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ABSTRACT: This paper shows that discounted cash flow and net present value, 

which are traditional investment valuation models, can be combined with artificial 

neural network model forecasting. The main inputs for the valuation models, such as 

revenue, costs, capital expenditure, and their growth rates, are heavily related to 

sector dynamics and macroeconomics. The growth rates of those inputs are related 

to inflation and exchange rates. Therefore, predicting inflation and exchange rates is 

a critical issue for the valuation output. In this paper, the Turkish economy’s 

inflation rate and the exchange rate of USD/TRY are forecast by artificial neural 

networks and implemented to the discounted cash flow model. Finally, the results 

are benchmarked with conventional practices. 
 

Keywords: Artificial neural networks, Investment valuation, Forecasting, Inflation 

rate forecast, Exchange rate forecast, Discounted cash flow 
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Öz: Bu çalışmada geleneksel yatırım değerleme metotlarından olan indirgenmiş 

nakit akım ve net bugünkü değer modeli ile yapay sinir ağları modelinin tahmin 

etme özelliğinin birleştirilmesi analiz edilmiştir. Değerleme modellerinin temel 

bileşenlerinden olan satış gelirleri, maliyetler, yatırım harcamaları ve bunların 

yıllar içerisindeki büyüme oranları sektörel dinamikler ve makroekonomik 

faktörlerle yakından ilişkilidir. Bununla birlikte, enflasyon oranı ve döviz kurları bu 

bileşenlerin değişim oranlarını etkilemektedir.  Dolayısıyla enflasyon oranını ve 

döviz kurlarını tahmin etmek değerlemenin sonucu açısından kritik bir önem 

taşımaktadır. Bu çalışmada Türkiye enflasyonu ve USD/TRY döviz kuru yapay sinir 

ağları modeli ile tahmin edilmiş ve bu değişkenler indirgenmiş nakit akım modeli 

içerisine yerleştirilmiştir. Bu modelin sonuçları geleneksel yöntemler ile 

karşılaştırılmıştır.    

 
Anahtar Kelimeler: Yapay sinir ağları, Yatırım değerlemesi, Tahmin etme, 

Enflasyon oranı tahmini, Döviz kuru tahmini, İndirgenmiş nakit akım 

 

1. Introduction 
Investments are important tools for companies that can be used to achieve 

sustainable development and profitable growth. Firms make investments to improve 

their profitability chances (Dixit and Pindyck, 1995). More or less in every sector, 

investment and improvement decisions affect companies' future operational and 

financial performance. For that reason, Myers (1974) stated that corporate finance 

and investment decisions have many junction points. Even though investments are 

one of the main drivers of profitability, the investment decision is not easy due to 
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uncertainty. For instance, investments related to natural resources include a high 

potential for uncertainty because of price volatilities and the relative difficulty of 

establishing valuations for these kinds of investments (Brennan and Schwartz, 

1985). Therefore, these uncertainty conditions create barriers to investment and the 

challenge of determining an estimated valuation results in hesitation. To reduce 

uncertainty, forecasting investment conditions and inputs is just as important as 

sound investment management. 

 

Investment valuation models are used to obtain sufficient information for decision 

makers. Discounted cash flow (DCF) is traditionally the most used investment 

valuation method.  Myers (1974) and Brigham and Houston (2004) stated that the 

DCF model is the most common valuation technique. If DCF is applied to an 

investment project, the method discounts expected future cash flows to the present; 

these cash flows are generated after operations such as revenues, costs, capital 

expenditures, and net working capital changes and are used to calculate the net 

present value (NPV) of the investment. Despite being the most common valuation 

method, DCF has some disadvantages which are mostly related to uncertainty 

conditions and the rigidity of the model itself. Liao and Ho (2010) argued that DCF 

has two major drawbacks. The first is that cash flows cannot be precisely predicted 

in uncertain decision-making conditions and the second is that the valuation of 

managerial flexibilities in investments is not reflected in DCF analysis. Thus, both 

reasons may misdirect the decision maker. Moreover, Carlsson and Fuller (2003) 

stated that the difficulty of predicting cash flows and discount ratios makes DCF 

inadequate in uncertain market conditions.  In the literature, several works also 

emphasize this topic, including Garvin and Cheeah (2004) and Dixit and Pindyck 

(1995). 

 

The outputs of DCF are projected time period cash flows, which consist of sub-

financial inputs such as revenue, cost, capital expenditure and net working capital 

exchange. Those main inputs for the valuation models are related to sector dynamics 

and macroeconomics. For instance, revenue is dictated by sales quantity and price, 

and sales price forecasts are usually formulated with an inflation rate. Moreover, 

cost forecasts after the base year generally increase by the inflation rate. On the 

other hand, several cost items, capital expenditures, and export revenues are affected 

by exchange rate developments. For that reason, for multinational firms in the 

investment decision process, being able to accurately forecast exchange rate 

movements can result in substantial improvements in the overall profitability of an 

investment. Because of the nature of multinational businesses, a significant portion 

of their revenue, costs and capital expenditures is related to a currency other than 

their local currency. 

 

In recent decades, the artificial neural network (ANN) model has been one of the 

artificial intelligence models used for forecasting time series including exchange 

rates and inflation rates, as mentioned in sections 2 and 4 of this paper. The ANN 

model involves computer-based simulation of the human neural system (Lubecke et 

al., 1998). An artificial neuron is similar to a biological neuron and is capable of 

benchmarking values and mathematical operations (Mukherjee & Biswas, 1997). 

The ANN model imitates the human brain's classifying, describing, and forecasting 

skills (Hamzaçebi et al., 2009). Therefore, the term neural network is based on 

biological connections between neurons in the human brain. ANN has strong pattern 

classification and perception skills, which enables the model to learn by gaining 
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experience and by generalizing. For that reason, this model is used frequently in 

industry, finance, business, and scientific works. 

 

The paper is structured as follows: Section 2 provides a review of the literature in 

this area. Sections 3 and 4 provide a general description of the DCF and ANN. 

Section 5 describes the proposed methodology and data preparation and shows the 

results for the proposed model. Conclusions are discussed in Section 6. 

 

2. Literature Review 
DCF is the conventional method most used in investment valuation techniques. It is 

well structured and easy to apply. Therefore, it is an essential tool for firms for both 

evaluating and selecting investment projects. Despite its frequent use in practice, 

recent studies have mentioned drawbacks of DCF in uncertain conditions and 

offered hybrid or new approaches. Garvin and Cheeah (2004) reported that under 

stable economic conditions and predictable risks, NPV analysis works quite well, 

but, on the other hand, the rigid framework of the traditional DCF and NPV methods 

is not suitable for projects that contain several uncertain conditions, such as 

infrastructure investments. Therefore, they used the traditional cash flow framework 

with a real options-based approach to investment valuation analysis. Liao and Ho 

(2010) mentioned that DCF inputs such as cash flows and discount rates are difficult 

to estimate and, because of using past data for reference in the DCF method, 

innovative investment project valuation using this method may mislead decision 

makers. For that reason, they offered a fuzzy real option approach.  
 

If more than one investment project is on the table, NPV and internal rate of return 

(IRR) help decision makers, as the investment project with the maximum positive 

NPV and higher IRR is the most suitable investment project. However, all relevant 

cash flows and interest rates, which are the main content of the DCF, must be known 

in advance and it is very difficult to forecast the cash flows and interest rates of the 

future. Moreover, the NPV method’s ability to cope with strategic issues and 

maintain managerial flexibility (e.g., expand, abandon, postpone) is constrained and 

thus Ozogul et al. (2009) proposed a binomial real options-based valuation 

framework and benchmarked with the conventional NPV method. Carlsson and 

Fuller (2003) argued that traditional valuation models such as NPV and DCF have 

been developed because of the uncertainty of options. They offered a fuzzy 

approach to real option valuation and suggested that their proposed model may give 

decision makers a better understanding of the uncertainty problem. 

 

It is obvious that DCF is a practical method but it must be modified for decision 

makers. ANN is one of the methods used for forecasting and input forecasting is one 

of the main problems in investment decisions. Therefore, ANN can be used as a 

forecasting tool for inputs and combined with the traditional DCF method. Many 

researchers prefer to use ANN to conduct their studies, not only in financial research 

but also in different fields such as consumption, price, cost, and technical 

performance.  ANN is used in various financial studies and many of these studies 

address exchange rates and inflation rates, which are also discussed in this paper. 

Lubecke et al. (1998) forecast exchange rates with ANN and benchmarked with 

other forecasting methods.  Panda and Narasimhan (2007) also worked on exchange 

rate forecasts with ANN. They compared the forecasting accuracy of the neural 

network with linear autoregressive and random walk models and found that the 
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neural network has superior forecasting ability to other compared models.  Hu and 

Tsoukalas (1999) worked on exchange forecasting of 11 different currencies in 

Europe and found satisfactory performance with ANN. Sermpinis et al. (2012) also 

worked on the EUR/USD exchange rate by using ANN. Marcellino (2004) tried to 

predict the European Money Union's macroeconomic variables with ANN and 

several forecasting models. Chen and Leung (2004) stated that exchange rate 

prediction is an important topic for international finance and used a hybrid model 

which included ANN. Taskin and Güneri (2006) discussed risky investment projects' 

economic analysis with multi-layered and radial basis function ANN models.  Leung 

et al. (2000) examined the forecast of a specific neural network architecture called 

the general regression neural network and compared its performance to those of a 

variety of forecasting techniques, including multi-layered feedforward network, 

multivariate transfer function, and random walk models. Enke and Mehdiyev (2014) 

introduced a hybrid model that attempts to forecast the inflation rate with a fuzzy 

inference neural network. 

 

ANN is superior to traditional methods. First, ANN is data oriented and has a 

learning capability via the gaining of experience.  Moreover, this method can 

generalize. Even the hidden parts and future behaviors of the data sets are fuzzy; 

however, after analyzing the data sets, the model can make generalizations and 

clarifications. Furthermore, unlike traditional models, ANN is non-linear (Zhang et 

al., 1998). Thus, ANN is a valuable tool for time series forecasting. In this type of 

forecasting, iterative or direct methods can be used. With the iterative method, data 

of the forecasting period are identified from past assumptions and this output data 

can be used as input for the next forecasting period. Ultimately, the process consists 

of iterative forecasts; hence, with the direct method, output data are forecast at one 

time (Hamzaçebi et al., 2009). ANN's main advantages are that it is easy to use and 

it can approximate any input/output map and provide remarkable results. The key 

disadvantages are that ANN trains slowly and require lots of training data because in 

this process the model is learning by analyzing relations between input and output 

and during the process it uses mathematical models such as normalization, ordering, 

and correlation (Mandal et al., 2006). 

 

3. Discounted Cash Flow 
DCF is a valuation method that calculates the attractiveness and profitability of an 

investment. It is easy to incorporate other valuation and decision tools such as NPV 

and IRR into DCF outputs. Firms generally compare both NPV and IRR to decide 

whether or not to invest. DCF uses future cash flow projections and discounts those 

cash flows with a discount rate, generally called the weighted average cost of capital 

(WACC). Cost of capital is a ratio of the weighted average of the company’s cost of 

debt and its cost of equity: 

 

𝑊𝐴𝐶𝐶 =  
𝐷

(𝐷+𝐸)
∗ 𝐶𝑑 ∗ (1 − 𝑇) +  

𝐸

(𝐷+𝐸)
∗ 𝐶𝑒(1) 

 

where D and E are debt and equity ratios of financing, respectively, Cd is the cost of 

debt, Ce is the cost of equity, and T is the tax. Future cash flows are discounted by 

firms’ WACC and the sum of the total cash flows is generally discounted to present 

value, which yields the NPV:  
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𝑁𝑃𝑉 = ∑
𝐶𝑖

(1+𝑟)𝑖 − 𝐶0
𝑖
𝑖=1 (2) 

 

NPV is the present value of the projected period’s cash flows where Ci is the net 

cash flow during period i, r is the discount rate, which is generally also the WACC 

in DCF analysis, and C0 is the total initial investment cost (Brigham & Houston, 

2004). A positive NPV indicates that projected total earnings of the investment are 

greater than the total costs and capital expenditures. The basic rule for NPV is that 

only NPV projects and investments with positive results should be considered. 

However, if more than one project is on the table, the greater NPV result is not 

always logical. In this circumstance, IRR is also considered to be a decision tool. 

IRR is defined as the discount rate that equates the present value of a project’s cash 

flows to zero, where the Cs are cash flows of the periods and n represents the 

periods: 

𝐶0 +
𝐶1

(1+𝐼𝑅𝑅)1 +
𝐶2

(1+𝐼𝑅𝑅)2 + … +
𝐶𝑛

(1+𝐼𝑅𝑅)𝑛 = 0(3) 

 

In the DCF method, the period’s projected revenues and costs are the main inputs 

for the cash flows. Firms estimate and calculate their revenues and costs of 

investment to form cash flows. Depending on the firm’s industry, inflation rates, 

exchange rates, real growth rates of the sector and country, market shares, and 

production processes are the main items of estimated revenues and costs.   To sum 

up, firms estimate and calculate their projected cash flows and with a DCF analysis 

both NPV and IRR are helpful tools for the firms to decide to make or not make 

investments. However, as mentioned in the previous section, estimation of the future 

cash flows is the main difficulty for firms because several inputs are independent of 

the firms’ activities, such as inflation rates and exchange rates. In this paper, a new 

approach is recommended for cash flow estimation; the approach uses ANN to 

predict the inflation and exchange rates and implements these inputs into cash flows. 

This kind of model implementation requires several steps: selection of input 

variables, structuring a neural network, training the network to create a learning 

medium, and forecasting accurately with benchmarking as-is data. 

 

4. Artificial Neural Networks 
When an artificial neural network is shaped, a specific architecture must be 

designed. This architecture will include a number of hidden neurons and layers. 

Also, it is possible to define a connection between input and output vectors as part of 

the net. The basic structure of an ANN has an input vector, hidden neurons and 

layers, and an output vector. Connections between neurons are of various types. For 

example, the backpropagation network (BPN), radial basis function (RBF), support 

vector machine (SVM), self-organization map (SOM), and multilayer perceptron 

(MLP) are all commonly used types, while the most common type is MLP 

(Sermpinis et al., 2012). Multilayer perceptrons are layered feedforward networks 

typically trained with static backpropagation. These networks have found their way 

into countless applications requiring static pattern classification. MLPs are formed 

by one input layer, one output layer, and more than one hidden layer (Mukherjeeand 

Biswas, 1997); see Figure 1. 
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Figure 1. Multilayer perceptrons and feedforwarding networks 

 

In this paper, to structure the network, the feedforward artificial neural network with 

backpropagation is used. Selecting the number of hidden neurons is also 

challenging. Several formulas are available for choosing the hidden neuron number, 

such as:  

a) N*1,5 ≤ X ≤  N*3  

b) X = N*0,75 

where N is the number of input data and X is the number of hidden neurons (Katz, 

1992; Bailey and Thompson, 1990). However, most related studies have used the 

trial-and-error process for the number of hidden neurons (Palmer et al., 2006; 

Zhang, 2001). In this study, the trial-and-error process is used starting with 1 hidden 

layer and moving to 10 hidden layers to determine which one produces the best 

results.  

 

5. Methodology 
5.1. Input Selection  

In this paper, an additional capacity investment project of a cement company in 

Turkey has been analyzed. The investment project’s financial yield is calculated 

with the traditional DCF model. To complete a full DCF analysis with NPV and IRR 

models for an investment decision, inputs must be clarified. Some inputs of the 

model, such as sales amount, are assumed by company and sector professionals 

because of their relation to commercial and business expertise. Current prices and 

cost structure are clarified and inflated onward. To sum up, one of the three main 

inputs is the sales amount forecast, which is driven by business expertise; other 

inputs are prices and cost structure, which are driven by inflation and exchange 

rates. For costs, capital expenditure, and export price, the USD/TRY exchange rate 

is used to calculate. Turkish inflation rate is used for price growth and cost growth.  

Both of these actual macroeconomic inputs were obtained from primary 

macroeconomic public sources such as the International Monetary Fund (IMF), 

World Bank and Turkish sources such as the Turkish Statistical Institute and Central 

Bank of Turkey. In addition, the Turkish inflation rate and USD/TRY exchange rate, 

which are the main inputs of the valuation model, are forecast with artificial neural 

networks, as detailed below. The DCF framework of the investment valuation and 

where inputs are implemented to the model are shown in Figure 2. 
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Figure 2. Discounted cash flow framework of the investment valuation. 

 

To select input variables to forecast the Turkish inflation rate, previous related 

works and approaches have been employed.  Somaratna et al. (2010) used gross 

domestic product, money supply, Treasury bill rate, and foreign exchange rate for 

inflation rate forecasting. Enke and Mehdiyev (2014) used seven input variables to 

forecast the inflation rate: industrial production index, producer price index, M1 

money stock, M2 money stock, 10-year Treasury constant maturity rate, JPY/USD 

foreign exchange rate, and Moody's seasoned Aaa corporate bond yield. Kooths et 

al. (2003) used the time series of oil price changes, foreign exchange rate, and the 

change in energy prices, as well as Bundesbank's inflation objective to forecast 

future inflation rates. Romer (1992) analyzed the Great Depression and used the M1 

money stock growth rate, lagged M1 growth, interest rates, and industrial production 

to forecast inflation rates. Moreover, Cecchetti (1992) considered nominal interest 

rates, growth rates of the monetary base, the M1 and M2 money stocks, and 

industrial production as the main variables to predict inflation rate. Dominguez et al. 

(1988) stated that the modern input variables used to predict inflation rates include 

the industrial production index, producer price index, stock price index, three-month 

interest rate, and a measure of money stock.  As listed above, general input variables 

are more or less the same. In this paper, nominal interest rates, growth rates of the 

monetary base, the M1 and M2 money stocks, and industrial production, which 

Cecchetti (1992) considered, are selected as input variables to forecast the inflation 

rate. 

 

Previous studies have used several different inputs for exchange rate prediction. 

Sarantis and Stewart (1995) used money stock M1, short-term interest rate, long-

term interest rate, inflation rate, current account balance, and gross domestic product 

to forecast the exchange rate. Meese and Rogoff (1983) used the short-term interest 
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rate, inflation rate, trade balance, and money stock as input variables. In this paper, 

five input variables mentioned by Verkooijen (1996) and Weeren et al. (1997) are 

used.  

st= f(rt,rt
*,mt, mt

*,ipt, ipt
*, πt, πt

*,TBt, TBt
*)+εt         (4) 

 

s represents the logarithm of the nominal exchange rate vis-à-vis the foreign 

currency, r represents nominal short-term interest rate, m is the logarithm of supply 

money M1, ip is the logarithm of the industrial production index, π is expected 

inflation rate in consumer prices, and TB represents the foreign trade balance. 

 

The main two inputs, USD/TRY exchange rate and Turkish inflation rateare used to 

determine therelevance and accuracy of ANN in investment decision analysis, by 

applying them to three different models which are shown below in Figure 3. 

Figure 3. Model frameworks used in the study 

 

5.2. Experimental Results  

After monthly data from 1999 through 2015 were entered in the model, the training 

and learning phase was performed. A total of 204 data items was obtained for each 

input from the Turkish Statistical Institute (TUIK) and US Bureau of Economic 

Analysis (BEA); 123 of these data items (60%) were used for training the models, 

20 for validation (10%), and the remaining 61 (30%) for testing the model. We used 

the trial-and-error method (Zhang, 2001; Palmer et al., 2006) to select more accurate 

results of the hidden neurons for each input to structure and implement them into the 

DCF model. The lower root mean square error (RMSE) means more efficiency and 

the higher R means a more correlated forecast. Table 1 shows that six hidden 

neurons provide the best results for the USD/TRY exchange rate forecast, and five 

hidden neurons provide the best results for the inflation rate forecast. 
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Table 1. RMSE results of different hidden neurons, USD/TRY exchange rate 

and inflation rate forecast with designed ANN framework 

Hidden 

Neuron 

USD/TRY exchange rate Turkish inflation rate 

RMSE R RMSE R 

1 0,0446 0,63 0,0090 0,86 

2 0,0437 0,63 0,0086 0,87 

3 0,0437 0,48 0,0213 0,89 

4 0,0411 0,56 0,0099 0,83 

5 0,0500 0,47 0,0085 0,88 

6 0,0407 0,63 0,0111 0,85 

7 0,0416 0,52 0,0097 0,87 

8 0,0533 0,61 0,0097 0,85 

9 0,0434 0,65 0,0111 0,82 

10 0,0653 0,08 0,0145 0,89 

 

In the DCF analysis, five years of cash flows were projected (2011-2015) and 

onwards was assumed as terminal value with terminal growth; for discounting cash 

flows 13.5% TRY WACC was used. In the actual model, with those structures and 

realized actual inputs of the projected period, the actual NPV range becomes $277-

$316 million with a $296 million middle value. The IRR of the actual result is 

24.6%. However, in the traditional model, outcomes of public macroeconomic 

sources that are well accepted by investment decision makers, such as IMF 

databases and/or central banks’ macroeconomic forecasts, are used for the inflation 

rate and USD/TRY exchange rate and the result is a $180-$202 million NPV range 

with a $191 million middle value, and 23.2% IRR. As seen, there is a major 

difference in NPV results of the models because in 2011 the long-term inflation rate 

forecast of the IMF for the Turkish economy was 7.0%; however, the realized 

inflation rate fluctuated between 6% and 10%. Moreover, the average USD/TRY 

exchange rate forecast based on macroeconomic sources for 2015 was around 2.0-

2.1; however, the realized 2015 average USD/TRY exchange rate was around 2.7.  

In the DCF with ANN model, the forecast inputs from ANN were used and the NPV 

range was $262-$298 million with a $279 million middle value and IRR of 24.4%. 

As a result, these outcomes are more accurate and closer to the actual results than 

those based on traditional assumptions. 

 

Table 2. NPV and IRR results of the different models 

Model 
NPV (m$) 

 IRR 
Middle Range 

Actual 296 277-316 24.6% 

Traditional Assumptions 191 180-202 23.2% 

DCF with ANN 279 262-298 24.4% 
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6. Conclusion 
To maintain sustainable and profitable growth, firms make investments. Choosing 

true, logical, and, more importantly, profitable investments from among several 

investment options is the main challenge for firms and decision makers. Even 

though it is a traditional and old valuation method, DCF is the most common 

method for evaluating investment options. DCF is generally used with other 

conventional and traditional methods such as NPV and IRR.  On the other hand, 

outcomes of the DCF consider future cash flows and predictions of cash flows are 

related to detailed revenue and cost analyses. Firms generally use well-known macro 

financial databases such as those from the World Bank, IMF, or central banks for 

their inputs. This input verification process is more difficult if a firm prefers to 

invest abroad or to invest in lesser known non-core businesses.  

 

This paper discussed two main inputs which Turkish companies frequently use in 

their valuation analysis: USD/TRY exchange rate and Turkish inflation rate. Both 

rates are valuable inputs for DCF analysis in most industries, especially the cement 

sector. These inputs are forecast with the artificial neural network model and 

implemented in traditional valuation models such as DCF, NPV, and IRR. The main 

purpose of this work is to eliminate the rigidity and uncertainty associated with the 

traditional DCF model and to add flexibility and alternative results to that model 

with the forecast main inputs.  

 

This paper demonstrates that the exchange rate and inflation rate can be forecast 

with artificial neural networks, and the results of the DCF with ANN provide better 

results than the traditional assumptions when comparing the actual results. Thus, 

companies can use the ANN method to forecast main inputs and implement them in 

their investment valuation analysis. 
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