
 138 IPTEK, The Journal for Technology and Science, Vol. 22, No. 4, November 2011

NATURAL LANGUAGE PROCESSING FOR

DETECTING FORWARD REFERENCE IN A

DOCUMENT

Daniel Siahaan
1
, Izzatul Umami

2

Abstract Meyer’s seven sins have been recognized as types of mistakes that a requirements specialist are often fallen to

when specifying requirements. Such mistakes play a significant role in plunging a project into failure. Many researchers

were focusing in ambiguity and contradiction type of mistakes. Other types of mistakes have been given less attentions.

Those mistakes often happened in reality and may equally costly as the first two mistakes. This paper introduces an

approach to detect forward reference. It traverses through a requirements document, extracts, and processes each

statement. During the statement extraction, any terms that may reside in the statement is also extracted. Based on certain

rules which utilize POS patterns, the statement is classified as a term definition or not. For each term definition, a term is

added to a list of defined terms. At the same time, every time a new term is found in a statement, it is check against the list

of defined terms. If it is not found, then the requirements statement is classified as statement with forward reference. The

experimentation on 30 requirements documents from various domains of software project shows that the approach has

considerably almost perfect agreement with domain expert in detecting forward reference, given 0.83 kappa index value.

KeywordsForward Reference; Natural Language Processing; Term

AbstrakMeyer’s seven sins dikenal sebagai jenis kesalahan yang sering dilakukan sistem analis ketika menspesifikasi

kebutuhan. Kesalahan-kesalahan tersebut berperan besar sebagai penyebab gagalnya sebuah proyek. Banyak peneliti

memfokuskan diri pada kesalahan berjenis kerancuan dan kontradiksi. Jenis kesalahan yang lain kurang mendapat perhatian.

Padahal jenis kesalahan tersebut juga pada kenyataannya sama dampak finansialnya disbanding dua jenis pertama. Artikel ini

menjelaskan sebuah pendekatan untuk mendeteksi forward reference. Pendekatan ini akan mengekstrak dan memproses setiap

pernyataan dalam dokumen kebutuhan Selama proses ekstraksi tersebut, setiap istilah yang ditemukan juga diekstraksi.

Berdasarkan aturan tertentu yang memanfaatkan pola POS, pernyataan diklasifikasikan sebagai sebuah definisi istilah atau

bukan. Untuk setiap definisi tersebut, sebuah istilah akan ditambahkan ke daftar istilah terdefinisi. Pada saat yang sama,

untuk setiap kali sebuah istilah baru ditemukan dalam sebuah pernyataan, pendekatan ini akan mengecek eksistensi

definisinya. Jika tidak ditemukan, maka pernyataan tersebut diklasifikasikan sebaga pernyataan yang mengandung forward

reference. Hasil pengujian atas 30 dokumen kebutuhan dari berbagai ranah proyek perangkat lunak menunjukkan bahwa

pendekatan ini hampir dapat diandalkan sebagaimana seorang ahli dalam mendeteksi forward reference, dengan nilai kappa

0.83.

Kata KunciForward Reference, Istilah, Pemrosesan Bahasa Alamiah

I. INTRODUCTION
1

Requirements specification as part of requirements

engineering is mainly dealing with how to express

requirements in a specific, measurable, realizable,

attainable, and time-bound manner. Requirements

specification should be agreed by all stakeholders. It

concerned with the process to elicit, analyze, and

validate/verify requirements. These processes are

documented for the most part in natural language.

Software Requirements Specification (SRS) is one of

deliverables produced iteratively throughout software

development lifecycle. It is one of the most important

artefacts produced during this phase of software

development. The quality of SRS document determines

whether a software project may end up as a success story

or just another project failure. It stands as the first

entrance before and provides input for design, coding

Daniel Siahaan is with Informatics Departement, Institut Teknologi

Sepuluh Nopember, Surabaya-Indonesia, 60111, Indonesia. e-

mail:daniel@if.its.ac.id.

Izzatul Umami with Informatics Departement, University of Darul

Ulum Jombang, Jombang-, Indonesia. E-mail:
izzatul_umami@yahoo.com

and testing phases. The report in 2009 on software

project chaos from Standish Group indicates that 31.1%

software projects failure rooted from requirements

specification. Therefore, considerable resources, in term

of man hour, are spend in order to ensure the SRS

document quality This is due to the fact that the real-life

SRS documents may take up to considerable amount of

pages, sentences, figures, and tables.

During requirements specification, engineers focus on

specifying requirements, which on most cases is written

in natural language. Therefore, requirements

specification inherits subjectivity of natural language.

This often leads to common mistakes made by engineer

when specifying requirements. These mistakes are

known as Meyer’s seven sins [1]. Meyer’s seven sins

indicate that there are seven common mistakes that are

often found in requirements document, i.e. noise, silence,

over-specification, contradiction, ambiguity, forward

reference, and wishful thinking.

Researchers have been working on identifying and

dealing, with such mistakes for the last two decades.

Ambiguity has been receiving the most attention from

researchers [2]–[6]. There are researchers from Stanford

[7] who have been working on detecting contradiction

between text. Nevertheless, so far less attention has been

given to other type of mistakes, aside from the fact that

they all are equally important.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Center for Scientific Publication

https://core.ac.uk/display/290093157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IPTEK, The Journal for Technology and Science, Vol. 22, No. 4, November 2011 139

This work focuses on creating an approach to detect

forward reference in requirements specification

document. Forward reference refers to a first appearance

of a term in passage which precedes its definition. To our

knowledge, there has been no previous work that

focusing on forward reference detection. Our approach

uses natural language processing (NLP) library for

capturing terms within a document and determining

whether a statement contains a definition of a term. We

developed a set of rules which processes metadata of a

sentence generated from natural language process to

extract terms and identifying definitions.

II. FORWARD REFERENCE

Reference [8] defines forward reference as a state of an

element in a document which refers a feature of a

solution domain which precedes its definition. It suggests

that forward reference in requirements specification

document refers to a first appearance of a term in

passage which precedes its definition. Let’s consider one

of problem descriptions from ACM’s OOPSLA

DesignFest® online source (http://designfest.acm.org/)

shown in Figure 1.

We can see that a sentence in line 4 contains a term

“case worker”. The term “case worker” in the document

refers to a role in the respective solution domain. At the

point where it is first referred, the term “case worker”

has not been described or defined yet. Its description can

be found later in line 15. It can be concluded that the

sentence in line 4 contains a forward reference.

The goal of this research is to provide an approach to

assist requirements engineer in producing a high quality

requirements document which is forward reference free.

This approach is designed to identify the occurrence of

forward reference in software requirements specification

document.

III. FORWARD REFERENCE DETECTION

The approach is designed in a number of processes, as

shown in Figure 2. First, the requirements specification

document is processed using element extractor module to

extract relevant elements. Second, a natural language

processing module processes each extracted element to

generate metadata of each element, such as part of

speech, sentence structure, and word dependency. Third,

given the metadata, a term identifier module identifies

any term resides in an element. Fourth, using the same

metadata, a definition identifier module classifies

whether an element is a definition and identifies what

specific term the element defined. Finally, a pigeon-hole

module direct the term found by term identifier module

to a list of defined term or a list of undefined term

respectively.

A. Element Extractor

A document is composed by one or more set of

elements. Each set of element has certain type. In

software requirements specification document, type of

element may be one of the following, title, section, sub-

section, paragraph, table, figure, sub-title, table header,

cell, header, footer, and page number. There are a

number of document element types which are not

considered in forward reference detection. Title, section

and sub-section are examples of document element

Figure 1. Snapshot of problem description p01s04.txt

Requirements

Document

Forward Reference /

Not-Forward Reference

Element

Extractor

NLP

Relevant

Elements

Term Extractor

Definition

Identifier
Pigeon Hole

Figure 1. Snapshot of problem description p01s04.txt

 140 IPTEK, The Journal for Technology and Science, Vol. 22, No. 4, November 2011

which often expressed as term or contain one or more

terms. The term or terms in this document element are

not relevant to forward reference. Our approach

considers only paragraph, sub-title, and cell elements for

the forward reference detection process. These elements

represent the description about software requirements of

the solution domain. Aside from the three elements,

figure is also describing about software requirements.

Nevertheless, our current approach does not consider any

term resides in a figure due to the fact that the treatment

should be similar to cell element in a table. A module

which extract text element from graphical component is

necessary to be added.

A paragraph element is a type of element that contains

a set of sentence elements. Sentence element is a set of

words that compose a sentence. In requirements

document, a sentence usually take a form of a statement.

One of the sentence elements should be the main idea of

the respective paragraph. Each paragraph element is

decomposed into sentence elements. A sub-title element

is a type of element that indicates what a figure is

describing about. The following is an example of sub-

titles.

”Fig. 1 Architecture design of rotary lock.”

We can see that phrase marked in bold represents term

being referred in respective elements. The sub-title

contains a term but does not contain a term definition.

Cell element is a text that resides in a cell of a table. This

may apply to any document element. Element extractor

is designed to extract each relevant element in a

document and its respective element type. The process

ignores irrelevant element, such as titles and sections.

Sequentially, these relevant elements are fed to the next

process, i.e. Natural Language Processor.

B. Natural Language Processor

Each relevant element is processed using a natural

language processor (NLP). This module traverses

through the list of elements and generates metadata from

each given element. This module uses OpenNLP to

produce part of speech (POS) tags, terms, and word-

dependencies. For example, consider the following

document element e1.

e1: “The program's input is a stream of characters

whose end is signaled with a special end of text

character, ET.” (source http://www.designfest.org)

Document element e1 is a sentence element. The NLP

uses en-pos-maxent model to generate POS tags out of

e1. The following are the POS tags generated for

document element e1.

The/DT program/NN 's/POS input/NN is/VBZ

a/DT stream/NN of/IN characters/NNS

whose/WP$ end/NN is/VBZ signaled/VBN with/IN

a/DT special/JJ end/NN of/IN text/NN

character/NN ,/, ET/NNP ./.

C. Term Identifier

The term identifier chunks the given tagged sentence. It

chunks the given tagged sentence into a set of tagged

phrases. The following is part of chunking result of e1.

[NP The program’s input/NNP] [VP is/VBZ] [NP

a/DT stream/NN of/IN characters/NNS] [NP

whose/WP$] [NP end/NN] [VP is/VBZ signaled/VBN]

[PP with/IN] [NP a/DT special/JJ end/NN of/IN

text/NN character/NN] [NP ET/NNP] [./.]

Each chunk is a candidate term. As already mention,

this work only considers chunk with NP tag. Therefore,

given e1, the chunking process returns the following

terms (after removing any determinant or cardinal):

program’s input, stream of characters, special end of text

character, and ET. At the end, NLP removes any

commonly known terms using Wikipedia. This last part

removes the first two terms and left one term as a result,

i.e. program’s input and ET.

D. Definition Identifier

Like term identifier, definition identifier also consumes

tagged sentence produced by NLP. Parallel to term

identifier, the definition identifier identifies any

definition of a term resides in a document element and

decide whether a document element contains a definition

of a term. A definition is a clause that explains,

formulates, or describes a term. The process determines a

clause as a definition base on a set of rules. A rule is a

pattern that comprises of a word dependency tree with its

given POS tags. The pattern is generated by analyzing a

sentence corpus of term definition. We managed to

generate 7 patterns for a sentence that contains a term

definition. The following is the list of rules to identify a

term definition.

NP(NN | NNP) VBZ + VBN+IN

NP(NN | NNP) VBZ + DT+NN

NP(NN | NNP) VBZ

NP(NN | NNP) VBZ + IN

NP(NN | NNP) VBZ + DT+NN+IN+WHNP

VP (VBZ + VBN+IN + NP(NN / NNP))

For example, given the document element e1, we can

see its sentence structure as shown in Figure 3. We can

determine that e1 matches the rule: NP (NN) VBZ + DT

+ NN. Therefore, it can be concluded that document

element e1 is an element that contains a term definition,

where the term is the NP-tree (“The program’s input”).

E. Pigeon Hole

Both previous modules provides input for pigeon hole

process. First, for a given sentence element, if it contains

a term definition, it adds the respective term into the list

of defined terms if and only if it is not listed in the

defined term list. Second, for each term found in a

document element, it marks the respective element as

forward referencing if and only if the term is not listed in

the defined term list.

For example, let’s assume a list of defined term

dt{program’s input}. Given the document element e1, the

approach determines that e1 is forward referencing. It is

because the term “ET” does not exist in dt, which means

that it

IV. DISCUSSION

For experimentation purpose, this research collects 30

requirements document from various sources. They are

part of different kinds of projects, such as student

projects, web-based applications, information system,

eBill, games, and embedded system. A non-IT person

who has academic background in linguistic was asked to

IPTEK, The Journal for Technology and Science, Vol. 22, No. 4, November 2011 141

identify document elements that contains terms, which

are forward referenced (FR) or predefined (PR). To

measure the performance of the proposed approach,

kappa statistics is chosen [9]. This method is chosen

because it can measure how reliable the approach to

perform as an expert, in this context is a person who has

non-IT background. Table 1 shows the result of our

experimentation. It can be calculated that the overall

kappa value for 30 documents is 0.828. It can be

interpreted base on [10] that there is almost perfect

agreement between proposed method and expert in

determining which term is forward reference and which

term is predefined.

VI. CONCLUSION

Requirements engineers have the responsibility to

produce a high quality requirements specification

document. The effort to maintain the quality of a

requirements specification document manually is

relatively big and may take significant resources of

software development project. Forward reference is

one of the elements that reduce the quality. This

research aims to provide an approach to detect any

instance of forward reference within a document

using natural language processing. The experiment on

30 requirements documents from various domains

reveals of software project indicates that the proposed

approach has considerably almost perfect agreement

with domain expert in detecting forward reference in

software requirements document, given 0.83 kappa

index value.

Figure 1. Snapshot of problem description p01s04.txt

TABLE 1.

DEGREE OF AGREEMENT BETWEEN PROPOSED METHOD AND EXPERT.

Doc.

Expert
Proposed

Approach
Index

Kappa
FR PR FR PR

1 Doc_01 14 39 15 38 0.952

2 Doc_02 6 36 8 34 0.829

3 Doc_03 4 42 6 40 0.776

4 Doc_04 12 54 14 52 0.904

5 Doc_05 5 23 8 20 0.704

6 Doc_06 4 25 5 24 0.868

7 Doc_07 9 34 10 33 0.932

8 Doc_08 5 27 6 26 0.890

9 Doc_09 13 57 14 56 0.954

10 Doc_10 11 27 12 26 0.937

11 Doc_11 4 28 7 25 0.675

12 Doc_12 4 23 6 21 0.756

13 Doc_13 3 28 3 28 1

14 Doc_14 4 29 6 27 0.765

15 Doc_15 7 20 10 17 0.746

Doc.

Expert
Proposed

Approach
Index

Kappa
FR PR FR PR

16 Doc_16 5 32 8 29 0.723

17 Doc_17 8 39 9 38 0.928

18 Doc_18 5 23 8 20 0.704

19 Doc_19 8 59 14 53 0.678

20 Doc_20 7 50 11 46 0.645

21 Doc_21 11 47 16 42 0.761

22 Doc_22 4 65 5 64 0.881

23 Doc_23 10 41 12 39 0.884

24 Doc_24 6 54 11 49 0.662

25 Doc_25 2 5 2 5 1

26 Doc_26 5 46 6 45 0.898

27 Doc_27 10 54 14 50 0.796

28 Doc_28 1 25 1 25 1

29 Doc_29 12 46 13 45 0.949

30 Doc_30 8 27 12 23 0.724

 142 IPTEK, The Journal for Technology and Science, Vol. 22, No. 4, November 2011

REFERENCES

[1] Meyer, B. 1985. On Formalism in Specifications. IEEE

Software, 2(1), January 1985, 6–26.

[2] Muliawan, I. W. Muliawan and Siahaan, D.O. 2012. Software

Requirements Ambiguity Analysis based on SMART
Requirements (Analisis Ambiguitas Kebutuhan Perangkat Lunak

Berdasarkan Acuan SMART Requirements). In Manajemen

Teknologi Informasi, SEMNAS XIV, Surabaya, Indonesia, 2012.
[3] Hussain, I., Ormandjieva, O., and Kosseim, L. 2007. Automatic

Quality Assessment of SRS Text by Means of a Decision-Tree-

Based Text Classifier. In Proceeding of 7th International

Conference on Quality Software, Portland USA, p.209-218.

[4] Gnesi, S., Fabbrini, F. Fusani, M., and Trentanni, G. 2005. An

automatic tool for the analysis of natural language requirements.

International Journal of Computer Systems Science &

Engineering, vol. 20(1), pp. 53–62.

[5] Kamsties, E., Berry, D. M., and Paech, B. 2001., Detecting
Ambiguities in Requirements Documents Using Inspections. in

Proceedings of the First Workshop on Inspection in Software

Engineering (WISE’01), pp. 68–80.

[6] Denger, C., Berry, D. M., and Kamsties, E. 2003. Higher quality

requirements specifications through natural language patterns. In

Proc. of the IEEE Int. Conf. on Software – Sci. Tech. and

Eng, pp. 80–91.

[7] Marneffe, M.D., Rafferty, A.N., and Manning, C. D. 2008.
Finding contradictions in text. In ACL 2008.

[8] Siahaan, D. 2012. Software Requirements Analysis (Analisa

Kebutuhan Dalam Rekayasa Perangkat Lunak. Penerbit Andi.
[9] Cohen, J. 1960. A Coefficient of Agreement for Nominal Scales.

I. Educ. Psycho!, Meat. 20:37-46.

[10] J. R. Landis, J.R. and Koch, G.G. 1977. The Measurement of
Observer Agreement for Categorical Data. Biometrics, vol.

33(1), pp. 159–174.

