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Safety Verification of Uncertain Max-Plus-Linear
Systems

Aditya Putra Pratama, Subchan and Dieky Adzkiya

Abstract—In this work, we discussed the verification of au-
tonomous uncertain Max-Plus-Linear (uncertain MPL) systems
with respect to safety property by using the reachability analysis
approach. More precisely, given an uncertain MPL system, a
nonempty set of initial conditions, a time horizon and an unsafe
set, we want to determine whether the state can reach the unsafe
set within the given time horizon. If the unsafe set is reachable,
then the system is not safe. Otherwise, the system is safe. Our
approach uses the piecewise affine representation of MPL systems
to compute the reachable sets exactly.

Index Terms—Max-Plus algebra, uncertain systems, transition
systems, safety verification.

I. INTRODUCTION

MAX-PLUS-LINEAR (MPL) systems are a class of dis-
crete event systems that represents only synchroniza-

tion and time delay phenomena. The synchronization in MPL
systems are modeled thanks to maximization between several
events. The algebraic structures of MPL systems are a max-
plus algebra. The max-plus algebra is an idempotent semiring,
an algebraic structure with two binary operations, i.e. sum
(⊕) and product (⊗) are defined as maximum and addition,
respectively. MPL systems are used for the analysis and
scheduling of manufacturing systems, infrastructure networks
such as telecommunication and railway systems, etc.[1], [2].

MPL systems are deterministic systems since the entries of
the matrix system are assumed to be fixed. If the entries of the
matrix systems are not fixed and assumed to be an arbitrary
value within an interval, the systems are called uncertain MPL
systems. This condition is consistent with the assumption of
the models that the entries of the matrix systems are subject
to noise and also disturbances.

Safety analysis of a system is one of the most important
aspects. It is used to guarantee that the system is in a safe
condition. Formally, given a system, a nonempty set of initial
conditions, a time horizon and an unsafe set, we want to
determine whether the state can reach the unsafe set within
the given time horizon. If the unsafe set is reachable, then
the system is not safe. Otherwise, the system is safe. One of
the methods used to analyze the safety of a system is using
reachability analysis. In the method of reachability analysis,
we can use forward reachability or backward reachability. The
reachability analysis on the MPL systems have been discussed
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in [3], [4]. Then the theory of reachability analysis is extended
to the uncertain MPL system in [5].

In this work, we verify the safety of uncertain MPL system
using reachability analysis inspired by the procedure in [4]. In
Section II, the literature review of DBM, max-plus algebra, un-
certain MPL systems and reachability analysis of the uncertain
MPL systems was presented. Furthermore, in Section III we
discussed about the procedure for verifying the uncertain MPL
system. At last, in the conclusion, the safety level condition
of uncertain MPL systems was concluded.

II. MODELS AND PRELIMINARIES

A. Difference-Bound Matrices

The Difference Bound Matrices (DBM) are characterized by
the difference of two variables. More formally, the definition
of DBM is given as follows:

Definition 2.1: A DBM is a square matrix that represents the
intersection of finitely many sets in Rn defined by x j−xi ./i, j
ai, j where ./i, j∈ {<,≤} represents strictness of the sign and
ai, j ∈ R∪{+∞} is the upper bound, for i, j ∈ {0, . . . ,n}.

The value of special variable x0 is always equal to 0. This
variable is used to represent sets defined by single variable,
such as xi ./i,i ai,i.

A DBM can be represented as a matrix, where the entries
are a pair of the upper bound and strictness of the sign. We
use the column-row rules, i.e. the element of the matrix at row
i and column j is associated with x j−1− xi−1. Suppose that
the element of the matrix at row i and column j is denoted by
(ai, j,./i, j). This means x j−1−xi−1 ./i, j ai, j. We define ./i,i=≤
and ai,i = 0, which means xi− xi ≤ 0 for all i. For example,
we have DBM D =

{
x ∈ R2 :−1≤ x1 ≤ 5,0≤ x2 ≤ 2

}
in R2.

The matrix representation of DBM D is

D =

(0,≤) (5,≤) (2,≤)
(1,≤) (0,≤) (+∞,<)
(0,≤) (+∞,<) (0,≤)

 .
There are some operations defined on DBM such as inter-

section, complement, canonical form, orthogonal projection,
image w.r.t. an affine dynamic and also the inverse image w.r.t.
an affine dynamic. The interested reader is referred to [6] for
the details.

B. Max-Plus Algebra

Max-plus algebra is an idempotent semiring with two binary
operations, i.e. maximum and addition. Let Rε := R∪{−∞}
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be a set equipped with two binary operations: sum (⊕) and
product (⊗), defined by:

a⊕b := max{a,b} ,
a⊗b := a+b.

for all a,b ∈ Rε . Note that the neutral element w.r.t. max-
imization and addition operators in Rε is ε := −∞ and 0,
respectively. Furthermore, the operation ⊕ and ⊗ on matrices
is defined as follows:

[A⊕B]i, j = [A]i, j⊕ [B]i, j ,

[a⊗A]i, j = a⊗ [A]i, j ,

[C⊗D]i, j =
r⊕

k=1

[C]i,k⊗ [D]k, j ,

for all matrices A,B ∈ Rm×n
ε , C ∈ Rm×r

ε , dan D ∈ Rr×n
ε .

Notice that the rule is analogue to the conventional algebra,
where we replace the usual addition by maximization and the
usual multiplication by the usual addition. The notation [A]i, j
represents an element in the matrix A on the i-th row and
j-th column. Generally, the precedence of operations in max-
plus algebra domain is similar to those in conventional algebra
domain: ⊗ has higher precedence than ⊕.

C. Uncertain Max-Plus-Linear Systems

In this subsection, we describe the autonomous MPL sys-
tems and uncertain MPL systems. First, we describe the
autonomous MPL systems, which is defined as follows:

x(k) = A⊗x(k−1) , (1)

where A ∈ Rm×n
ε is the deterministic state matrix, variable k

represents the occurrence index, vector x(k) is the time of k-
th occurrence of all events. Furthermore, xi(k) represents the
time of k-th occurrence of i-th event.

If some entries in the state matrix in (1) depends on k and
the entries belong to an interval, then the MPL systems are
called uncertain MPL systems. The uncertain MPL systems
are defined by

x(k) = A(k)⊗x(k−1) , (2)

where A(k) ∈
[
A,A

]
is a non-deterministic matrix with A and

A respectively represent upper bound and lower bound matrix.
The interpretation of state vector x in uncertain MPL systems
is the same with MPL systems.

D. Piecewise Affine Representation

An MPL system (1) can be represented as a Piecewise
Affine (PWA) system [7]. PWA systems are characterized by
a collection of regions and the dynamics within each region is
affine, i.e. linear plus a constant term. Each region is character-
ized by finite coefficient g = (g1, . . . ,gn) ∈ {1, . . . ,n}n, where
n is dimension of the MPL system [3]. The region associated
with finite coefficient g is

Rg =
k⋂

i=1

n⋂
j=1, j 6=gi

{
x ∈ Rn : x j− xgi ≤ [A]i,gi

− [A]i, j

}
,

and the corresponding affine dynamics is xi(k+1) = xgi(k)+
[A]i,gi

for i = 1, . . . ,n.
In [5], the uncertain MPL systems (2) can be partitioned

according to the upper bound state matrix A. In this case,
each region is also characterized by finite coefficient g =
(g1, . . . ,gn) ∈ {1, . . . ,n}n. The region corresponding to finite
coefficient g is

Ru
g =

k⋂
i=1

n⋂
j=1, j 6=gi

{
x ∈ Rn : x j− xgi ≤

[
A
]

i,gi
−
[
A
]

i, j

}
. (3)

and the associated dynamics is
n⋂

i=1

{
xi (k)− xgi (k−1)≤

[
A
]

i,gi

}
∩

n⋂
i=1

n⋂
j=1

{
x j (k−1)− xi (k)≤− [A]i, j

}
. (4)

Notice that the dynamics can be expressed as a DBM over
state variables at time k and k−1.

E. Reachability of Uncertain MPL Systems

Reachability analysis of uncertain MPL systems has been
investigated in [5]. There are two approaches for the reacha-
bility analysis of the uMPL system, i.e. forward reachability
and backward reachability.

Let X ⊆ Rn be a DBM and A ∈
[
A,A

]
be an interval max-

plus matrix. The procedure to compute the image of X w.r.t.
A has been discussed in [5]. The procedure is as follows: 1)
generate PWA system from the upper bound of the interval
max-plus matrix A; 2) for each finite coefficient g such that
X∩Ru

g is not empty, first compute the cross product (X∩Ru
g)×

Rn, then compute the intersection of the cross product and the
corresponding affine dynamics, finally compute the projection
of the intersection w.r.t. state variables at the next event step.

Given an uncertain MPL system, a nonempty set of initial
conditions X0, the set of states reachable at the k-th event steps
can be recursively calculated as follows

Xk =
{

Ak⊗x : Ak ∈
[
A,A

]
,x ∈ Xk−1

}
, (5)

where Xk is the states reachable at event step k. The procedure
to compute the image of the states reachable at event step k−1
w.r.t. the interval max-plus matrix has been described in the
preceding paragraph.

Let X ⊆ Rn be a DBM and A ∈
[
A,A

]
be an interval max-

plus matrix. The procedure to compute the inverse image of X
w.r.t. A has been discussed in [5]. The procedure is as follows:
1) generate PWA system from the upper bound of the interval
max-plus matrix A; 2) compute the cross product Rn×X ; 3)
for each finite coefficient g such that the intersection of the
corresponding affine dynamics and Rn×X is not empty, first
compute the intersection of the corresponding affine dynamics
and Rn×X and then compute the projection of the intersection
w.r.t. the state variables at the previous event step.

Given an uncertain MPL system, a nonempty set of final
conditions X0, the set of states reachable at the k-th event
steps can be recursively calculated as follows

X−k =
{

x ∈ Rn : ∃Ak ∈
[
A,A

]
⇒ Ak⊗x ∈ X−k+1

}
(6)
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where X−k is the states that are able to reach the set of final
conditions in k event steps. The procedure to determine the
inverse image of X−k+1 has been described in the previous
paragraph.

III. SAFETY VERIFICATION OF UNCERTAIN MPL SYSTEMS

In this section, we discuss the safety verification of uncertain
MPL systems. The procedure for the safety verification of
uncertain MPL systems is similar to the procedure for for
MPL systems [4]. We can use either forward or backward
reachability.

If we use forward reachability, the procedure is as follows.
Given an uncertain MPL system, a nonempty set of initial
conditions X0, a time horizon N and an unsafe set Us. Initially,
we compute the states reachable at event step 1, . . . ,N denoted
by X1, . . . ,XN . If there exists a 0≤ k≤N such that Xk∩Us 6= /0,
then the uMPL system is unsafe. Otherwise, the system is safe.

If we use backward reachability, the procedure is as follows.
Given an uncertain MPL system, a nonempty set of initial
conditions X0, a time horizon N and an unsafe set Us. Initially,
we define the unsafe set as the set of final conditions X0. Then,
we compute X−1, . . . ,X−N . If there exists −N ≤ k ≤ 0 such
that Xk ∩X0 6= /0, then the system is not safe. Otherwise, the
system is safe.

IV. A NUMERICAL EXAMPLE

Consider the uncertain MPL system (2) where

A(k) ∈
[
[1,2] 5

3 [3,5]

]
,

the set of initial conditions is defined as X0 ={
x ∈ R2 :−1≤ x1 ≤ 5,0≤ x2 ≤ 2

}
, the time horizon is

N = 2 and the unsafe set Us =
{

x ∈ R2 : 3≤ x1− x2 ≤ 4
}

.
We use forward-reachability approach to verify whether the
above uMPL system is safe.

1. The dynamics of uncertain MPL system above can be
determined using (3) and (4) as follows

x(k) =



[
[(1⊗ x1)⊕ (5⊗ x2) , 2⊗ x1]
[(3⊗ x1)⊕ (3⊗ x2) , 3⊗ x1]

]
if x(k−1) ∈ Ru

(1,1)[
[(1⊗ x1)⊕ (5⊗ x2) , 5⊗ x2]
[(3⊗ x1)⊕ (3⊗ x2) , 3⊗ x1]

]
if x(k−1) ∈ Ru

(2,1)[
[(1⊗ x1)⊕ (5⊗ x2) , 5⊗ x2]
[(3⊗ x1)⊕ (3⊗ x2) , 5⊗ x2]

]
if x(k−1) ∈ Ru

(2,2)

where:

Ru
(1,1) =

{
x ∈ R2 : x1− x2 ≥ 3

}
Ru
(2,1) =

{
x ∈ R2 : 2≤ x1− x2 ≤ 3

}
Ru
(2,2) =

{
x ∈ R2 : x1− x2 ≤ 2

}
.

2. Represent each region and the corresponding dynamics
from step 1 into a DBM. The variables of the DBM
consist of the state variables at the current time step, state
variables at the next time step and the special variable x0.
For region Ru

(1,1), we transform the corresponding dynam-
ics into a DBM, as follows:

x′1 ≤ 2+ x1 −→ x′1− x1 ≤ 2

x′2 ≤ 3+ x1 −→ x′2− x1 ≤ 3
x′1 ≥ {1+ x1⊕5+ x2} −→ x1− x′1 ≤−1 and

x2− x′1 ≤−5
x′2 ≥ {3+ x1⊕3+ x2} −→ x1− x′2 ≤−3 and

x2− x′2 ≤−3.

It follows that the DBM generated by the affine dy-
namics is {[x0,x1,x2,x′1,x

′
2]

T : x′1 − x1 ≤ 2,x1 − x′1 ≤
−1,x2 − x′1 ≤ −5,x′2 − x1 ≤ 3,x1 − x′2 ≤ −3,x2 − x′2 ≤
−3}. Finally, we compute the intersection between the
DBM generated by the affine dynamics and Ru

(1,1) ×
R2 =

{
[x0,x1,x2,x′1,x

′
2]

T : x1− x2 ≥ 3
}

, which produces
the following DBM

D(1,1) =


(0,≤) (+∞,<) (+∞,<) (+∞,<) (+∞,<)
(+∞,<) (0,≤) (−3,≤) (2,≤) (3,≤)
(+∞,<) (+∞,<) (0,≤) (+∞,<) (+∞,<)
(+∞,<) (−1,≤) (−5,≤) (0,≤) (+∞,<)
(+∞,<) (−3,≤) (−3,≤) (+∞,<) (0,≤)


Using the same steps for region Ru

(2,1) and Ru
(2,2), we

obtain:

D(2,1) =


(0,≤) (+∞,<) (+∞,<) (+∞,<) (+∞,<)
(+∞,<) (0,≤) (−2,≤) (+∞,<) (3,≤)
(+∞,<) (3,≤) (0,≤) (5,≤) (+∞,<)
(+∞,<) (−1,≤) (−5,≤) (0,≤) (+∞,<)
(+∞,<) (−3,≤) (−3,≤) (+∞,<) (0,≤)



D(2,2) =


(0,≤) (+∞,<) (+∞,<) (+∞,<) (+∞,<)
(+∞,<) (0,≤) (+∞,<) (+∞,<) (+∞,<)
(+∞,<) (2,≤) (0,≤) (5,≤) (5,≤)
(+∞,<) (−1,≤) (−5,≤) (0,≤) (+∞,<)
(+∞,<) (−3,≤) (−3,≤) (+∞,<) (0,≤)


3. Using forward reachability approach, we need to calculate

the image of the set X0 at the 2nd steps using the
procedure described in the previous section.
For region Ru

(1,1). First, the set X0 is represented in DBM
form is as follows

−1≤ x1 ≤ 5−→−1≤ x1− x0 ≤ 5
⇔ x0− x1 ≤ 1 and x1− x0 ≤ 5

0≤ x2 ≤ 2−→ 0≤ x2− x0 ≤ 2
⇔ x0− x2 ≤ 0 and x2− x0 ≤ 2

so that:

DX0 =

(0,≤) (5,≤) (2,≤)
(1,≤) (0,≤) (+∞,<)
(0,≤) (+∞,<) (0,≤)

 .
Next, we compute the cross product of the DX0 and R2:

DR2×X0 =


(0,≤) (5,≤) (2,≤) (+∞,<) (+∞,<)
(1,≤) (0,≤) (+∞,<) (+∞,<) (+∞,<)
(0,≤) (+∞,<) (0,≤) (+∞,<) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (0,≤) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (+∞,<) (0,≤)
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Then we compute the intersection between the result of
the cross product and the DBM D(1,1), which is denoted
by DR2×X0

(1,1) , as follows
(0,≤) (5,≤) (2,≤) (+∞,<) (+∞,<)
(1,≤) (0,≤) (−3,≤) (2,≤) (3,≤)
(0,≤) (+∞,<) (0,≤) (+∞,<) (+∞,<)
(+∞,<) (−1,≤) (−5,≤) (0,≤) (+∞,<)
(+∞,<) (−3,≤) (−3,≤) (+∞,<) (0,≤)

 .
The canonical form of the DBM DR2×X0

(1,1) , denoted by

c f
(

DR2×X0
(1,1)

)
, is

(0,≤) (5,≤) (2,≤) (7,≤) (8,≤)
(−3,≤) (0,≤) (−3,≤) (2,≤) (3,≤)
(0,≤) (5,≤) (0,≤) (7,≤) (8,≤)
(−5,≤) (−1,≤) (−5,≤) (0,≤) (2,≤)
(−6,≤) (−3,≤) (−6,≤) (−1,≤) (0,≤)

 .
Therefore, the projection of DBM DR2×X0

(1,1) over variables
{x′1,x′2} is

DX(1,1)
1 =

 (0,≤) (7,≤) (8,≤)
(−5,≤) (0,≤) (2,≤)
(−6,≤) (−1,≤) (0,≤)

 .
The image of X0 w.r.t. the dynamics over region Ru

(1,1) is
given by

X (1,1)
1 = {5≤ x1 ≤ 7, 6≤ x2 ≤ 8,−2≤ x1− x2 ≤−1} .

Using the same approach, the image of X0 w.r.t. the
dynamics over region Ru

(2,1) and Ru
(2,2) are respectively

X (2,1)
1 = {5≤ x1 ≤ 7, 5≤ x2 ≤ 8,−1≤ x1− x2 ≤ 0} ,
X (2,2)

1 = {5≤ x1 ≤ 7, 3≤ x2 ≤ 7,0≤ x1− x2 ≤ 2} .

The procedure to compute the sets reachable in the second
step is as follows.
The image of X (1,1)

1 w.r.t. the dynamics over region Ru
(1,1),

Ru
(2,1) and Ru

(2,2) are respectively:

X (1,1)
2 = /0,

X (2,1)
2 = /0,

X (2,2)
2 = {11≤ x1 ≤ 13,9≤ x2 ≤ 13,0≤ x1− x2 ≤ 2} .

The image of X (2,1)
1 w.r.t. the dynamics over region Ru

(1,1),
Ru
(2,1) and Ru

(2,2) are respectively:

X (1,1)
2 = /0,

X (2,1)
2 = /0,

X (2,2)
2 = {10≤ x1 ≤ 13, 8≤ x2 ≤ 13,0≤ x1− x2 ≤ 2} .

The image of X (2,2)
1 w.r.t. the dynamics over region Ru

(1,1),
Ru
(2,1) and Ru

(2,2) are respectively:

X (1,1)
2 = /0,

X (2,1)
2 = {8≤ x1 ≤ 10, 8≤ x2 ≤ 10,x1− x2 = 0} ,

X (2,2)
2 = {8≤ x1 ≤ 12, 8≤ x2 ≤ 12,0≤ x1− x2 ≤ 2} .

4. From step 3, we can see that the intersection between
Us and the union of X0,X1 and X2 is empty. Thus, the
uncertain MPL system considered in this example is safe
w.r.t. the given unsafe set Us and the given time horizon
N = 2.

V. CONCLUSION

An analysis of the safety of the uncertain MPL systems
can be performed using forward reachability or backward
reachability. This is used to investigate whether the system
at the time horizon can reach the unsafe set or not. If the
system in the specified time horizon can reach the unsafe set,
then the uncertain MPL system is not safe. Otherwise, the
uncertain MPL system is safe.
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