sequence diagram similarity measurements
shows that for most similar message sequences tends to shape
a straight diagonal line. The lesser similar diagram pairs tend
to shape curving lines. This pattern may be used to visually
identify the dissimilarity between two sequence diagrams.

IV. CONCLUSION

This paper introduces an method for measuring similarity
between UML sequence diagrams. The algorithm basically
adopts the greedy approach in finding the best set of element-
pairs. The proposed method considers two elements of the
UML sequence diagram, i.e. object structure and message
sequence. The paper also shows an early experimentation of
the proposed method on a set of sequence diagrams of the
same problem. The initial investigation indicates that the the
structural similarity and message sequence similarity could be
a good parameter in assessing the UML sequence diagram
similarity. The best set of message sequence pairs of two

sequence diagrams may be used as an indicator to visually
identify the existance of insimilarity between the two
sequence diagrams.

Further study should be carried out in order to answer
several research questions. First, what would be the best
weight settings the ensure the accuracy of similarity
measurements. Second, how well the proposed method
measure the similarity between UML sequence diagrams that
realizes different use case from across domains. Finally, how
well the performance of greedy approach used in this study
compared with other approaches, such as simulated annealing
and genetic algorithms. The performance includes
computation complexity and finding the best set of pairs.

Acknowledgment

The research is in cooperation between Institut Teknologi
Sepuluh Nopember and STIKOM Pelita Indonesia.

References

[1] D. Siahaan and F. Irhamni, “Advanced methodology for requirements

engineering technique solution (AMRETS),” Int. J. Adv. Comput.

Technol., vol. 4, no. 5, pp. 75–80, 2012.

[2] D. Siahaan, Analisa Kebutuhan dalam Rekayasa Perangkat Lunak, 1st

ed. Yogyakarta: Penerbit Andi, 2012.

[3] M. Chechik, S. Nejati, and M. Sabetzadeh, “A relationship-based

approach to model integration,” Innov. Syst. Softw. Eng., 2011.

[4] M. A.-R. M. Al-Khiaty and M. Ahmed, “Similarity assessment of UML

class diagrams using a greedy algorithm,” in Computer Science and

Engineering …, 2014.

[5] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige,

Table 6. Message Sequence Similarity between SD2 and SD3

 U
se

r-
w

it
h

d
ra

w
R

eq
u

es
t-

A
T

M

A
TM

-b
al

an
ce

R
e

q
u

es
t-

D
at

ab
as

e

D
at

ab
as

e-
b

al
an

ce
-A

TM

A
TM

-a
m

o
u

n
tR

e
q

u
es

t-
U

se
r

U
se

r-
e

n
te

rA
m

o
u

n
t-

A
TM

A
TM

-d
e

b
it

A
cc

o
u

n
t-

D
at

ab
as

e

D
at

ab
as

e-
d

eb
it

R
es

p
o

n
se

-

A
TM

A
TM

-d
is

p
en

se
C

as
h

-A
TM

U
se

r-
ta

ke
C

as
h

-A
TM

A
TM

-e
je

ct
C

ar
d

-A
T

M

U
se

r-
ta

ke
C

ar
d

-A
T

M

A
TM

-t
h

an
ky

o
u

R
es

p
o

n
se

-

U
se

r

Client-enterKind-ATM 0.67 0.35 0.38 0.19 0.88

ATM-requestAmount-ATM 0.54 0.70 0.46 0.74 0.48

Client-enterAmount-ATM 0.60 0.31 0.40 0.35 0.93

ATM-processTransaction-
Account

0.34 0.59 0.33 0.51 0.35 0.58

Account-
withdrawFromCheckInAccount-
CheckInAccount

 0.34 0.28 0.44 0.43

CheckInAccount-
withdrawSuccessfull-Account

 0.31 0.23 0.36 0.44 0.22

Account-processSuccessful-
ATM

 0.39 0.55 0.39 0.43

ATM-dispenseCash-ATM 0.41 0.87 0.52 0.58 0.39

ATM-requestTakeCase-Client 0.52 0.46 0.52 0.40 0.48

Client-takeCash-ATM 0.44 0.93 0.44 0.81 0.27

ATM-requesContinuation-
Client

 0.44 0.34 0.44 0.39 0.66

Client-terminate-ATM 0.33 0.66 0.23

ATM-printReceipt-ATM 0.66 0.51 0.56

Engineering Software Requirements Vol. 1, No. 1, 2018 34

“Different models for model matching: An analysis of approaches to

support model differencing,” in 2009 ICSE Workshop on Comparison

and Versioning of Software Models, 2009.

[6] K. Müller and B. Rumpe, “A Model-Based Approach to Impact

Analysis Using Model Differencing,” Proc. 8th Int. Work. Softw. Qual.

Maintainab., 2014.

[7] R. Dijkman, M. Dumas, B. Van Dongen, K. Reina, and J. Mendling,

“Similarity of business process models : Metrics and evaluation,” Inf.

Syst., 2011.

[8] B. Al-Batran, B. Schaetz, and B. Hummel, “Semantic Clone Detection

for Model-Based Development of Embedded Systems,” in MODEL

DRIVEN ENGINEERING LANGUAGES AND SYSTEMS, 2011.

[9] H. Störrle, “Towards clone detection in UML domain models,” Softw.

Syst. Model., 2013.

[10] D. Siahaan and S. Christina, Using semantic similarity for identifying

relevant page numbers for indexed term of textual book, vol. 516. 2015.

