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A CONSTITUTIVE MODEL FOR PLAIN CONCRETE  
SUBJECTED TO STATIC LOADING 

 
Tavio* 

 
ABSTRACT 
A numerical model based on the new theoretical micromechanical and lattice models has been proposed to 
simulate the fracture behavior of concrete specimens. The numerical model has been developed to implement 
the proposed theoretical micromechanical model using finite element method which employing the lattice model. 
Using the program developed, the numerical model has been used to simulate concrete specimens under direct 
tension and bending load conditions. Close agreement between the numerical results and the experimental data in 
literature indicated that the model is reasonably good, even in predicting the crack development. The numerical 
lattice model can, therefore, be an effective and useful tool for the analysis of the micro-structural behavior of 
concrete and for the design of concrete structures. 
Keywords: Mori-Tanaka method, spring-layer model, interface, mortar, lattice model. 

 
ABSTRAK 
Sebuah model numerik berdasarkan pada model mikromekanika teoritis dan jejaring baru diusulkan untuk 
mensimulasi perilaku fraktur benda-benda uji beton. Model numerik tersebut dikembangkan untuk menerapkan 
model mikromekanika teoritis yang diusulkan memakai metoda elemen hingga dengan menerapkan model 
jejaring. Dengan menggunakan program yang dikembangkan, model numerik tersebut digunakan untuk 
mensimulasi benda-benda uji beton di bawah kondisi beban tarik langsung dan lentur. Kesesuaian yang baik 
antara hasil-hasil numerik dan data eksperimen dalam literatur menunjukkan bahwa model tersebut cukup baik, 
bahkan di dalam memprediksi perkembangan retak. Maka dari itu, model numerik jejaring dapat menjadi sebuah 
alat yang efektif dan berguna untuk analisis perilaku mikro-struktural beton dan untuk perancangan struktur-
struktur beton 
Kata kunci: bidang-kontak, metoda Mori-Tanaka, model jejaring, model lapis-pegas, mortar. 

 
1. INTRODUCTION 

A lot of research works, driven by the 
development of powerful computer, have used 
the simulation methods of concrete's material 
behavior based on some simplified models for 
microstructure of concrete. Most of them 
applied the theory of continuum mechanics. 
Since there are more initial defects and large 
initial cracks within concrete compared with 
those in the basic components-coarse aggregates, 
interfaces, and mortar within concrete, this kind 
of model cannot fully capture the material crack 
behavior. Generally, these parameters are not the 
real material properties. Therefore, some discrete 
models for concrete were developed with a 
system of discrete elements in the forms of 
particles, trusses, or frames. This kind of models 
does not implement the material continuously, 
but to replace the continuum by an array of 
discrete elements in the forms of particles in 
contact, trusses, or frames, in such a manner that 
the displacements are defined only at the centers 
of the particles, or at the nodes of the truss or 
frame. 

The beginning of the particle approach could 
be traced back to the development of the distinct 
element method by Cundall (1971), Serrano and 
Rodriguez-Ortiz (1973), Kawai (1980); Cundall 
and Strack (1979), in which the behavior of 

material was analyzed by the interactions of 
particles in contact. Later, the method of particle 
model was extended further to simulate the 
behavior of brittle composite materials, 
especially for concrete. This was done by 
Zubelewicz and Bazant (1987); Mohamed and 
Hansen (1999). For computational purposes, the 
basic element was reduced to a truss, or a frame. 
Although the truss element and simple 
constitutive relation of material are employed in 
those researches, the prediction of mechanical 
properties of material is shown to be reasonable. 
In this research, a new numerical 
micromechanical model, which combines the 
micromechanical theoretical model with the 
lattice model together, is presented. 
Comparisons with experimental data from 
literature show that the model is reasonably 
accurate, even in predicting the crack 
development. 
 
2. A LATTICE MODEL FOR THE 

MICROMECHANICAL MODEL 
In the normal finite element models, 

continuum element models are employed to deal 
with the mechanical behavior of concrete. 
However, a special assembly of discrete 
elements, lattice model, is usually implemented 
in such a way to simplify the problem. More 
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efforts can be focused on the material behavior 
itself. In this research, the lattice model is used 
to simulate the behavior of concrete. In the 
proposed model, the axial interaction between 
neighboring points is considered as a truss. The 
initial modulus of truss is the initial elastic 
modulus of concrete. With the increase of 
loading, the modulus of truss will decrease. 
There are two types of truss failure, shown in 
Figure 1. Based on the micromechanical model, 
constituent relations of tension and compression 
for concrete follow the theoretical 
micromechanical model with consideration of 
different phases of concrete. Using the 
micromechanical model, the typical compressive 
and tensile stress-strain curve is shown in 
Figures 2 and 3, respectively. Most of numerical 
micromechanical models for concrete in the 
framework of lattice models consider the basic 
constitutive relation of concrete as linear elastic 
for compression and simple linear or exponential 
decay for tension. For each phase of concrete, 
some empirical ratio for different phases of 
concrete is given to calculate the modulus and 
strength of each phase. Since they consider the 
details of each phase and the coarse aggregates 
or the interfaces between mortar and aggregates, 
enormous elements are needed. 

Figure 1 – Failure Model of Truss Element 

 
Figure 1. Failure model of truss element. 
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Figure 2 – Typical Uniaxial Compression 

 
Figure 2. Typical uniaxial compression. 
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Figure 3 – Typical Uniaxial Tension 

 
Figure 3. Typical uniaxial tension. 

 
In this research, the basic constitutive 

relations of concrete are derived based on the 
Mori-Tanaka method, and then the equations are 
used in the modified lattice model for concrete 
to predict the behavior of concrete in 
compression and tension as well as in flexural 
bending. The modified lattice model is combined 
with the proposed micromechanical model. The 
new numerical model is used to predict the 
behavior of concrete under two-dimensional 
problems. At the same time, it only requires 
fewer elements compared with the previously 
proposed numerical micromechanical models. 
The model can, thus, save much computational 
time and storage space in the process. 

 
2.1  Mesh Generation 

In this research, PDE toolbox of MATLAB 
is employed to create the regular triangle mesh. 
From the information of elements and nodes, 
the elements and nodes of the truss elements 
can, then, be formed. If there are some notches 
in the specimens, more elements will be 
provided in the zones nearby the notches and 
FEMLAB is used to create the mesh. 
 
2.2 Formulation of the Element Stiffness 

Matrix 
The application of nonlinear behavior of 

material in the finite element program is a 
difficult problem, particularly in the vicinity of 
the peak point of load-displacement curve. The 
most common approaches for dealing with such 
a problem are the secant and tangential methods. 
In the proposed micromechanical model, the 
current modulus of concrete is calculated based 
on the corresponding global tensile strain and 
then used in the secant model with some 
changes. It is shown in the following flowchart 
(Figure 4) that the stiffness matrix of element is 
built according to the given element 
displacement. 
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Figure 4. Flowchart for element stiffness. 
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 In order to solve the element stiffness matrix, 

the element displacement iu  should be 

calculated in accordance with the overall 
stiffness and displacement or external force. If 

iu  is known, the strain of element i  is given by 

iii Lu /     .......(1) 

Inside the truss element, the element is allowed 
to have the lateral strain as a two dimensional 
problem with the only axial-directional force. 

The vector of strain for the element in two-
dimensional problem is separated as the two 

parts, i.e., compressive strain C and tensile strain 

T 
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    .......(2) 
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    .......(3) 
with only axial-directional force in truss element, 

i 1      .......(4) 

The vector of stress for the element can also be 
separated as follows 
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For the truss element, C  and T  can, thus, be 

determined 
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The corresponding modulus matrix for the 
element could also be separated as follows 
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with 

21 


E
LCC

    .....(10) 











 0

1 2

E
LCT

   .....(11) 

















0
1 2

E

LTC
    .....(12) 

 

























12
0

0
1 2

E

E

LTT
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The other unknown strain and stress can be 
calculated by the following equations 

 CTCTTT LL  
1

   .....(14) 

CCCTCTC LL  
   .....(15) 

Therefore, the overall stress of element is 
expressed as 



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According to the failure situation in the last 
iterating step, the current Eshelby tensor for 
concrete could be calculated by 

  didi ScScS  1    .....(17) 

where ic  is the failure volume of interface, dS  

is Eshelby tensor for failure interfaces and pS  is 

Eshelby tensor for perfect interfaces. 
Then, in accordance with the Mori-Tanaka 
method, the current stress of mortar could be 
calculated as, 

  WcIc 100     .....(18) 

with 
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And the corresponding strain of mortar could be 
obtained by the following equation, 

0

1

00   L     .....(20) 

For evaluating the situation of mortar failure, the 
principal strain of mortar should be calculated 
by, 
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If 01  exceeds the tensile strain criterion of 

concrete (Neville, 1996), the current modulus of 
mortar should be recalculated by the following 
equation 

  mmmmm TcIcTLcLL  1000
 .....(23) 

with 

    1
1


 mmm SIcT

  .....(24) 
T

m TTSS 0
    .....(25) 

where T is the transformation matrix of 
coordinate and TT is the transpose matrix of T.  
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When the strain is in tension for the truss 
element, the expression of T is shown as follows 
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However, when the strain is in compression, the 
expression of T is given by, 
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At the same time, when the corresponding 
failure volume ratio of mortar is calculated by 
Eq. (28), which follows Weibull distribution, the 
current modulus of mortar can be obtained by 
Eq. (23). 
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From the above equation, it can be seen that the 

value of mc  would be approaching unity and the 

stiffness of element would be reaching zero after 
the strain reaches a large value. Thus, if the 
proposed constitutive model for concrete is 
implemented in the program code, serious 
numerical problems would be encountered. 
Hence, after the failure volume ratio of mortar 
reaches a large value, the modified constitutive 
relationship is used instead of the original 
constitutive relationship. In order to avoid 
numerical difficulty during the process, at a large 
value, the following modified failure volume 
ratio of mortar, which was derived based on the 
modified constitutive relationship, should be 
used. 

mcCb
e

m aeC


             .....(29) 

where 
134.6,266.3,971.0  cba  

when 
78.0mC  

This way, the value of failure volume ratio of 
mortar would never be reaching unity, hence the 
stiffness of concrete would also never be 
approaching zero. 
If the second principal strain of concrete is in 
compression, the failure volume ratio of 
interfaces can be computed by the following 
equation, 
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The current modulus of concrete could, thus, be 
solved as follows 

  dipi LcLcL  1    .....(31) 

with 
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During the computation, the current modulus 
matrix of the element has to be transferred to 
the element stiffness matrix using the following 
equations 

11

2

0 )1( LE      .....(32) 

with 

2221 / LL  
The current element stiffness matrix could then 
be calculated using Eq. (33).  
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The ratio of the cross-sectional area A to the 
element length L is considered as a constant 

( 2/3 ) based on the works of (Hrennikoff 1941; 

Mohamed 1997). 
 
2.3 Development of Computer Program 

The displacement control method has been 
used to handle the finite element problem in the 
current research. The overall stiffness matrix is 
subdivided into four sub-matrices corresponding 
to the prescribed and free degrees of freedom by 
the following equations (Crisfield 1991;  
Mohamed 1997). 
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where f and p refer to the free and prescribed 
degrees of freedom, respectively. From Eq. (34), 

the unknowns fU  and pP  can be found as 

follows 

         pfpffff UKPKU 
1   .....(35) 

       pppfpfp UKUKP 
  .....(36) 

The computer program employs a nonlinear 
finite element incremental displacement scheme 
with an iterative procedure based on the 
successive approximation method (Owen and 
Hinton 1980). 

The program starts with identifying the 
geometry, the coordinates of each element and 
the mesh layout from the data files, which is 
created by PDE toolbox of MATLAB.  Then, 
the incremental solution starts with 
decomposing the stiffness matrix, load and 
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displacement vector as free and prescribed parts 
according to Eq. (34). After obtaining the 
corresponding unknown displacement and load 
vectors, the displacements at the nodes could 
also be found. The strain in each element is then 
calculated and checked with the current element 
status. If the new strain value in an element 
indicates that the element status has changed in 
the iteration, the new stiffness is assigned to the 
corresponding element and the overall stiffness 
is calculated based on the updated status. After 
updating the status of all elements, the program 
continues to the next increment and records the 
required information for the current increment if 
the ratio between the norm of the current 
displacement vector and the last iterating 
displacement vector satisfies the prescribed 
tolerance. Otherwise, the iteration procedure 
continues. 
 
3. MODEL PREDICTION FOR DIRECT 

TENSION 
The proposed numerical model is applied to 

simulate the behavior of single-edge-notched 
specimen under direct tension. At the same time, 
the process of localization and development of 
cracks was studied based on the proposed 
model. The first example is employed for a plain 
mortar specimen under direct tension (Maji and 
Shah 1988).  The geometry of the specimen is 
shown in Figure 5. The corresponding mesh 
layout is depicted in Figure 6. The corresponding 
material properties used in the specimen are 
shown Table 1. The load-deformation response 
under splitting tension, which was simulated by 
the proposed numerical model, is shown in 
Figure 7. From the figure, it can be seen that the 
simulation results are in good agreement with the 
experimental data tested by Maji and Shah 
(1988). The crack pattern during the loading 
process illustrated in Figure 8 also shows that the 
crack patterns at various loading stages can 
simulate the actual crack developments of the 
specimen.  
 
4. MODEL PREDICTION FOR THREE-

POINT BENDING 
Bending is a typical loading pattern in 

concrete structures. Since it relates with tension, 
compression and shear, its behavior is quite 

complicated. Hence, many researches are 
focused in this topic either theoretically or 
experimentally. Numerous specimens have been 
tested under bending in the past three decades. 
In this research, a typical example is selected to 
be compared with the results of the numerical 
simulations. 

Petersson (1980) has carried out several 
three-point bending tests on the notched beams. 
A typical three-point bending beam from 
Petersson’s test results was used to study the 
capability of the proposed numerical model in 
predicting the behavior of the beam in bending. 
The dimensions of specimens are described in 
Figure 9. The corresponding material properties 
are given in Table 2. The mesh layout is 
illustrated in Figure 10. The load-displacement 
curves at various loading stages are plotted in 
Figure 11. From the figure, it is shown that the 
simulation curve based on the proposed model 
can closely predict the response of the actual 
beam. The crack patterns shown in Figure 12 are 
also in close agreement with the corresponding 
experimental crack patterns at various loading 
stages. 
 
5. MODEL PREDICTION UNDER 

COMPRESSIVE LOADING 
The behavior of concrete under compressive 

loading is also one of the most important issues. 
Extensive researches have been focused on 
studying its behavior either theoretically or 
experimentally. In this research, a proposed 
numerical micromechanical model is used to 
simulate the behavior of concrete specimen 
under compression. 

A typical specimen under compressive 
loading was selected from Kupfer et al’s 
experiment (1969) for simulation. The specimen 

has dimensions of 200  200  50 mm and its 
geometry is shown in Figure 13. The mesh 
layout is displayed in Figure 14. The 
corresponding material properties are listed in 
Table 3. The axial stress-deformation curves are 
shown in Figure 15. From the figure, it shows 
that the model is able to predict most of the 
experimental observed phenomena for concrete 
under compression, including softening and 
localization of deformation. However, the 
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Figure 5. Single-edge notched specimen for mortar. 
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prediction on the deformation at ultimate load 
gives a slightly lower value than the 
corresponding experimental value. Many 
researchers (Van Mier 1997, Bazant and Planas 
1998; Mohamed 1997) have pointed out the 
problems and gave some explanations on this 
issue. This is not a drawback in the model since 
it can predict almost all the observed 
phenomena. The drawback is rather in the way 
the specimen is simulated. Compressive behavior 
of concrete is a triaxial direction, and the crack 
surfaces are usually located in more than a single 
plane. Thus, a three-dimensional simulation is 
essential for predicting the compressive behavior 
of concrete. However, the prediction of the 
current two-dimensional model is still able to 
provide valuable information on the response of 
concrete under compression. Since it is beyond 
the current computational efforts to conduct 
three-dimensional simulations, no further 
investigation on the compressive behavior of 
concrete was conducted. 
 
6. CONCLUSION 

The proposed micromechanical model has 
been introduced in the current research to 
simulate the mechanical behavior of concrete 
under different loading states. These loading 
states include tension, bending, and 
compression. The model predictions on the 
responses and crack patterns were found to be in 
good agreement with the experimental results. 
However, the current model has slightly 
underestimated the compressive deformation at 
peak loading point. A three-dimensional analysis 
is, therefore, required for predicting a more 
accurate compressive behavior of concrete. 
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Figure 6. Mesh layout of lattice model for single-edge notched specimen. 
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Figure 7. Theoretical and experimental load-CMOD curves for single-edge notched specimen. 

 

 

 
Figure 8. Crack patterns at various loading points for single-edge notched specimen. 
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Figure 9. Notched beam for three-point bending. 

 

 

Figure 10. Mesh layout of lattice model for three-point bending. 
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Figure 11. Theoretical and experimental load-displacement curves for three-point bending. 

 

Figure 12. Crack patterns at various loading points for three-point bending. 
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Figure 12. Continued. 
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Figure 13. Specimen configuration for compression simulation 

specimen configuration for compression simulation. 

 

 
Figure 14. Mesh layout of lattice model for compression simulation.  
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Figure 15. Theoretical and experimental stress-axial deformation curves under compression 


