Dogus Universitesi Dergisi, 6 (1) 2005, 67-78

WORKLOAD BALANCING IN PRINTED CIRCUIT BOARD
ASSEMBLY SHOPS

BASKI DEVRE KARTI DIZGI ATOLYELERINDE HAT DENGELEME

Ekrem DUMAN M. Bayram YILDIRIM
Dogus University, Department of Industrial Wichita State University, Industrial and
Engineering Manuf. Eng. Department

ABSTRACT : In assembling printed circuit boards (PCB), the use of numerically or
computer controlled electronic component placement machines has become quite
popular in the last decades. However, serious operations research problems arise
through their use such as, allocation of component types to machines, board
production schedule, feeder configuration and placement sequencing. In this study,
the problem of allocation of component types to machines is taken up where two
non-identical machines are deployed serially on a line to complete the assembly
process of PCBs. For the solution of this problem three heuristic algorithms are
suggested and their performances are investigated on experimental data.

Keywords: Heuristics, Printed Circuit Board Assembly, Load Balancing

OZET : Son yilarda baski devre kartlarmin (BDK) dizgisinde niimerik veya
bilgisayar kontrollii elektronik dizgi makinalavinmn kullanim: yaygin hale gelmistir.
Ancak, bu beraberinde komponent tiplerinin makinalara atanmasi, kart tiretim
cizelgelemesi, besleyici diizeni ve dizgi sirasi gibi karmasik yvoneylem arastirmasi
problemlerini getirmistir. Bu ¢alismada, birbirinden farkli iki makinann ayn: hatta
olmast durumu icin komponentlerin makinalara atanmasi problemi ele alinmistir.
Bu problemin ¢dziimii igin ii¢ ayr sezgisel algoritma gelistirilmis ve performanslari
ornek veriler iizerinde incelenmigtir.

Anahtar Kelimeler: Sezgisel yontemler, Baskili devre karti dizgisi, Hat dengeleme

1. Introduction

Numerically or computer controlled electronic component placement machines have
been extensively used in assembling printed circuit boards (PCB) during the last
decades. As compared to manual assembly of PCBs, automated placement machines
have brought major gains in productivity and efficiency through their fast, error free
and reliable component placement operations. However, serious planning and
scheduling problems such as, allocation of component types to machines,
determination of board production sequence, allocation of component types to
feeder cells (feeder configuration) and determination of component placement
sequence have arisen in their use.

All of these problems are interdependent, i.e., the solution of any problem affects the
solution of the others. Such interdependency is more evident between the first two
and last two problems. Thus, all four problems should be considered and solved
simultaneously if an overall optimal solution is desired. However, since each of
these problems is quite complex by itself, trying to build and solve a monolithic
model is quite difficult and intractable. Hence, in this study, they are taken as

68 Ekrem DUMAN, M. Bayram YILDIRIM

separate problems and iterative solution methods are suggested to cope for the
interaction between them (Duman, 1998).

In this study, the first one of the four major problem classes, identified with regard
to the automated assembly of PCBs, is taken up. Note that, component allocation
problem can be classified as machine load balancing problem in the broad sense.

The amount of research made on PCB assembly problems is quite extensive.
However, most of these researches are related to the feeder configuration and
placement sequencing problems and the component allocation problem has received
less attention. Furthermore, the researches made on component allocation problem
mostly assumed that the machines deployed serially on a line are identical. Below
some of the works that are mainly related to the component allocation problem are
briefly surveyed.

A general overview of PCB assembly problems is given by McGinnis et. al. (1992),
and a more recent one is due to Ji and Wan (2001). Francis and Horak (1994)
considered the problem of choosing the numbers of reels of each type of
components to be used in populating a printed circuit board, by a surface mount
technology (SMT) machine. The objective is to maximize the length of an
uninterrupted machine production run, while using no more slots for reels than are
available. Carmon et al. (1989) aimed at minimizing the total setup time in changing
the feeder configuration and propose a different production method, called the group
set-up (GSU) method (grouping similar boards), which can significantly reduce set-
up times. Askin et al. (1994) addressed the problem of minimizing the makespan for
assembling a batch of boards with a secondary objective of reducing the mean flow
time. Ben-Arieh and Dror (1990) studied the problem of assigning component types
to insertion machines with the aim of balancing the workload assigned.

As the sequence of boards to be produced on a single machine and the allocation of
different component reels to feeder carriage are considered together, one might
adapt an iterative approach. Sadiq et. al. (1993) proposed such an iterative approach
with the aim of minimizing the total production time for a group of PCB assembly
jobs on a single machine. Ahmadi et. al. (1988) considered a placement machine,
which features two fixtures for the delivery of components to the placement heads.
They investigated the case where all components are accessible and the pick
sequence is static. Crama et. al. (1990) proposed a heuristic hierarchical approach to
the problem of optimizing the throughput rate of a line of several component
placement machines with three placement heads, all devoted to the assembly of a
single type of PCB. Given a line of placement machines and a family of boards,
Klomp et.al. (2000) developed a heuristic algorithm which focused on the feeder
rack assignment problem. Hillier and Brandeau (2001) developed an efficient
algorithm to balance the workload among the semi-automatic placement machines
and the manual assembly stations which is called the Cost Minimizing Workload
Balancing Heuristic. Duman (1998) considered the distribution of workload to two
placement machines deployed serially on a line. He developed and compared 28
construction algorithms and the best performing algorithms are further improved by
pair-wise exchanges.

In the next section, the description of the problem environment and the problem
formulation are given. The solution algorithms suggested are explained in section

Workload Balancing in Printed Circuit Board Assembly Shops 69

three. The experimentation runs and the results obtained are discussed in section
four. Finally, in section five, a short summary and the major conclusions arrived in
this study are provided.

2. Problem Definition

The setting of the load balancing (component allocation) problem arising in
automated PCB assembly shops shows large variability. The main reasons of this
variability are due to the variances in machine architecture (type), the differences in
the characteristics of the production processes and various engineering preferences.
One may say without loss of generality that, the number of different load balancing
problem formulations can be as large as the number of PCB assembly facilities. The
implications of different machine types, production characteristics and engineering
preferences on the load balancing problem are discussed in detail in Duman (1998).

2.1. Description of the Case

The machine type considered is one with component pickup device (leading to a
trivial feeder configuration problem), stationary placement head and moving carrier
board, which is the technology that is used by most placement machine
manufacturers today (in fact, the discussions made here are valid also for many other
machine types). The basic operations of such kind of a machine are described below.

4——Head
EEEm—
Conveyor Belt
PCB
Machine 1 Machine 2 Carrier Board

Figure 1. Two placement machines on a line.

Circular shaped rotating component pickup device takes the role of sequencer
machine. The pickup device, which has 60-120 heads, picks up the components to
its heads in the placement order, from the component tapes, which are placed along
the perimeter of the device and performs each placement just after the desired
precise placement location is aligned beneath the head currently over the carrier
board. The placement sequencing problem turns out to be a Chebyshev TSP
(Duman, 1998; Duman and Or, 2004) and the layout of the component tapes can be
formulated as a simple allocation problem (Duman, 1998).

The boards are populated by two machines sequentially. There is a conveyor belt
between the machines, which carries the partially completed boards from machine 1
to machine 2 (see figure 1). For this assembly environment case, the following
assumptions are undertaken regarding the load balancing problem:

70 Ekrem DUMAN, M. Bayram YILDIRIM

Al. Machines are not identical: they may have different speeds and different number
of feeder slots.

A2. Component types are identical with respect to their slot requirements in the
feeder area and all are handled with the same nozzle.

A3. Assembly of a new board type cannot start unless both machines are cleared by
the currently assembled board type.

Ad. There is no sequence dependent setup time, when switching between different
board types.

AS5. The total number of component types is equal to the total number of feeder
locations on two machines.

A6. Total number of component types to be populated on any PCB type is larger
than the feeder capacity of either machine, so that each board type requires both
machines to be fully assembled.

A7. The demand for PCB types are known and fixed for the planning period under
consideration.

AS8. The placement of each component takes time directly proportional to the speed
of the machine making the placement.

A9. The production environment is high-mix, low-volume.

A10. The setup times incurred in changing a component type in the feeder are very
high.

Al1l. Buffer of partially completed boards is not desired due to the engineering
preferences.

The justifications and/or the limitations of these assumptions are investigated in
detail in Duman (1998). Thus, the reader may refer to that study for a discussion on
this issue.

2.2. Problem Formulation

When the setup time to change a component in the feeder is very high, then it is not
desirable to make any changes in the feeder configuration during the whole planning
horizon (a strong assumption 10). In this case, the objective becomes to distribute
the component types to the two machines so that, the workload among the machines
has a good balance regarding each particular board type.

The notation given below will be used in the formulation of the problem:

i :component type index (i=1,..,n)

j : board type index (j=1,..,m)

a; :number of boards of type j to be produced

: number of components of type i to be placed on board type j
F; : feeder capacity of machine i (i=1, 2)

s; :speed of machine i (i=1, 2)

X; @ {1 if component type i is assigned to machine 1, 0 otherwise}

N; : total number of components to be placed on board type j (= 2 a jPij)

Now, the problem can be formulated similar to Ben-Arieh and Dror (1990) and
Duman (1998) as follows:

Workload Balancing in Printed Circuit Board Assembly Shops 71

(1)

m
Min 2 a,
J=1

Z{Xi])ij/sl _Z{(I_Xi)])ij/sz

s.t. Eaj(EXiPij/sl —2(1—Xi)3j/s2)zo ®)
j=1 i=1

i=1

X, <F 3)

i
i=1

n

Y (1-X,)<F, @)

i=1

X;=0orl i=l,.n

In the above formulation, the objective function (1) shows the sum of the machine
workload imbalances resulting from the assembly of each particular board type.
Constraint (2) says that the workload assigned to machine 1 is greater than or equal
to the workload assigned to machine 2. This is to ensure that less work-in-process
inventory is accumulated between the machines. On the other hand, constraints (3)
and (4) are just the feeder capacity constraints.

This problem is shown to be NP-Complete in Duman (1998). Thus, one needs to
look for good performing heuristic algorithms to cope with this problem. The
heuristic algorithms suggested in this study are described in the next section.

3. Solution Procedures Developed

The algorithms considered in the investigation of the non-identical case problems
are the best performing algorithms for the identical machines case (CUgr, BUgr)
(Duman, 1998), and the CUtd algorithm (which is specifically developed for non-
identical case). It was felt that, there is no need to test the others in Duman (1998),
since structurally these are quite representative for all.

The detailed description of CUgr and BUgr algorithms are available in Duman
(1998), however they are shortly reviewed below for convenience.

The CUgr and BUgr algorithms have two mechanisms in their structure: component
sort and component assignment. Component sort is the rule, which determines the
order by which component types are assigned to the machines. On the other hand,
component assignment is the rule of deciding to which machine a given component
type is to be assigned. The component sort rules of CUgr and BUgr algorithms are
component usage (CU) and board-component usage (BU) respectively and the
component assignment rule is greedy optimization (gr) for both. The definitions of
these rules are given below:

72 Ekrem DUMAN, M. Bayram YILDIRIM

m
CU (component usage): CU; :2 a; Pl.j . Under this rule, total number of
=1
placements of each component type over all boards to be produced, are calculated
and component types are sorted in non-increasing order of these values.

BU (board-component usage): This is a two step component sorting rule; first, board
types are ordered according to the number of components to be populated on them.
Board types requiring more components (higher Nj) are more important and come
earlier in the list. First board type in the list is picked up and the component types
that exist on that board are ordered in non-increasing order of their usage on that
board. Then, the second board type is picked and the component types that exist on
that board but not yet included in the ordered list before, are added at the end of the
list with the same logic. This procedure continues until the ordered list contains all
component types.

GR (greedy optimization): This rule seeks a partial load balance at each step. Each
time a new component type is picked up from the component sort list, the value of
the objective function for the partial feeder configurations attained so far is
calculated for both possible machine assignments, and the machine corresponding to
a lower objective value (imbalance) is chosen for assignment.

During the application of the assignment rule, in case of a tie, machine 1 is chosen
for the assignment (this helps the satisfaction of constraint (2) given in the problem
formulation). This rule is valid as long as there are empty feeder locations on both
machines. If the feeder of one machine is filled up, then the remaining component
types are necessarily assigned to the other machine.

For the CUtd another component assignment rule specifically developed for non-
identical machines case is used. This is the 7D (fop down) component assignment
rule and is explained below (machine one is assumed to be faster and has more
feeder slots than machine two):

TD rule requires the introduction of the "filling speed" concept. Analytically, filling
speeds of the machines (fsy, fs,, etc.) are equal to the quotient of the division of
feeder sizes (F, F,, etc.) by the highest common factor of them. For example, if
F1=20 and F,=10, then the highest common factor = 10, and fs; = quotient (20/10) =
2 and fs, = quotient (10/10) = 1. For identical machines, both filling speeds are equal
to unity. Another new concept introduced is the so called dlpf (desired load per
feeder). To calculate dlIpf, the total number of component placements is expressed as
a pair, where each term represents the number of components desired to be placed
on each machine respectively. These terms are calculated proportional to the speed
of machines. Then the desired component placement number of a machine is divided
by the feeder size and the dipf for that machine is obtained. As an example, if F;=20,
F,=10, s; (speed of machine 1) =4, s, (speed of machine 2) = 1 and the total number
of component placements = 1500, then (1500*4/5, 1500*1/5) are the number of
components desired to be placed on the two machines. Accordingly, 1200/20=60
and 300/10=30 are the dlpf; and dlpf, values respectively. Note that, in this example,
fs;=2 and fs,=1. In the case of identical two machines, dlpf; equals dipf;.

Workload Balancing in Printed Circuit Board Assembly Shops 73

After the filling speeds and the dlpf’s are calculated, the ¢d sort rule proceeds as
follows: Given a component sort list (CU is preferred), fs; component types from the
top and fs, component types from the bottom of the list are taken and assigned to
machines 1 and 2 respectively. Then, first the fs; and then the fs, component types
already assigned to machines are considered and the imbalance resulting from these
assignments is tried to be balanced by adding another fs; and fs, component types to
two machines gradually (one after the other). Prior to the addition of a new
component type to either one of the machines, the desired partial load (DPL) for the
slots already filled up is calculated according to;

DPL; = dlpfi*[(number of slots already filled); + 1]

where the addition of 1 is to take into account the new slot to be filled. If we define
APL,; (actual partial load for machine i) as the sum of the component usages for the
component types already assigned to machine i, then the aim is to minimize the
difference between the actual and desired partial loads (DPL;-APL;). To accomplish
this task, a component type among the unassigned ones is chosen and assigned to
machine i. After this, another set of fs; and fs, component types is assigned to the
machines and any resulting imbalance is minimized as explained above. This
procedure continues until all component types are assigned to a machine.

The logic behind this algorithm is the dlpf concept. Although in the optimal solution
the resulting load per feeder values may not be equal to the dlpf values used in this
algorithm (60 and 30 for the above example), intuitively, a component allocation
plan which attains the dlpf values should not be far from the optimum. The strength
of this algorithm is the equal filling rate of machines if their feeder sizes are not the
same (i.c., at all times, the machines are being filled up with equal ratios, so there is
little risk of being obliged to assign the last component types to an undesirable
machine since the desirable one is already filled up).

The description of the CUtd algorithm given above implicitly assumes that the
highest common factor of the feeder capacities of the machines is a large number (at
least five). In other words, the ratio of the filling speeds is assumed to be a round
decimal number (e.g. 1.25, 1.50, 2.00). If this is not the case (e.g. feeder capacities
are prime numbers), it may be required that the whole or a great portion of the feeder
mechanisms be filled up at the very first iteration of the algorithm. This obviously is
not a desired situation according to the philosophy of CUtd. In such cases, one may
prefer to round off the ratio of filling speeds to a round decimal number at the cost
of being obliged to assign several last components to the undesired machine (like in
the case of CUgr and BUgr algorithms).

In the next section, test problems are generated and solved using these algorithms.

4. Experimental Runs and Results Obtained

Test problems are randomly generated with various number of component types
(n=30, 60, 90, 120) and two different number of board types (m=10, 20) are
generated and solved. The speed of machine 1 (s;) is taken as four times the speed of
machine 2 (s,), while feeder capacity of machine 1 (F)) is taken as twice the feeder
capacity of machine 2 (F,). The results for m=10 and m=20 are displayed in tables 1
and 2 respectively.

74 Ekrem DUMAN, M. Bayram YILDIRIM

In these tables, the following convention is used to represent the randomly generated
test problems:

PnmAi

where;

P : denotes the word "problem” and has no other special meaning

n : number of component types (the problem size)

m : number of board types

A : stands for the homogeneous structure of the placement matrix (explained below)
i : the problem index (e.g. 1,2,..) if there is more than one problem with the same

parameters

Another parameter not shown in the above representation is the number of boards to
be produced of each particular board type. These are generated from a uniform
distribution between 1 and 10.

For each (n,m) combination the number of problems generated is six. Since it is
difficult to judge the performances of the algorithms just by looking at the objective
function values, the percent deviations of the algorithms from the best solution are
calculated and are also tabulated in tables 1 and 2. As an example, if for a particular
problem, a result of 97 is obtained by algorithm X and the best result among all
algorithms is 78, then the percent deviation of algorithm X from the best solution is
calculated as (97-78)/78 = 0.24. Average deviation values (Aver. all) for all
problems are listed at the bottom of these tables.

The placement matrix (P) of test problems has a homogeneous structure. To
determine the value of ecach particular p; element, a uniform random number
between 1 and 100 is generated and a value is assigned to p; according to the
following rule:

Range pii Assumed Percentage
1-40 0 40
41-55 1 15
56-70 2 15
71-78 3 8
79-85 4 7
86-91 5 6
92-96 6 5
97-100 7 4

The idea here is to reflect a common real life problem characteristic, where it is
usual that most component types are placed on boards in small quantities (1 or 2),
while few are placed in larger numbers.

Table 1. Algorithm results for 10 board types

Workload Balancing in Printed Circuit Board Assembly Shops 75

Total imbalance values Deviation from best solution

CUgr | BUgr | CUtd | RAN | MIN | CUgr | BUgr | CUtd | RAN
P3010A1 97 78 172 142 78 0.24 0.00 1.21 0.82
P3010A2 115 149 121 224 115 0.00 0.30 0.05 0.95
P3010A3 138 155 203 270 138 0.00 0.12 047 0.96
P3010A4 88 100 46 175 46 0.91 1.17 0.00 2.80
P3010A5 104 127 103 115 103 0.01 0.23 0.00 0.12
P3010A6 124 91 123 311 91 0.36 0.00 0.35 242
Aver. (n=30) 111 117 128 206 95 0.25 0.30 0.35 1.34
P6010AL 224 205 133 511 133 0.68 0.54 0.00 2.84
P6010A2 213 250 155 414 155 0.37 0.61 0.00 1.67
P6010A3 272 324 253 705 253 0.08 0.28 0.00 1.79
P6010A4 41 38 175 172 38 0.08 0.00 3.61 3.53
P6010AS 172 178 213 297 172 0.00 0.03 0.24 0.73
P6010A6 148 141 193 419 141 0.05 0.00 0.37 1.97
Aver. (n=60) 178 189 187 420 149 0.21 0.24 0.70 2.09
P9010A1 306 324 221 481 221 0.38 0.47 0.00 1.18
P9010A2 289 305 216 614 216 0.34 0.41 0.00 1.84
P9010A3 349 390 293 727 293 0.19 0.33 0.00 1.48
P9010A4 210 250 182 484 182 0.15 0.37 0.00 1.66
P9010AS 328 352 240 723 240 0.37 0.47 0.00 2.01
P9010A6 395 406 334 667 334 0.18 0.22 0.00 1.00
Aver. (n=90) 313 338 248 616 248 0.27 0.38 0.00 1.53
P12010A1 568 659 344 1049 344 0.65 0.92 0.00 2.05
P12010A2 490 520 262 1025 262 0.87 0.98 0.00 291
P12010A3 529 537 343 983 343 0.54 0.57 0.00 1.87
P12010A4 377 431 346 671 346 0.09 0.25 0.00 0.94
P12010A5 547 633 331 1129 331 0.65 0.91 0.00 241
P12010A6 525 541 442 956 442 0.19 0.22 0.00 1.16
Aver. (n=120) 506 554 345 969 345 0.50 0.64 0.00 1.89
Aver. (all) 277 299 227 553 209 0.31 0.39 0.26 1.71

It can be seen in tables 1 and 2 that, the CUtd algorithm performs the best. Out of
the 24 problems, CUtd found the best result 17 and 22 times for m=10 and m=20
cases respectively. The second best performing algorithm is CUgr, which was the
best performing one in the identical machines case (Duman, 1998). The superiority
of CUtd over the others becomes more evident as the problem gets more
complicated (higher n and m).

The superiority of the CUtd algorithm against the CUgr and BUgr algorithms may
be due to two reasons: First, it fills the feeders proportional to their capacities and
secondly, it tries to allocate the component types with smaller usage numbers to the
slower machine. On the other hand, the deficiency of the CUgr and BUgr algorithms
is that, they fill up the feeders proportional to machine speeds, not to feeder
capacities.

76 Ekrem DUMAN, M. Bayram YILDIRIM

Table 2. Algorithm results for 20 board types

Total imbalance values Deviation from best solution

CUgr | BUgr | CUtd | RAN | MIN | CUgr | BUgr | CUtd | RAN
P3020A1 291 283 206 567 206 041 0.37 0.00 1.75
P3020A2 351 400 333 691 333 0.05 0.20 0.00 1.08
P3020A3 356 445 256 436 256 0.39 0.74 0.00 0.70
P3020A4 289 319 228 608 228 0.27 0.40 0.00 1.67
P3020A5 259 338 261 448 259 0.00 0.31 0.01 0.73
P3020A6 244 299 231 352 231 0.06 0.29 0.00 0.52
Aver. (n=30) 298 347 253 517 252 0.20 0.39 0.00 1.08
P6020A1 604 665 433 750 433 0.39 0.54 0.00 0.73
P6020A2 685 732 444 1019 | 444 0.54 0.65 0.00 1.30
P6020A3 529 540 464 981 464 0.14 0.16 0.00 1.11
P6020A4 86 142 395 216 86 0.00 0.65 3.59 1.51
P6020A5 791 896 506 1048 | 506 0.56 0.77 0.00 1.07
P6020A6 696 640 495 1181 | 495 041 0.29 0.00 1.39
Aver. (n=60) 565 603 456 866 405 0.34 0.51 0.60 1.19
P9020A1 744 831 648 1239 | 648 0.15 0.28 0.00 091
P9020A2 805 839 547 1389 | 547 047 0.53 0.00 1.54
P9020A3 666 702 387 949 387 0.72 0.81 0.00 145
P9020A4 695 678 366 958 366 0.90 0.85 0.00 1.62
P9020AS5 666 779 459 923 459 0.45 0.70 0.00 1.01
P9020A6 719 755 424 1111 | 424 0.70 0.78 0.00 1.62
Aver. (n=90) 716 764 472 1095 | 472 0.56 0.66 0.00 1.36
P12020A1 966 1021 514 1438 | 514 0.88 0.99 0.00 1.80
P12020A2 880 1021 441 1117 | 441 1.00 1.32 0.00 1.53
P12020A3 954 1029 676 1481 | 676 041 0.52 0.00 1.19
P12020A4 1046 1119 620 1631 | 620 0.69 0.80 0.00 1.63
P12020A5 1220 1335 839 2007 | 839 0.45 0.59 0.00 1.39
P12020A6 1212 1190 629 2112 | 629 0.93 0.89 0.00 2.36
Aver. (n=120) 1046 1119 620 1631 | 620 0.73 0.85 0.00 1.65
Aver. (all) 656 708 450 1027 | 437 0.46 0.60 0.15 1.32

In tables 1 and 2, one may notice that, as the number of component types (n)
increases, the total imbalance value seems to increase. Regarding the best results
obtained by the algorithms (the MIN column in tables 1 and 2), linear regression
models are built using the SPSS statistical package and the sample coefficients of
determination (r*) turn out to be 0.77 and 0.58 for m=10 and m=20 cases
respectively. These values can be regarded as sufficient to accept a linear
relationship between the total imbalance value and the number of component types.

To see the benefits gained by using the algorithms, the generated problems are
solved by assigning the component types to machines in a random fashion (the RAN
column in tables 1 and 2). It is seen that, the use of the algorithms brings about a 60
per cent reduction in the total imbalance value.

http://Totalimbalancevah.es

Workload Balancing in Printed Circuit Board Assembly Shops 77

Regarding the performance of the CUtd algorithm (or, also of the other algorithms)
it may be useful to look at the ratio of the imbalance values obtained to the total
production time (TPT) to complete the assembly of all boards. The total production
time can be calculated as;

TPT = n*E[P;|*m*E[a;]/5 (5)

where, E[P;] is the average number of placements of a component type on a board
type (calculated to be 1.85 for the test problems generated) and E[aj] is the average
number of boards to be produced of a particular type and it is calculated to be 5.5
which is the expected value of Uniform (1,10). The division by the constant factor
“5” is assembly time of any of the machines under the assumption that the total
workload is perfectly distributed (recall that in the test problems machine 1 is four
times faster than machine 2 and when one out of five components is allocated to
machine 2, the production time will be one fifth of the total number of components).
The ratios of the imbalance value obtained by CUtd algorithm to the total production
time are tabulated in table 3 (the average of the imbalance values for the six
problems having the same number of component types is taken into account).

Table 3. Ratio of CUtd results to total production time (%)

m=10 m=20
n CUtd TPT ratio CUtd TPT ratio
30 128 610 21.0 253 1221 20.7
60 187 1221 15.3 456 2442 18.7
90 248 1832 13.5 472 3663 12.9
120 345 2442 14.1 620 4884 12.7
average 16.0 16.2

The ratio values given in table 3 may somewhat be regarded as loose upper bounds
and there may be still room for improvement. In this sense, one may be unsatisfied
or unsure about the performance of the CUtd algorithm and may look for better
performing algorithms. Although, this may be a proper future study area, the next
step should be to solve the placement sequencing problem (which was omitted in
this study) for the component allocation plan generated by the CUtd algorithm. Then
the workload imbalances could be improved by exchanging some component types
assigned to machines. In this approach, these two problems (component allocation
and placement sequencing) should be solved iteratively (one after the other) until a
satisfactory result is obtained.

5. Concluding Remarks

In this study, the problem of allocating component types to machines where two
non-identical placement machines are deployed for the assembly of PCBs is
considered. This study can be regarded as an extension of Duman (1998), where the
focus was on two identical machines case. Two best performing algorithms of
Duman (1998) are selected and applied to the non-identical case and a new
algorithm CUtd is developed as a special solution of non-identical case. The
performances of these algorithms are tested on randomly generated test data and the
CUtd algorithm is found to be the best.

78 Ekrem DUMAN, M. Bayram YILDIRIM

A possible future study could be to extend the ideas presented here for the existence
of non-identical component types where each may require different number of slots
in the feeder mechanism (relaxation of assumption two). Although it may rarely be
faced in real PCB assembly shops, another possible future study area could be the
consideration of more than two non-identical machines deployed on a line. Finally, a
major future study could be the handling of component allocation and placement
sequencing problems together.

References

AHMADI, J., GROTZINGER, S. & JOHNSON, D. (1988) Component allocation
and partitioning for a dual delivery placement machine. Operations Research,
36/2, pp. 176-191.

ASKIN, R.G., DROR, M. & VAKHARIA, A.J. (1994) Printed circuit board family
grouping and component allocation for a multimachine, Open-shop assembly
cell. Naval Research Logistics, 41, pp. 587-608.

BEN-ARIEH, D. & DROR, M. (1990) Part assignment to electronic insertion
machines: Two machine case. International Journal of Production Research,
28/7, pp. 1317-1327.

CARMON, T.F., MAIMON, O.Z. & DAR-EL, E.Z. (1989) Group set-up for printed
circuit board assembly. International Journal of Production Research, 27/10, pp.
1795-1810.

CRAMA, Y. KOLEN, A.W.J. OERLEMANS, A.G. & SPIEKSMA, F.C.R. (1990)
Throughput rate optimization in the automated assembly of printed circuit
boards. Annals of Operations Research, 26, pp. 455-480.

DUMAN, E. (1998) Optimization issues in automated assembly of printed circuit
boards. PhD Thesis, Bogazici University.

DUMAN, E. & OR, I. (2004) Precedence constrained TSP arising in printed circuit
board assembly. International Journal of Production Research, 42/1, pp. 67-78.

FRANCIS, R.L. & HORAK, T. (1994) A note on reel allocation problem. /I/E
Transactions, 26/3, pp. 111-114.

HILLIER, M.S. & BRANDEU, N.L. (2001) Cost minimization and workload
balancing in printed circuit board assembly. IIE Transactions, 33, pp. 547-557.

JI, P. & WAN, Y.F. (2001) Planning for printed circuit board assembly : the state-
of-the-art review. Int. J. of Computer Applications in Technology, 14 Nos.4/5/6,
pp. 136-144.

KLOMP, C., KLUNDERT, J., SPIEKSMA, F.CR. & VOOGT, S. (2000) The
feeder rack assignment problem in PCB assembly: A case study. International
Journal of Production Economics, 6, pp. 399-407.

McGINNIS, L.F., AMMONS, J.C., CARLYLE, M., CRANMER, L., DEPUY,
G.W,, ELLIS, K.P., TOVEY, C.A. & XU H. (1992) Automated process planning
for printed circuit card assembly. I/E Transactions, 24/4, pp. 18-29.

SADIQ, M., LANDERS, T.L. & TAYLOR G.D. (1993) A heuristic algorithm for
minimizing total production time for a sequence of jobs on a surface mount
placement machine. International Journal of Production Research, 11/6, pp.
1327-1341.

