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Abstract

For Single Voxel Spectroscopy (SVS), the acquisition of the spectrum is typically repeated n

times and then combined with a factor n in order to improve the Signal-to-Noise Ratio (SNR). 

In practice the acquisitions are not only affected by random noise, but also by physiological 

motion and subject movements. Since the influence of physiological motion such as cardiac and 

respiratory motion on the data is limited, it can be compensated for without data-loss. Individual 

acquisitions hampered by subject movements on the other hand need to be rejected, if no 

correction or compensation is possible. If the individual acquisitions are stored, it is possible to 

identify and reject the motion-disturbed acquisitions before averaging.

Several automatic algorithms were investigated using a dataset of spectra from non-anesthetized 

infants with a gestational age of 40 weeks. Median filtering removed most subject movement 

artifacts, but at the cost of increased sensitivity to random noise. Neither Independent 

Component Analysis (ICA) nor outlier identification with multiple comparisons has this 

problem. These two algorithms are novel in this context. The peak height values of the 

metabolites were increased compared to the mean of all acquisitions for both methods, although 

primarily for the ICA method.

Keywords: single voxel spectroscopy, motion correction, ICA, proton spectroscopy
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Introduction

Subject movement during consecutive Single Voxel Spectroscopy (SVS) acquisitions is often not

detected and the resulting distorted data affects the outcome measures. Since severe patient 

movements, as present for instance in SVS of non-anesthetized pediatric patients, psychiatric and

demented patients, cause significant deterioration in spectra, they should not be ignored. For 

example, movements may introduce a bias in a comparative study between patients and healthy 

controls. Despite its significance, the issue of identifying motion-distorted spectra, in contrast to 

motion correction and compensation, is quite unexplored and often not mentioned (1, 2).

Compensation for spectra that are potentially affected by physiological motion can be performed 

by cardiac and respiratory gating (3) and/or breath holding techniques (4). Since disturbances in 

phase and frequency by physiological motion are limited (5), they can be compensated for by 

phase correcting the individual acquisitions before averaging, a process known as phase coherent 

or constructive averaging (6), followed by frequency shift correction (7, 8). However these 

techniques can potentially introduce a bias caused by differences in noise between subjects. A 

bias towards increased phase reference signals may also result.

Severe patient movement cannot be compensated for and the acquisitions distorted by patient 

motion need to be identified and rejected. Motion can be tracked by a water-signal-based 

navigator (9), or an interleaved navigator scan (10). Especially J-difference editing is sensitive to

motion artifacts and it was shown that the interleaved navigator scan is sufficient (11). 

However, a navigator scan is not necessarily needed since the single voxel spectra of the 

consecutive acquisitions reveal information of the subject's movement. The motion-distorted 

acquisitions seem easy to identify visually, but commonly used “objective” rejection criteria are 

typically based on the position, amplitude and width of the suppressed water peak and an 

arbitrary threshold (12). Alternatively a cluster analysis of the lipid signals can be used to correct 

for subject motion (13), but a lipid signal might not always be present.

In practice, motion correction consists of two steps. First the acquisitions severely deteriorated 

by subject movements need to be identified and excluded. Second the remaining acquisitions 

need to be frequency-shifted and phase-corrected individually (13). 

Movements during an individual acquisition, and severe movements between acquisitions, may

corrupt the entire spectrum of the acquisition irreversibly. Limited movement between individual 

acquisitions will introduce a simultaneous broadening and lowering of the peak in the mean 
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spectrum but keeping the area under the peak approximately constant. This can affect the output 

of the fitting procedure, if peak shapes are assumed. Movement can also result in a different 

location of the measured volume, which additionally can cause an error in metabolite 

concentrations if these vary with position. There can be a difference between the group of 

patients and the healthy controls regarding unrecoverable subject movements. The patient data

might suffer more from subject movements, and if no movement compensation is performed, this 

will cause a systematic underestimation of metabolites in this group and thus introduce a bias in 

the study (7).

Corrections primarily have to ensure robust positioning of the measured volume while keeping

the signal free of motion-induced bias, and secondarily keeping the noise low and the Signal-to-

Noise Ratio (SNR) as high as possible. SNR is typically increased compared to conventional 

averaging by phase-coherent averaging (14) and also potentially by outlier rejection techniques

due to the unwanted contributions to the motion-distorted signal.

Here, subject movement is demonstrated to be a severe problem for non-anesthetized infants. 

Several algorithms for identifying and rejecting motion-corrupted spectra were implemented and 

compared.

Materials and methods

Subjects and data acquisition

Subjects were infants born at the Copenhagen University Hospital, Hvidovre, Denmark, and 

taking part in a MRI/MRS-preterm infant cohort study. The study includes data from 97 infants;

77 preterm infants (prematurely born between 12 and 6 weeks before term) and 20 controls (born 

at term). All infants were MR-scanned around term or term-equivalent age, and were not 

anesthetized before or during scanning. The local ethics committee accepted the study and 

informed parental consent was obtained in all cases.

MR scanning was performed on a Magnetom Trio 3 tesla scanner (Siemens, Erlangen, Germany) 

with a quadrature single channel head coil. An 8 mL cubic voxel was placed in the posterior 

periventricular white matter, by the posterior horn of the lateral ventricles, and a 3.4 mL cubic 

voxel was placed at the level of the basal ganglia and thalami, both randomly positioned in the 

right or left hemisphere. For each voxel position 48 Free Induction Decay signals (FIDs) based

on two phase-cycled averages, each with 1024 complex points and a readout period of 850 ms,
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were acquired with a Point RESsolved Spectroscopy (PRESS) sequence (15) for two echo times 

(30 and 144 ms) with a repetition time of 2 seconds.

For every subject, four datasets of 48 repetitions each were acquired for the two different voxels

and the two echo times. In order to investigate the effect of subject movement under more 

controlled conditions a healthy volunteer was scanned with the same sequences with 30 ms echo 

time and same position and size of the 8 mL cubic voxel.  The complete measurement of the 

volunteer with 48 acquisitions was repeated three times. The volunteer was instructed to lie 

motionless during the acquisition of the first dataset and instructed through the intercom to move 

his head a few centimeters to the left and right for a few seconds approximately at every 16th 

acquisition of the last two datasets.

Datasets where all 48 repetitions contained severely corrupted measurements, or where water 

suppression failed, were excluded from this comparative study after visual inspection of the 

spectrogram. This resulted in 130 datasets (64 with long echo time) for an 8 mL voxel and 113

datasets (56 with long echo time) for a 3.4 mL voxel. From the 130 datasets with an 8 mL voxel 

and from the 113 datasets with a 3.4 mL voxelsize, 30 and 26 datasets respectively originated 

from term infants. The resulting mean or median spectra are zero-order phase-corrected and 

filtered with a first order Gaussian low pass filter with a full width at half maximum of 1 Hz.

Spectra were frequency adjusted based on the position of the N-acetyl aspartate (NAA), creatine 

(Cr)  and choline (Cho) peak,  at 2.02 ppm, 3.04 ppm and 3.24 ppm, respectively. Phase-coherent 

averaging was not applied.

Since the motion-distorted acquisitions are visible as shifts in the frequency domain, it is natural 

to perform the motion rejection in this domain. It is also possible to carry out the analysis on the 

Free Induction Decay (FID) signal in the time domain (16), but this has not been done in this 

study.

The performance of three classes of subject-movement-rejection algorithms was investigated: 1. 

Simple median filtering, which provides a more robust but more noise sensitive estimate than

mean filtering. 2. An outlier identification (OI) algorithm with and without multiple 

comparisons. 3. Independent Component Analysis (ICA), where the main component represents 

the spectrum least affected by motion. Corrections as described in the introduction (6, 7, 10, 14) 

were not performed. Focus was on identification and rejection of the corrupted acquisitions 

within a dataset.
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Mean and median filtering

In the conventional way of data processing, all spectra are averaged permitting motion-distorted 

acquisitions to degrade the final spectrum. One way of dealing with this problem is to reduce the 

influence of outliers by median filtering (17, 18). Instead of using the mean as a signal estimator,

the median is used and this provides a more robust estimate. The mean minimizes the 

expectation value of the squared deviation, i.e. the variance, while the median minimizes the 

expectation value of the absolute deviation. This means that the influence of outliers is reduced.

An appealing property of the median is that the shift does not depend on the numerical value of 

the outlier; only the position of the median in the list of ordered samples is shifted half a 

position. In the case of an even number of outliers symmetrically spread around the true mean 

value, the shift is even cancelled.

The noise N is defined as the standard deviation of the signal estimator. For a dataset ix with n

samples, mean x , median x~ , standard deviation  and probability function p(x) the noise is

given by

n
N

2
2
mean


 , 2

mean
2

2
2
median )~(4

1
Nc

xpn
N 


 , (1)

where c is the efficiency of the mean relative to the median, which is 2 and 3 for a 

normal distribution and uniform distribution, respectively. The approximation of the noise for the 

median holds for large sample sizes with an arbitrary probability function (19, 20). The 

probability function of the median is normally distributed for any probability function of the 

samples. Median filtering (together with minimum and maximum filtering) is a well-known type 

of order-statistics filtering (21).

Since spectra are complex, the average and the median of both the real and imaginary part were 

calculated separately.

Outlier identification

Outliers can be identified and excluded by an approximation of the standard deviation and a t-

test. Performing this outlier identification and rejection for every single frequency (pointwise 

outlier identification) will reduce the contribution of outliers. In this context a novel alternative is 
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to reject a whole acquisition, if only one Fourier component is identified as an outlier (outlier 

identification). It is assumed that the acquisitions without outliers are normally distributed. The 

significance level p for the first method was arbitrarily chosen at 5% double sided, i.e. zmax=1.96, 

where z is the z-score, which is defined by the difference from the mean measured in the number 

of standard deviations. The significance level for the second method is corrected for multiple 

comparisons and this was arbitrarily chosen at 10% (double sided) divided by the number of data 

points (=1024) for one acquisition, i.e. zmax=3.9. Since the outliers were included in the 

calculation of the standard deviation, the procedure needs to be repeated in an iterative fashion. 

The first (crude) estimation of the outlier-free signal is given by the mean and the standard 

deviation of all samples ix . The next estimates, denoted *x with iteration number j are calculated 

in an iterative fashion (22) with

xx j 
*

1 and 2*
1

2
1 )( ijj xx   for all ix with jji zxx  max

* || , (2)

until convergence is reached. An iterative t-test has never been applied before in this context, but 

the idea behind the method is similar to the iterative f-test algorithm described by Andersson 

(23).

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) supplies a mathematical framework for analysis of a 

group of acquisitions. The method (24) is implemented as a toolbox1 (25) in Matlab 

(Mathworks). ICA is a set of methods for blind signal separation, each method sharing the 

assumption that two arbitrary components are statistically independent (26). Blind signal 

separation refers to the common situation in signal processing in which we aim to separate 

unknown source signals from an unknown mixture. Another way of describing or defining ICA 

is by minimizing the mutual information between the components.

With index i denoting the acquisition number, and the index j denoting the component number,

the dataset consisting of n acquisitions )(txi is described by M components )(ts j with 

coefficients ija with
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Since the ICA algorithm only works for real signals, the complex spectrum is transformed into a 

real signal by adding the imaginary amplitude spectrum behind the real spectrum. An important 

complication that often arises in practical applications is that the number of components M is 

unknown. Using a Bayesian ICA formulation, this problem can be solved in the limit of many 

acquisitions (27, 28). The Bayesian Information Criterion (BIC) selects the number of 

components by estimating the probability of the model containing M components given the 

observed data p(M), where the number of components is varied in a range from 1 to Mmax (the 

maximum number of components was set to 12).  The signal variance not accounted for by the M

components is assumed to be contributed by an additive normal independent identically 

distributed white noise signal component (the BIC selection of the number of components is 

included in the toolbox (25)) . Checks are performed to see if the probability for the number of 

components is less than 50%.

In the case of a dataset without distorted spectra, ICA will find one component representing the 

underlying spectrum. The difference between the spectra reconstructed with this component and 

the measured spectra equals the noise as identified by the ICA algorithm.

If the ICA algorithm finds more than one component, the independent component representing

the undistorted spectrum needs to be identified, since ICA does not assign a clear meaning to its 

components. The dominant component of every single acquisition is determined and the 

acquisitions with the dominant component equal to the most frequent dominant component (the 

main component) for all acquisitions are considered to be a measurement of the undistorted 

spectrum. No arbitrary thresholds need to be set. The ICA method produces three spectra: 1. the 

mean of the selected acquisitions, 2. the mean of the selected acquisitions reconstructed with M

independent components and 3. the mean of the selected acquisitions reconstructed with only the 

main independent component. The latter spectrum corresponds to the scaled main independent 

component. The application of ICA and the identification of the non-distorted ICA component 

are novel in this context.
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Noise and SNR analysis

In principle, noise can be estimated at one frequency by determining the standard deviation of 

the selected acquisitions and dividing by the square root of the number of acquisitions. Possibly 

only few acquisitions may be left, and this will make this noise estimation unreliable. However

this is not a problem with the datasets used as completely corrupted data was excluded. Noise 

will be underestimated, however, since the standard deviation is minimized for the outlier 

identification methods. This is most prominent for the algorithm without connection between the 

Fourier components (the frequency direction). The ICA method does not have this problem, but 

the independent components have a lower noise than the original acquisitions. For ICA, the noise 

at each particular frequency can be determined by resampling with the JackKnife (29) method, 

but in order to aid comparison an identical noise estimation procedure for all motion-rejection 

algorithms is preferred. Since there are no metabolite signals between 8 and 9 ppm, this part of 

the spectrum is used for estimating the noise. The standard deviation of the final signal is 

determined over this frequency range, which does not depend on the number of selected 

acquisitions. It is assumed that the signal is constant in this part of the spectrum and that the 

noise is independent of frequency.

For the Signal-to-Noise Ratio (SNR) and signal analysis, the signal is regarded as the peak height 

of the three main metabolite peaks, N-acetyl aspartate at 2.02 ppm, creatine at 3.04 ppm and 

choline at 3.24 ppm. Both mean peak height and average SNR of these three peaks were

calculated for each dataset. In order to be able to compare between subjects, both signal and SNR 

were normalized by the values for the mean filtered signal. The algorithm with both the highest 

signal and highest SNR is considered as the optimal algorithm. Since position change is a source 

of erroneous measurements and causes simultaneous broadening and lowering of peaks, the area 

under the metabolite peak is not a proper measure of the quality of the measurement.

Acceptance percentage for each algorithm and each dataset was defined by the number of single 

data points that were not rejected by the algorithm as a percentage of the total number of data 

points. The total number of data points equals the number of repetitions times the number of 

Fourier components.
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Results

The first dataset of the healthy volunteer had 48 comparable spectra and the ICA algorithm 

found only one component, as is expected for a dataset without motion. The effect of (instructed) 

motion on the other two datasets of the volunteer was comparable. Figure 1 shows the 

spectrogram (top panel) and the coefficients for the components (bottom panel) of the second 

dataset, where the healthy volunteer was instructed to move his head at certain times. The 

influence of head movement is clearly seen in the spectrogram, and ICA components describe 

the different periods. A typical result for measurement of a preterm infant that has been 

hampered by motion is shown in figures 2 to 6. The top panel in figure 2 shows the spectrogram 

for short echo time, and the bottom panel shows the coefficients for the components in the ICA

algorithm. Figures 3 and 4 show the final spectra between 2.8 and 3.5 ppm for all algorithms for 

an 8 mL voxel with short echo time (fig. 3) and long echo time (fig. 4). Figure 5 shows the entire

short-echo-time spectrum. The noise is estimated from the signal between 8 and 9 ppm, since 

there are no metabolite signals there. Figure 6 shows the short-echo-time spectrum around the 

residual water peak and the removal of a water peak erroneously displaced by subject movement.

Both peak heights and SNR for the three main metabolite peaks behave comparably, so only the 

average signal and SNR for the three metabolite peaks are discussed, and referred to as “the 

signal” and “the SNR”. The SNR of the mean filtered spectra ranged from 8.4 to 54.3, and was 

highest for the 8 mL voxel with short echo time and lowest for the 3.4 mL voxel with long echo 

time. The SNR was (mean ± standard deviation) 29.9 ± 8.3 for the 8 mL voxel with short echo 

time and 15.1 ± 5.1 the 3.4 mL voxel with long echo time.

The Signal and the SNR relative to the signal, as well as the SNR of the mean of all repetitions

(both defined as 1) for all motion-rejection algorithms with and without non-motion-distorted 

acquisitions are shown in table 1. The acceptance percentage, defined as the percentage of the 

data points that is accepted by the algorithms described in the methods section, is shown in the 

last column. The values for the subset of the datasets where ICA detected more than one 

component are given in brackets. The values for the signal, the SNR and the acceptance 

percentage in table 1 are averaged over all datasets. All motion-rejection algorithms improve the 

signal and remove movement artifacts. The results for the dataset of the healthy volunteer, see 

figure1, were similar to the results in table 1.
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Both the signal and the SNR were statistically tested bilaterally between all methods with a 

paired, double-sided t-test. Apart from the difference in the signal for the two outlier 

identification methods (point wise OI and OI), all the differences in the signal and the SNR in 

table 1 are significant (p<0.05) for all datasets.

Table 1: The mean signal (here “signal” is defined as the average height of the NAA, Cho and 
Cr peaks), SNR and acceptance percentage for all datasets. Between brackets the values for the 
subset of datasets where ICA detects more than one component, i.e. with motion artifacts, are 
shown. Signal and SNR are stated relative to the signal and SNR of the mean of all acquisitions.

Method Signal SNR acceptance percentage

mean 1 1 100

median 1.030 (1.036) 0.849 (0.866) 100

pointwise OI 1.066 (1.082) 0.739 (0.758) 85.3 (84.8)

OI 1.069 (1.106) 0.939 (0.948) 75.7 (70.6)

ICA mean 1.114 (1.201) 0.950 (0.912) 75.4 (56.7)

ICA all components 1.100 (1.178) 0.976 (0.957) 75.4 (56.7)

ICA main component 1.088 (1.158) 0.970 (0.945) 75.4 (56.7)

ICA and components

138 out of 243 subject spectra (each containing 48 acquisitions) contained more than one 

component. So in 105 subject spectra the ICA algorithm finds only one component, and 

identifies differences between this component and the measured signal as noise. The probability 

of having estimated the correct number of components was less than 100% for 30 of these patient

spectra (ranging from 50 to 99%). Of the 138 spectra with more than one component, 43% of the 

measurements were rejected. The average number of components was 3.2 (range 1-12, the 

maximum number of components was set to 12) for all measurements and 3.6 (range 2-12) for 

the motion-distorted measurements. On average 75% of all the measurements were kept.
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Discussion

Motion compensation of SVS spectra of non-anesthetized infants and other moving patients is 

necessary. The effect of motion on the spectrogram of the healthy volunteer in figure 1 showed 

that spectra are corrupted during motion and that the frequency of the metabolite peaks is shifted 

after motion due to a change of voxel position. During motion of the healthy volunteer the water 

peak was reduced while it was increased in the preterm infant. A signal loss as seen in the 

volunteer spectrum is expected due to imperfect refocusing when motion happens during the 

spin-echo period of the sequence. A signal increase as seen in the infant spectrum is expected 

when the water suppression is compromised by movement. The proposed methods detect and 

compensate both effects.

Visual inspection of the spectra indicates higher signals and better spectral resolution for all the 

motion-rejection algorithms. In practice it is not possible to visually appreciate the noise 

properties of the algorithms, for instance by observing the signal where no metabolite peaks are 

present in figure 3. Visual inspection also indicates that the ICA methods are better at

suppressing the signal just next to the metabolite peaks and that median filtering does not 

completely remove the influence of outliers, resulting in a lower signal at the metabolite peaks.

Because motion is likely to reduce the peak height, the signal and the SNR are reasonable 

measurements for the performance of the algorithms, although since true metabolite 

concentrations are not known, the true performance is also not known. Simulations could be 

performed to address the issue of the true performance of the algorithms.

If SVS with a relatively large voxel of more than 1 mL is used to measure a “global” metabolite 

concentration, small changes in which the voxel stays within the same tissue of interest are less 

relevant than in the case where a small voxel is used and a spectrum at a specific position, e.g. 

the hippocampus, is required. In the latter case it is advisable to perform a localizer scan before 

and after the spectroscopy measurement in order to ensure that the voxel position is not changed, 

even though the acquired spectra are not noticeably different. If the exact voxel position is very 

important, the selection of the ICA component can be altered by identifying the undistorted 

component as the dominant component of the first acquisition instead of the most frequent 

dominant component. In this way the ICA algorithms reject acquisitions that differ significantly 

from the first acquisition. It is also possible to reject all acquisitions after the first detected 

movement. On the other hand the selection of the acquisitions in the ICA method only accepts 
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acquisitions which differ by the ICA-identified noise, which indicates that the underlying 

noiseless spectrum is unchanged by motion, and that the head has therefore probably returned to 

the original position after motion.

Quantitative evaluation shows that median filtering results in a considerable improvement of the 

signal and compensation for movement-distorted spectra. However, it does not perform as well 

as the other methods, and the SNR is reduced by more than 15% compared to the uncorrected 

mean signal, although the mean signal may, however, be corrupted. A combination of order-

statistics filters such as All-Rank Selection Order-Statistics filtering (30) might reduce noise and 

outlier sensitivity compared to median filtering, but this has not been shown. Pointwise outlier 

identification has even lower SNR, but slightly better signal amplitude compared to the median 

filter. Outlier identification with connection between the consecutive Fourier components did not 

give this SNR loss and restored the signal well. The relatively conservative p-value for the 

pointwise outlier identification method is necessary, as otherwise too many measurements will 

be excluded. The outlier identification method with multiple comparisons, however, needs a 

slightly higher p-value in order to reject enough measurements.

The noise depends on the algorithm and it increases if the number of accepted acquisitions n is 

lower and is proportional to n1 . The signal is increased if the motion-distorted acquisitions 

are rejected, and the SNR is reduced less than expected from the increase in noise only. In 

general the noise in the median is higher than the noise in the mean. For normal distributions this 

is approximately 25%. The SNR is only 15% lower for the median and this is due to the fact that 

the median recovers the signal better than the mean. As an estimator, the median is more 

sensitive to noise, and therefore it is probably better to identify the outliers, reject them, and 

calculate the mean of the remaining data. Outlier identification with multiple comparisons 

performs better than the median, but the pointwise outlier identification method does not. This is 

probably because of the noise sensitivity of the (pointwise) outlier detection itself.

The advantages of ICA compared with the other methods are that no arbitrary thresholds need to 

be set, that both the resulting signal and the SNR are best, and that it provides a possibility to 

identify outliers without ignoring connections between consecutive Fourier components. Another 

advantage of the ICA methods is that they make it possible to accept all the measurements if just 

one component is considered as most probable, for instance if the patient does not move. Also 

the range of the acceptance-rate-defined percentage of the measurements which are not rejected 
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indicates larger flexibility. The standard deviation of the acceptance rate considering both 

movement-distorted and undistorted data for ICA was 25%, while it was 11% for outlier 

identification and only 1.5% for pointwise outlier identification. The latter is explained by the 

influence of the majority of the Fourier components, where no metabolite signal is present. The 

difference between the three versions of the ICA method was small. Using ICA only to identify 

movement-distorted acquisitions, and then taking the mean of the remaining acquisitions gives

the highest signal. On the other hand, taking the mean of signals reconstructed with the main or 

all components showed slightly better SNR.

In the case of a short movement, it is possible that the first few measurements after the 

movement are transients due to history effects in the spin system. ICA will describe this 

transition with two or more components. Hereafter the measurement is described with one 

component, different from the component found before movement, unless the subject returned to 

the original position.

Independent Component Analysis (ICA) instead of the better known Principal Component 

Analysis (PCA) is used, because the latter maximizes the explained variance for each 

component, i.e. minimizing the mean square error of approximating the data, whereas ICA seeks 

independent components. In the case of a measurement with some motion-distorted acquisitions,

PCA finds a mixture of all acquisitions for the first and other components (often after the mean 

has been subtracted), and because of the large deviations in the motion-distorted acquisitions, the 

uncorrelated principal components will be mainly determined by distorted acquisitions. This 

gives no opportunity to identify the motion-distorted acquisitions, while ICA finds the 

undistorted acquisitions as one independent component, and one or more components for the 

motion-distorted acquisitions.

Phase-coherent averaging after motion rejection will probably increase the SNR even more, but 

caution is necessary, since it can potentially introduce a bias. In this study no phase-coherent 

averaging was applied, because only the performance of the motion rejection algorithms was 

investigated.
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Conclusion

Subject movements cannot be ignored in certain patient groups and they need to be compensated 

for. This can be done by storing the individual SVS acquisitions and identifying and rejecting the 

acquisitions distorted by subject movements followed by phase correcting (and optionally 

frequency shift compensating) the individual remaining acquisitions before averaging. It is 

strongly advised to implement a procedure to detect subject motion. A first implementation of 

motion rejection in clinical practice could be to monitor the difference between the mean and the 

median and compare this with the estimated noise. If the difference is significant, the median 

instead of the mean should be used, or outlier identification or ICA analysis could be applied to 

the dataset.

Fully automated ICA analysis proved to be the most powerful and reliable tool for movement 

identification and rejection. In this study the signal increased by 20% for the subject-movement-

distorted data, keeping the SNR as high as 91% of the SNR of the mean signal and keeping the 

undistorted patient data unaffected.
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Figure 1: The spectra of 48 acquisitions of an 8 mL voxel with an echo time of 30 ms for a 
healthy volunteer (top panel). The volunteer was instructed to move his head 2-3 cm 
continuously from the left to the right at acquisitions 18-19, and 32-34. Each spectrum is shown 
as a row using the grayscale for the log of the magnitude of the signal intensity in arbitrary units 
(a.u.). The residual water peak at 4.7 ppm is clearly visible, as are metabolite signals at the right 
hand side of the water peak. In the bottom panel, the coefficients for the ICA components for the 
spectra are shown. A grayscale is used to show the amplitude of the coefficients in a.u. The three 
periods without movement are mainly described by a single component for each period 
(component 2-3-1), while the spectra during head movement are described by a combination of
all four components.
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Figure 2: The spectra of 48 acquisitions of an 8 mL voxel with an echo time of 30 ms for a 
preterm infant (top). Acquisitions number 33 and 34 are likely to be corrupted by motion, while 
acquisitions 35 to 48 are likely to be measured at another position (the spectrum is slightly 
shifted) and should be rejected. In the bottom panel, the coefficients for the ICA components for 
the spectra are shown. In this case the most frequent dominant component is component 3, and it 
is interpreted by the ICA algorithm as the undistorted component. Components 1 and 2 describe 
acquisitions 33 and 34, which are interpreted as motion corrupted, see top panel. Components 4
and 5 describe the acquisitions 35 to 48. Notice that component 3 almost solely describes the 
undisturbed data.
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Figure 3: A part of the zero-order phase-corrected spectrum for a 30 ms echo time after motion 
rejection with the creatine peak at the right and choline peak at the left. On the left shoulder of 
the choline peak the myo-inositol resonance at 3.28 ppm is visible. The curves illustrate the 
performance of the different algorithms, mean, ICA, median, pointwise outlier identification 
(pointwise OI) and outlier identification (OI). It is clearly seen that the median improves the 
signal, and that in this case pointwise OI and ICA  perform best in agreement with quantitative 
analysis.
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Figure 4: Graph similar to figure 3, but based on data acquired with an echo time of 144 ms. It 
is seen that the median improves the signal, that pointwise OI performs better, and that in this 
case ICA and OI perform best in agreement with quantitative analysis.
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Figure 5: Entire water-suppressed spectra acquired with an echo time of 30 ms for the same 
subject as in figure 3. The residual water peak at 4.7 ppm is clearly seen. Peaks in the mean 
signal (green) at 5.1 and 4.8 ppm originate from the residual water signal and subject motion.
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Figure 6: The 1.4 ppm frequency range around the residual water peak acquired with an echo 
time of 30 ms for the same subject as in figure 3. The residual water peak at 4.7 ppm is clearly 
seen. Peaks in the mean signal (green) at 5.1 and 4.8 ppm originate from the residual water
signal and subject motion. All motion rejection algorithms remove these erroneous water peaks, 
except the outlier identification with multiple comparisons that fails to remove the peak at 4.8 
ppm.
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