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A Genetic Algorithm with Best Combination
Operator for the Traveling Salesman Problem
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Abstract—In this research, we propose a genetic algorithm with
best combination operator (BCx,yO) for the traveling salesman
problem. The idea of best combination operator is to find
the best combination of some disjoint sub-solutions (also the
reverse of sub-solutions) from some known solutions. We use
BC2,1O together with a genetic algorithm. The proposed genetic
algorithm uses the swap mutation operator and elitism replace-
ment with filtration for faster computational time. We compare
the performances of GA (genetic algorithm without BC2,1O),
IABC2,1O (iterative approach of BC2,1O), and GABC2,1O (ge-
netic algorithm with BC2,1O). We have tested GA, IABC2,1O,
and GABC2,1O three times and pick the best solution on 50
problems from TSPLIB. From those 50 problems, the average of
the accuracy from GA, IABC2,1O, and GABC2,1O are 65.12%,
94.21%, and 99.82% respectively.

Index Terms—Traveling salesman problem, genetic algorithm,
operator, best combination.

I. INTRODUCTION

THE traveling salesman problem is a famous combinatorial
problem which has been studied by many researchers.

TSP has many applications in vehicle routing problem [1],
transport routes optimization [2], air logistics [3], chemical
shipping [4], bioinformatics [5], and many others.

There are a lot of methods that had been developed to solve
the TSP. The easiest one is the nearest neighbor algorithm
(always choose the next closest node). The nearest neighbor
algorithm usually produce a sub-optimal route (except in trivial
cases). Dynamic programming algorithm can find an optimal
solution for small TSP. The idea is that in an optimal solution,
the path through the remaining subset must be optimal [6], [7].
Lin-Kernighan heuristic algorithm makes a great improvement
in the quality of solutions provided by another heuristic
methods [6], [8]. Heuristic algorithms are often used because
they are able to provide solutions in a faster time [9].

Population-based algorithms, such as genetic algorithms
[10], are also widely used today. These algorithms can obtain
a better solution than heuristic algorithms. Usually these
algorithms use certain operators to get new solutions from
existing solutions.

In this research, we propose a genetic algorithm with best
combination operator (BCx,yO) for the traveling salesman
problem.
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II. THE TRAVELING SALESMAN PROBLEM

Suppose there are some nodes that are labeled by 1,2, . . . ,n
and di, j represents the distance from node i to node j. In
general, the distance can be obtained from traveling time,
traveling distance, traveling cost, Euclidean distance, or other
relations. The objective of the traveling salesman problem
(TSP) is to find the shortest route that visits each node exactly
ones and returns to the origin city.

A solution of a TSP can be written as a permuta-
tion p1 p2 . . . pn of the elements 1,2, . . . ,n. The distance of
p1 p2 . . . pn is calculated by

n

∑
i=1

dpi,pi+1 (1)

where pn+1 = p1 and dpi,pi+1 is the distance from node pi to
node pi+1.

In this research, we focus on symmetric TSP, i.e. the
distance from node i to node j is equal to the distance from
node j to node i.

A. TSPLIB

Gerhard Reinelt published the TSPLIB in 1991 [11]. It is a
collection of benchmark instances of varying difficulty, which
has been used by many research groups for comparing results.

For a TSP with EUC 2D type, di j is calculated by

di j =

⌊√
(xi− x j)2 +(yi− y j)2 +0.5

⌋
(2)

where bxc is floor function.
The remaining types of TSP in TSPLIB and how to calculate

the distances, can be read in [11], [9].

III. BEST COMBINATION OPERATOR

The idea of best combination operator is to find the best
combination of some disjoint sub-solutions (also the reverse
of sub-solutions) from some known solutions. We introduce
an abbreviation BCx,yO, where x ≥ 2 and y ≥ 1, to represent
the best combination of x disjoint sub-solutions from y known
solutions. It is the general form of best combination operator.
The simplest one is BC2,1O.

A. Example of BC2,1O

Suppose that there is a TSP consisting of n = 6 nodes, and
the node coordinates are shown in TABLE I and Fig. 1.
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TABLE I: The coordinates of the nodes

i xi yi
1 0 10
2 10 10
3 20 10
4 20 0
5 10 0
6 0 0

Fig. 1: The coordinates of the nodes

From those coordinates, we can use (2) to obtain the
following distance matrix

D =


0 10 20 22 14 10

10 0 10 14 10 14
20 10 0 10 14 22
22 14 10 0 10 20
14 10 14 10 0 10
10 14 22 20 10 0

 (3)

Fig. 2: Example of TSP solution

Suppose that 123654 is a random solution for the TSP.
Using (1), the distance of this solution is equal to 84. First,
we take all sub-solutions of length 2, 3, or 4 from 123654
as shown in Table II. The reverse of those sub-solutions are
shown in Table III.

TABLE II: Sub-solutions of 123654

Sub-solution of
length 2 length 3 length 4

12 123 1236
23 236 2365
36 365 3654
65 654 6541
54 541 5412
41 412 4123

To obtain different solutions from the initial solution, we
search pairs of two disjoint sub-solutions from Table II and
Table III.

TABLE III: The reverse of sub-solutions of 123654

The reverse of sub-solution of
length 2 length 3 length 4

21 321 6321
32 632 5632
63 563 4563
56 456 1456
45 145 2145
14 214 3214

TABLE IV: Pairs of two disjoint sub-solutions and the new
solutions

Sub-solution from New SolutionTable II Table III
12 4563 124563
23 1456 231456
36 2145 362145
65 3214 653214
54 6321 546321
41 5632 415632

123 456 123456
236 145 236145
365 214 365214
654 321 654321
541 632 541632
412 563 412563
1236 45 123645
2365 14 236514
3654 21 365421
6541 32 654132
5412 63 541263
4123 56 412356

Since we focus on symmetric TSP, there is some equal new
solutions in Table IV, i.e. 124563 is equal to 365421, 123456
is equal to 654321, and so on. If we remove unnecessary solu-
tions, and then count the distance of the remaining solutions,
we will get results as shown in Table V. Because the best
solution is 123456, we pick it as a new solution. Its distance
is equal to 60.

This is an example of BC2,1O. We can use BCx,yO for two
or more solutions using similar steps as before.

B. BC2,1O Simplification

We can make a simplification for BC2,1O. The purpose of
the simplification is to reduce the computational time. We
write again the solutions listed in Table V. It is easy to see
the difference between the initial solution and new solutions in
Table VI. The second and third column have same solutions,
we just change the starting node and the direction.

The first six new solutions are obtained by reversing a sub-
solutions of length 2. The remaining three new solutions are
obtained by reversing sub-solutions of length 3.

From Table IV, V, and VI, it can be seen that we will get
all of the different new solutions by reversing a sub-solutions
of length 2 and 3. If we have a TSP with n nodes, then we
need to reverse sub-solutions of length 2, 3, . . . , and n/2.

Suppose that there is a solution p1 p2 . . . pn and its distance
is x. If we reverse the order of pi pi+1 . . . p j−1 p j, in p1 p2 . . . pn,
we will get
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TABLE V: The new solutions

Solution Distance
124563 86
231456 86
362145 92
653214 86
546321 86
415632 92
123456 60
236145 84
365214 84

Fig. 3: New solution obtained by BC2,1O

p1 p2 . . . pi−1 p j p j−1 . . . pi+1 pi p j+1 . . . pn

and its distance is equal to

x−dpi−1,pi −dp j ,p j+1 +dpi−1,p j +dpi,p j+1 (4)

Using this simplification, the objective of BC2,1O is to find
the best i and j so that the value obtained by (4) is as small as
possible. The pseudocode of BC2,1O can be seen in Algorithm
1.

C. Iterative Approach of BC2,1O

After we get a new solution from BC2,1O, we can apply
the same process again to the new solution. That operator can
be used iteratively until there is no further improvement. The
initial solution can be any random permutation. Usually, we
will get different final solutions if the initial solutions are not
equal.

D. Proposed Genetic Algorithm

It is not enough to solve the traveling salesman problem
only using BC2,1O or the iterative approach, so we use the
help of a genetic algorithm. The proposed genetic algorithm
uses the swap mutation operator and elitism replacement with
filtration for faster computational time.

Suppose that there is a solution p1 p2 . . . pn and random dif-
ferent values i and j, where i, j ∈ {1,2, . . . ,n}. The swap mu-
tation is done by swapping the position of pi and p j, i.e. if the
initial solution is p1 p2 . . . pi−1 pi pi+1 . . . p j−1 p j p j+1 . . . pn, then
the new solution is p1 p2 . . . pi−1 p j pi+1 . . . p j−1 pi p j+1 . . . pn. In
this research, every solution in the population is mutated to
produce a new solution.

To get N solutions for a new population, where N is the size
of the population, we use elitism replacement with filtration.
First, we put together N solutions from the initial population

TABLE VI: The initial and new solutions

Initial Solution New Solution

123654

124563 213654
231456 132654
362145 126354
653214 123564
546321 123645
415632 423651
123456 123456
236145 523614
365214 143652

input : n (the number of nodes),
p1 p2 . . . pn (a solution)

output: p1 p2 . . . pn (new solution)

1 for i← 2 to n/2 do
2 for j← 1 to n do
3 a← ( j−1+n) mod n ;
4 b← j ;
5 c← ( j+ i−1) mod n ;
6 d← ( j+ i) mod n ;
7 e← pa ;
8 f ← pb ;
9 g← pc ;

10 h← pd ;
11 si, j←−de, f −dg,h +de,g +d f ,h ;
12 end
13 end
14 (i, j)← IndexOfMinimumElement(s) ;
15 q1q2 . . .qn← p1 p2 . . . pn ;
16 for k← 2 to i/2 do
17 a← ( j+ k) mod n ;
18 b← ( j+ i− k−1) mod n ;
19 c← qa ;
20 qa← qb ;
21 qb← c ;
22 end
23 p1 p2 . . . pn← q1q2 . . .qn ;

Algorithm 1: Pseudocode of BC2,1O

and N new solutions obtained by swap mutation. If there
are two identical solutions in the population, we pick one of
them and remove the other one. With these steps, it can be
guaranteed that all solutions are different. Then, we sort them
according to their distance. And then we pick N best solutions
for the new population.

There are two stopping conditions used in this research. The
first one, GA will stop if he has found the optimal solution. We
can use this stopping condition because of the optimal solution
of every problem in TSPLIB is known. The second one, GA
will stop if the maximum computational time is reached. The
maximum computational time used in this research is 100
seconds.

You can access the source code used in this research freely
on https://github.com/mlshahab/gabcotsp.
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input : N (the size of population),
P (initial population),
pi (i-th solution in P),
q (optimum solution)

output: P (new population)

1 p∗← Fittest(P) ;
2 while p∗ 6= q and time < 100 do
3 Q← P ;
4 for i← 1 to N do
5 a ← Mutate(pi) ;
6 Add(Q, a) ;
7 end
8 Sort(Q) ;
9 R (new empty population) ;

10 n← 1 ;
11 Add(R, qn) ;
12 i← 2 ;
13 while n < N do
14 if qi 6= rn then
15 n← n+1 ;
16 Add(R, qn) ;
17 end
18 i← i+1 ;
19 end
20 for i← 1 to N do
21 if CanBeImproved(ri) then
22 ri← BC2,1O(ri) ;
23 end
24 end
25 P← R ;
26 p∗← Fittest(P) ;
27 end
Algorithm 2: Pseudocode of The Genetic Algorithm
with BC2,1O

IV. RESULTS AND DISCUSSIONS

In this research, we use 50 problems from TSPLIB. The
smallest one is burma14 that has 14 nodes and the biggest one
is gr202 that has 202 nodes. We compare the performances of
GA (genetic algorithm without BC2,1O), IABC2,1O (iterative
approach of BC2,1O), and GABC2,1O (genetic algorithm with
BC2,1O). For IABC2,1O, we use 12 . . .n as its initial solution.
For GA and GABC2,1O, the size of population used is 100.

For every problem, we test GA, IABC2,1O, and GABC2,1O
three times and pick the best solution (the solution with small-
est distance). This test is done using the Java programming
language on Netbeans IDE. The computer use an Intel I5
Processor and 4GB RAM.

We show the results of GA, IABC2,1O, and GABC2,1O
in TABLE VII. The first column is the name of the prob-
lem. The second column is the best known distance for the
problem. It is available online on http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/stsp-sol.html. The third, fifth, and seventh
column are the distance obtained by GA, IABC2,1O, and
GABC2,1O respectively. The fourth, sixth, and eighth column

are the accuracy of the distance obtained by GA, IABC2,1O,
and GABC2,1O respectively. The accuracy is calculated by(

1− di−d∗i
d∗i

)
100% (5)

where 1≤ i≤ 50, di is the distance of i-th problem obtained
by GA, IABC2,1O, or GABC2,1O and d∗i is the best known
distance of i-th problem.

From those 50 problems, the average of the accuracy from
GA, IABC2,1O, and GABC2,1O are 65.12%, 94.21%, 99.82%
respectively. We can see that for every problem, the distance
obtained by GABC2,1O is less than or equal to the distances
obtained by GA and IABC2,1O. It can also be seen in the
table, the distances obtained by GABC2,1O are equal to the
best known distances for 37 different problems.

V. CONCLUSIONS AND FUTURE WORKS

In this research, we proposed a genetic algorithm with
BCx,yO for the traveling salesman problem. The idea of
BCx,yO is to find the best combination of x disjoint sub-
solutions (also the reverse of sub-solutions) from y known
solutions.

In this research, we only use BC2,1O. It is the simplest
and the fastest one. It is still challenging to find BCx,yO
simplification for x≥ 3 or y≥ 2. We are sure that better results
will be obtained if we use bigger value of x and y.
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TABLE VII: The results of GA, IABC2,1O, and GABC2,1O

Problem Best Known GA IABC2,1O GABC2,1O
Distance Distance Accuracy Distance Accuracy Distance Accuracy

burma14 3323 3323 100 3461 95.85 3323 100
ulysses16 6859 6859 100 7076 96.84 6859 100

gr17 2085 2090 99.76 2211 93.96 2085 100
gr21 2707 2707 100 2801 96.53 2707 100

ulysses22 7013 7013 100 7163 97.86 7013 100
gr24 1272 1272 100 1278 99.53 1272 100
fri26 937 959 97.65 937 100 937 100

bayg29 1610 1610 100 1686 95.28 1610 100
bays29 2020 2048 98.61 2108 95.64 2020 100

dantzig42 699 766 90.41 699 100 699 100
swiss42 1273 1390 90.81 1410 89.24 1273 100

att48 10628 10937 97.09 11045 96.08 10628 100
gr48 5046 5627 88.49 5278 95.4 5046 100
hk48 11461 12180 93.73 11718 97.76 11461 100
eil51 426 463 91.31 460 92.02 426 100

berlin52 7542 8297 89.99 8492 87.4 7542 100
brazil58 25395 29586 83.5 27397 92.12 25395 100

st70 675 765 86.67 712 94.52 675 100
eil76 538 602 88.1 587 90.89 538 100
pr76 108159 129164 80.58 121232 87.91 108159 100
gr96 55209 71200 71.04 58601 93.86 55209 100
rat99 1211 1503 75.89 1257 96.2 1211 100

kroA100 21282 29754 60.19 22926 92.28 21282 100
kroB100 22141 29938 64.78 24237 90.53 22141 100
kroC100 20749 28149 64.34 22773 90.25 20749 100
kroD100 21294 28303 67.08 23268 90.73 21294 100
kroE100 22068 33621 47.65 23401 93.96 22068 100

rd100 7910 9859 75.36 8607 91.19 7910 100
eil101 629 762 78.86 699 88.87 629 100
lin105 14379 21847 48.06 14962 95.95 14379 100
pr107 44303 77314 25.49 47706 92.32 44303 100
gr120 6942 9713 60.08 7475 92.32 6942 100
pr124 59030 106506 19.57 63234 92.88 59030 100

bier127 118282 156361 67.81 124191 95 119566 98.91
ch130 6110 8514 60.65 6524 93.22 6139 99.53
pr136 96772 151803 43.13 102668 93.91 97324 99.43
gr137 69853 111523 40.35 71883 97.09 69853 100
pr144 58537 115406 2.85 58812 99.53 58537 100
ch150 6528 9892 48.47 7037 92.2 6554 99.6

kroA150 26524 38934 53.21 28665 91.93 26620 99.64
kroB150 26130 42767 36.33 28289 91.74 26141 99.96

pr152 73682 185734 -52.08 77039 95.44 73826 99.8
u159 42080 66668 41.57 42981 97.86 42080 100
si175 21407 24354 86.23 21570 99.24 21414 99.97

brg180 1950 3840 3.08 1990 97.95 1950 100
rat195 2323 3754 38.4 2397 96.81 2347 98.97
d198 15780 26498 32.08 16692 94.22 15855 99.52

kroA200 29368 51289 25.36 31231 93.66 29826 98.44
kroB200 29437 47128 39.9 31853 91.79 29929 98.33

gr202 40160 58869 53.41 43012 92.9 40555 99.02


