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State Variable Estimation of Nonisothermal
Continuous Stirred Tank Reactor Using Fuzzy

Kalman Filter
Risa Fitria and Didik Khusnul Arif

Abstract—Increasing safety and product quality, reducing
manufacturing cost, minimizing the impact of environment in
fault detection system for Nonisothermal Continuous Stirred
Tank Reactor (CSTR) are the reason why accurate state esti-
mation is needed. Kalman filter is an estimation algorithm of
the stochastic linear dynamical system. Through this work, a
modification of Kalman Filter that combines with fuzzy theory,
namely Fuzzy Kalman Filter (FKF) is presented to estimate the
state variable of Non-Isothermal CSTR. First, we approximate
the nonlinear system of CSTR as piecewise linear functions and
then change the crisp variable into the fuzzy form. The estimation
results are simulated using Matlab. The simulation shows the
comparison results, i.e computational time and accuracy, between
FKF and Ensemble Kalman Filter (EnKF). The final result of
these case shows that FKF is better than EnKF to estimate the
state variable of Nonisothermal CSTR. The error estimation of
FKF is 72.9% smaller for estimation of reactans concentration,
39.9% smaller for tank temperature, 76.47% smaller for cooling
jacket temperature and the computational time of FKF is 76.47%
faster than the computational time of EnKF.

Index Terms—Continuous stirred tank reactor, estimation,
fuzzy Kalman filter.

I. INTRODUCTION

CONTINUOUS Stirred Tank Reactor (CSTR) is one of
the most important tools in chemical manufacturing. In

general, the reaction in the CSTR takes place in short time and
only the stable components that could be observed. So that
the estimation of the state variable in CSTR model is needed.
Kalman filter is an algorithm to estimate the state variable
of the stochastic linear dynamical system. This algorithm
combines the mathematical model with the measurement data
[1]. The Kalman Filter has become a very useful tool to
reduce the effect of Gaussian white noise and fuse together
measurements within a linear system [2]. Several works have
used this filter to nonlinear system, such as the Nonisothermal
CSTR models, so that it is required to modify the Kalman
Filter algorithm. There are many modification of Kalman Filter
algorithm, such as the Ensemble Kalman Filter (EnKF)[3], the
Reduced Rank Square Root Covariance filter [4], the Square
Root Ensemble Kalman Filter [5], Extended Kalman Filter,
Unscented Kalman Filter and others. The modifications of
Kalman Filter have been made to get a more accurate estimate
and the shorter computing time.
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The famous modification of Kalman Filter for nonlinear
system is EnKF, it generates an ensemble value as initial
estimation of state variable and an ensemble measurement data
based on real measurement data [5]. In previous research, the
Reduce Rank of Ensemble Kalman Filter had been applied in
the Nonisothermal CSTR [6], the result is the Reduced Rank
Ensemble Kalman Filter can not be applied in this problem
because the dimension of state variable is too less.

Other modification of Kalman Filter is Fuzzy Kalman Filter
(FKF), that is an estimation method that combines the Fuzzy
set with the Kalman Filtering [7]. At the previous research,
FKF method had been applied to estimate the Longitudinal
Motion of Aircraft [8], the result is the FKF has better
accuracy than conventional Kalman Filter, but the FKF needs
more computational time than Kalman Filter. Other research
also applied FKF to estimate the position of an Autonomous
Underwater Vehicle (AUV) based on dynamical system of
AUV motion. The FKF can be used as a controller of AUV
based on the determined trajectories [9].

In this paper we study the efficiency of Fuzzy Kalman Filter
to estimate the state variable of nonlinear dynamic stochastic
system such as the Nonisothermal CSTR. The estimation
results will be compared with the EnKF method in terms of
error estimation and computational time.

II. METHODS

A. Model of Nonisothermal Continuous Stirred Tank Reactor

Figure 1 is the Nonisothermal CSTR. The mathematical
model of Nonisothermal CSTR by using coolant jacket dynam-
ics, where the following reaction between Sodium Thiosulfate
(Na2S2O3) and Hydrogen Peroxide (H2O2) is : [10]

ĊA =
F
V
(CAin−CA)−2k0e−

E
RT C2

A

Ṫ =
F
V
(Tin−T )+2

(−∆H)R

ρCp
k0e−

E
RT C2

A−
UA

V ρCp
(T −Tj)

Ṫj =
FW

VW
(Tjin−Tj)+

UA
VW ρWCpW

(T −Tj) (1)

where CA is concentration of reactance, k0 is pre-exponential
factor, F is feed flow rate, V is volume of reactor, CAin is input
concentration, Tin is inlet feed temperature, VW is volume of
cooling jacket, Tjin is inlet coolant temperature, FW is inlet
feed flow in cooling jacket, Cp is heat capacity of the reacting
mixture, CpW is heat capacity of coolant, ρ is density of the
reacting mixture, E is energy of activation, R is gas constant,
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Fig. 1. Nonisothermal Continuous Stirred Tank Reactor [11]

U is the overall heat transfer coefficient, and A is area over
which the heat is transferred.

In this paper we estimate the concentration of Sodium Thio-
sulfate, CA, temperature of tank reactor, T , and the temperature
of cooling jacket, Tj, if we can measure the concentration of
reactance, CA, and temperature of tank reactor, T .

B. State Variable of Nonisothermal Continuous Stirred Tank
Reactor

The estimation methods for state variable of Nonisothermal
CSTR are FKF and EnKF. Explanation of each method is in
the section C and D. Before we applied the FKF and EnKF
to estimate the state variable of Non-Isothermal CSTR, we
discretize (1) with respect to time t, by using the Forward
Finite Difference Method.

ẋ∼=
xk+1− xk

∆t

where ẋ =
[
ĊA Ṫ Ṫj

]T , xk =
[
CA T Tj

]T
k and we obtain

a discrete time nonlinear model dynamic system as follows:CA
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or we can rewrite (2) as,

xk+1 = f (xk,uk) (3)

The model of Nonisothermal CSTR is not exactly same with
the real system, there is a noise system that cannot be written
in the model. So that (3) can be written as

xk+1 = f (xk,uk)+wk ; wk ∼ (0,Qk) (4)

where wk is a noise system, which is a random vector drawn
from Gaussian distribution with mean = 0 and covariance Qk
[12]. An observation equation is defined to make correlation
between the state which we estimate and the observation
model. The equation is as follows:

zk = Hxk + vk ; vk ∼ (0,Rk) (5)

with zk is the observation, H is a matrix representing the
observation model, and vk is the observation noise, which is
a random vector drawn from Gaussian distribution with mean
= 0 and covariance Rk [12].

C. Fuzzy Kalman Filter
Let S be a nonempty set and µS be its associate confidence

function, called membership function below. Denote the cor-
responding fuzzy set by [7].

S f = {s ∈ S|s has membership function µS(.)}

Fuzzy Kalman Filter (FKF) is an estimation method that
combines the fuzzy set with the Kalman Filter. We generate
the state variable of Nonisothermal CSTR using the Fuzzy set,
and then the Kalman Filter is applied to estimate that state
variable. The variables are concentration reactance, CA and
temperature of tank, T . Each characteristic of these variables
has value within a certain range (e.g., the concentration may
be described as low or high) and these variables have many
variability at different points in time. Fuzzy logics can help
the researcher to write control statements to accommodate this
variability [13].

Suppose, we have a dynamic stochastic system (4) and an
observation (5). By using Fuzzy Kalman Filter method we
estimate the state variables of (1) using the observation data
(5). We apply the system model (2) into the form of fuzzy.
The Fuzzy Kalman Filter steps are as follows:
• Fuzzification

Fuzzification is a process of changing the input of crisp
variable form into fuzzy form (linguistic variable). It is
generated by the fuzzy linear membership function. With
the fuzzification process, the variable determined at each
interval is as follows

CA ∈
[
C−A ,C+

A

]
T ∈

[
T−,T+

]
superscript minus means minimum interval and super-
script plus means maximum interval. Thus, if x minimum
then the membership function is,

µxmin(x) =
x− x−

x+− x−

and if x maximum, then the membership function is,

µxmax(x) =
x+− x

x+− x−

• Basic Rule of Fuzzy Logic
In general, the basic rule IFTHEN Fuzzy logic is given
as follows:

Rule 1 : IF C−A and T− THEN A1

Rule 2 : IF C−A and T+ THEN A2

Rule 3 : IF C+
A and T− THEN A3

Rule 4 : IF C+
A and T+ THEN A4

• Fuzzy Kalman Filter Algorithm
The general form of the equation system on the Kalman
Filter algorithm is

xk+1 = Axk +Buk +wk
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Matrix A and B are model of the system. In the FKF
algorithm, the matrix A on the system is changed to be
matrix Ai. Matrix Ai is derived from the basic rules of
Fuzzy logic that has 4 rules namely i = 1,2,3,4. The
algorithm of FKF is as follows:

a. System and measurement model

xi
k+1 = Aixk +Buk +wk

zk = Hxk + vk

wk ∼ (0,Qk) ; vk ∼ (0,Rk)

b. Initialization

x̂0 = x̄0 ; P0 = Px0

c. The prediction step
Error covariance :

P−
i

k+1 = Ai
kPk(Ai

k)
T +GkQkGT

k

Estimation :

x̂−
i

k+1 = Ai
kx̂k +Bkuk

d. The correction step
Kalman Gain :
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k+1HT
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)−1
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i

k+1 +Ki
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(
zk+1−Hk+1x̂−

i

k+1

)
• Deffuzification

Defuzzification is a process of changing the form of the
fuzzy sets as output fuzzy membership function to regain
the crisp form. The final result of Fuzzy Kalman Filter
estimation is calculated by using the formula of average
weight [7],

x̂k+1 =
ρ1x̂1

k+1 +ρ2x̂2
k+1 +ρ3x̂3

k+1 +ρ4x̂4
k+1

ρ1 +ρ2 +ρ3 +ρ4

The weight ρ i is calculated as follows:

ρ
1 = µCAmin(CA).µTmin(T )

ρ
2 = µCAmin(CA).µTmax(T )

ρ
3 = µCAmax(CA).µTmin(T )

ρ
4 = µCAmax(CA).µTmax(T )

D. Ensemble Kalman Filter

The Ensemble Kalman filter is an estimation method for the
nonlinear dynamic stochastic system. It generates an ensemble
value as initial estimation of state variable and an ensemble
measurement data based on real measurement data [5]. By
using EnKF method, the state variables (1) will be estimated
using the observation data (5). The algorithm of the EnKF is
[5] :

• Initial estimation
Generate the n-ensemble of the initial estimation

x0,i =
[
x0,1 x0,2 x0,3 · · · x0,n

]
with x0,i ∼ N(x̄0,P0) and mean of the initial estimation is
given by

x̂0 =
1
n

n

∑
i=1

x0,i

• The prediction step
Generate the n-ensemble for the state variable in the
prediction step as follows:

x̂−k,i = f (x̂k−1,uk−1)+wk,i ; i = 1,2, . . . ,n

with wk,i ∼ N(0,Qk) is the ensemble noise system. Mean
of prediction step estimation is :

x̂−k =
1
n

n

∑
i=1

x̂−k,i

Error covariance of prediction step estimation :

P−k =
1

n−1

n

∑
i=1

(
x̂−k,i− x̂−k

)(
x̂−k,i− x̂−k

)T

• The correction step
Generate the ensemble of measurement data,

zk,i = zk + vk,i

with vk,i ∼ N(0,Rk) is the ensemble of measurement
noise.
Kalman Gain :

Kk = P−k HT (HP−k HT +Rk
)−1

Estimation of correction step :

x̂k,i = x̂−k,i +Kk

(
zk,i−Hx̂−k,i

)
Mean of correction step estimation :

x̂k =
1
n

n

∑
i=1

x̂k,i

with the error covariance :

Pk = [1−KkH]P−k

• Repeat and continue the algorithm until we get mean of
correction step estimation as the result estimation.

III. RESULTS AND DISCUSSIONS

This section shows the estimation result of the FKF and
EnKF algorithm. Here, we make a simulation using Matlab
program. In this case, we use the initial value CA0 = 1 mol/L,
T0 = 275 K, and Tj0 = 250 K. The process parameters are
assumed to be known and given in Table I.

The model of Nonisothermal CSTR is the nonlinear model.
We derive the state space based on that model. For the Ensem-
ble Kalman Filter method, we use the nonlinear model system
but for the Fuzzy Kalman Filter method, we approximated the
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nonlinear model as piecewise linear functions with modeling
error of fuzzy variable, defined to be 5% as follows:

CA ∈ [CA−5%CA,CA +5%CA]

T ∈ [T −5%T,T +5%T ]

Here we take measurement

H =

[
1 0 0
0 1 0

]
for FKF and EnKF method, that means, based on the data of
concentration, CA and the tank temperature, T we estimate the
concentration, tank temperature, and cooling jacket tempera-
ture. Fig. 2−4 represent the Fuzzy Kalman Filter (FKF) and
Fig. 5−7 represent the Ensemble Kalman Filter (EnKF) by
taking ensemble 50.

The root mean square error of CA is 0.000231, T is
0.003338, Tj is 0.001589 for the Fuzzy Kalman Filter, whereas
CA is 0.000853, T is 0.005566, Tj is 0.006761 for the
Ensemble Kalman Filter. The computational time for FKF is
0.424 sec and for EnKF is 1.706 sec. The other results of
simulation are represented in Table II.

Table II shows the FKF needs less computational time than
the EnKF and the FKF is more accurate than EnKF with
taking ensemble 50 and 100. However, for ensemble 200, the
estimation of tank temperature using EnKF is more accurate
than estimation result using FKF although EnKF needs more
computational time than FKF.

TABLE I
VALUES OF PROCESS PARAMETER

Process Value Process ValueParameter Parameter
F 2 L/s Cp 4,2 J/gK

CAin 1 mol/L FW 0,5 L/s
V 100 L UA 20000 J/sK
k0 6,85×1011 L/s mol VW 10 L
E 7654,704 J/mol ρW 1000 g/L
Tin 275 K CpW 4,2 J/gK
∆H 596.619 J/mol Tjin 250 K

TABLE II
THE ROOT MEAN SQUARE ERROR AND TIME COMPUTATIONAL

Com. Com.
Var. RMSE time Ne Var. RMSE time

FKF FKF EnKF EnKF
CA 0.00023 0.424 50 CA 0.00085 1.706
T 0.00334 T 0.00556
Tj 0.00159 Tj 0.00676

100 CA 0.00085 3.569
T 0.00383
Tj 0.00526

200 CA 0.00078 6.116
T 0.00298
Tj 0.00529

Fig. 2. The FKF estimation of Concentration Reactance, CA

Fig. 3. The FKF estimation of Temperature Tank, T

Fig. 4. The FKF estimation of Temperature Cooling Jacket, Tj

Fig. 5. The EnKF estimation of Concentration Reactance, CA
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Fig. 6. The EnKF estimation of Temperature Tank, T

Fig. 7. The EnKF estimation of Temperature Cooling Jacket, Tj

IV. CONCLUSIONS

From the simulation result and the analysis we conclude
that both of the FKF method and EnKF method can applied
to estimate the state variable of Nonisothermal CSTR, that is
reactans concentration (CA), tank temperature (T ), and cooling
jacket temperature (Tj). The performance of each method is
compared based on the accuracy and computational time of
estimation. The error estimation of FKF is 72.9% smaller for
CA estimation, 39.9% smaller for T , 76.47% smaller for Tj and
the computational time is 76.47% faster than the estimation
results of EnKF. RMSE of FKF is smaller than RMSE of
EnKF and computational time of FKF is less than EnKF.
Hence, the Fuzzy Kalman Filter is better than the Ensemble
Kalman Filter to estimate state variable of Nonisothermal
CSTR for the reaction between Sodium Thiosulfate (Na2S2O3)
and Hydrogen Peroxide (H2O2) in this case.
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