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Accurate inverses of Nekrasov Z-matrices

H. Orera1 and J. M. Peña

Departamento de Matemática Aplicada/IUMA, Universidad de Zaragoza, Spain

Abstract

We present a parametrization of a Nekrasov Z-matrix that allows us to compute its
inverse with high relative accuracy. Numerical examples illustrating the accuracy of
the method are included.

MSC: 15B48, 15A09, 15B35, 65F05
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1 Introduction

Recent research in Numerical Linear Algebra has shown that, for some classes
of structured matrices, some algebraic computations can be performed to high
relative accuracy (HRA), independently of the size of the classical condition
number. These classes of matrices are defined by special sign or other structure.
It is well–known (cf. p. 52 of [7]) that, if an algorithm is subtraction–free, its
output can be computed to HRA. For these classes of matrices, knowing an
adequate parametrization has been a crucial start point for the construction of
the corresponding accurate algorithms, being many of them subtraction–free.
In contrast to these classes of matrices, for other structured classes of matrices
it is not possible to construct such HRA algorithms (cf. [6]).

In this paper, we present a parametrization for Nekrasov Z-matrices, which
allows us to construct a subtraction–free (and so, HRA) efficient algorithm to
compute their inverses.
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Let us now recall some basic definitions on classes of matrices used in this pa-
per. A real matrix A is a Z-matrix if all its off–diagonal entries are nonpositive.
A Z-matrix A is a nonsingular M-matrix if its inverse is nonnegative. Given
a complex matrix A = (aij)1≤i,j≤n, its comparison matrix M(A) = (ãij)1≤i,j≤n

has entries ãii := |aii| and ãij := −|aij| for all j �= i and i, j = 1, . . . , n. We
say that a complex matrix is a nonsingular H-matrix if its comparison matrix
is a nonsingular M -matrix. This concept corresponds with the concept of H-
matrix of invertible class given in [4]. A matrix A = (aij)1≤i,j≤n is SDD (strictly
diagonally dominant by rows) if |aii| > ∑

j �=i |aij| for all i = 1, . . . , n, and A is
DD (diagonally dominant by rows) if |aii| ≥ ∑

j �=i |aij| for all i = 1, . . . , n. It
is well–known that an SDD matrix is nonsingular and that a square matrix
A is a nonsingular H-matrix if and only if there exists a diagonal matrix W
with positive diagonal entries such that AW is SDD. Nekrasov matrices (see
[14]) are defined in Section 2 and form another subclass of H-matrices that
includes SDD matrices. Some recent applications of Nekrasov matrices can be
seen in [5], [10], [11] or [12].

Let us present the layout of the paper. Section 2 presents the parametrization
of Nekrasov Z-matrices, some auxiliary results and the construction of the
subtraction–free algorithms for the inverse of a Nekrasov Z-matrix in a par-
ticular case. The algorithm for a general Nekrasov Z-matrix A is constructed
in Section 3. Section 4 includes some algorithms used in our method and
presents numerical examples showing its accuracy. Our method also allows us
to compute the solution of a linear system Ax = b with b ≥ 0 to HRA. The
numerical examples also show great accuracy of our method even when b does
not satisfy this requirement.

The following notations will be also used in this paper. A matrixA = (aij)1≤i,j≤n

(resp., a vector v = (v1, . . . , vn)
T ) is nonnegative if aij ≥ 0 for all i, j (resp.,

vi ≥ 0 for all i), and we write A ≥ 0 (resp., v ≥ 0).

2 Parametrization of Nekrasov matrices and HRA

Let us start by defining the concept of a Nekrasov matrix (see [5,14]). For this
purpose, let us define recursively for a complex matrix A = (aij)1≤i,j≤n with
aii �= 0, for all i = 1, . . . , n,

h1(A) :=
∑
j �=1

|a1j|, hi(A) :=
i−1∑
j=1

|aij|hj(A)

|ajj| +
n∑

j=i+1

|aij|, i = 2, . . . , n. (1)

Let N := {1, . . . , n}. We say that A is a Nekrasov matrix if |aii| > hi(A) for
all i ∈ N . A Nekrasov matrix is a nonsingular H-matrix [14]. Therefore, a
Nekrasov Z-matrix with positive diagonal entries is a nonsingular M -matrix.
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Remark 2.1 Let us recall that DD M-matrices admit some algebraic compu-
tations with high relative accuracy (HRA). A key tool is the use of an adequate
parametrization of these matrices, which was provided by the off–diagonal en-
tries and the row sums (cf. [1],[8], [13], [2]). We shall call these n2 parameters
for an n× n DD M -matrix A as DD-parameters. If these DD-parameters are
known with HRA, then some algebraic computations of A can be performed
with HRA as it is shown in the previous references.

In this paper we also study computations with HRA for the class of Nekrasov
Z-matrices. Here, a good choice of parameters will also be crucial. The pa-
rameters that we shall use for an n × n Nekrasov Z-matrix A = (aij)1≤i,j≤n

with positive diagonal are the following n2 parameters, which will be called
N-parameters: ⎧⎪⎨

⎪⎩
aij, i �= j

Δj(A) := ajj − hj(A), j ∈ N
(2)

We can characterize an n × n Nekrasov Z-matrix with positive diagonal
through the n2 signs of the parameters given in (2). In fact, A is a Nekrasov
Z-matrix with positive diagonal if and only if the first n2−n parameters (cor-
responding to the off–diagonal entries, aij with i �= j) are nonpositive and the
last n parameters (Δj(A) for all j ∈ N) are positive.

Since a Nekrasov matrix is a nonsingular H-matrix, there exists a positive
diagonal matrix W such that AW is SDD. The following lemma shows that
the very simple diagonal matrix

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(A)
a11

h2(A)
a22

. . .

hn(A)
ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

holds that AS satisfies the weaker property of being DD.

Lemma 2.2 Let A be a Nekrasov Z-matrix with positive diagonal and let S
be the matrix given by (3). Then the matrix AS is a DD Z-matrix.

PROOF. Observe that hi(A)
aii

≥ 0 for i ∈ N , and so, S ≥ 0. Then B := AS
preserves the signs of A, and the elements of B = (Bij)1≤i,j≤n are:

Bij =

⎧⎪⎨
⎪⎩
aij

hj(A)

ajj
, if i �= j,

hi(A), if i = j.
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Since A is a Z-matrix, B is also a Z-matrix. It remains to prove that B is also
DD. Since A is a Nekrasov matrix, hj(A) < ajj for all j ∈ N . For each i ∈ N ,

hi(A) =
i−1∑
j=1

|aij|hj(A)

ajj
+

n∑
j=i+1

|aij| ≥
i−1∑
j=1

|aij|hj(A)

ajj
+

n∑
j=i+1

|aij|hj(A)

ajj

and so B is DD.

For a Nekrasov Z-matrix A and the diagonal matrix S given by (3), the
following result shows that if we know the n2 N-parameters in (2) of A, then we
can compute the n2 DD-parameters of the DD M -matrix AS with HRA.This
fact will allow us to take advantage of properties of DD M -matrices to obtain
algorithms with HRA for Nekrasov Z-matrices.

Theorem 2.3 Let A = (aij)1≤i,j≤n be a Nekrasov Z-matrix with positive diag-
onal entries and let S be the matrix given by (3). Given the n2 N-parameters
(2), we can compute the row sums and the off–diagonal entries of AS (its
DD-parameters) by a subtraction–free algorithm (and so, with HRA), with at

most 3n(n−1)
2

additions, 2n(n− 1) multiplications and 2n− 1 quotients.

PROOF. Observe that by (2),

ajj = Δj(A) + hj(A), j ∈ N. (4)

Let us start by computing h1(A), a11, h2(A), a22, . . ., hn(A), ann using the
formulas (4) and (1). We carry out n sums computing the diagonal entries

by (4), n quotients in order to obtain hj(A)

ajj
when needed (and we store them)

and (n−1)n
2

products and n(n− 2) sums to calculate hj(A) for all j ∈ N using

(1). Then we obtain the off–diagonal entries of AS, aij
hj(A)

ajj
, which requires

n(n− 1) products. Finally, we compute the row sums of AS. The row sum of
the ith row is:

i−1∑
j=1

aij
hj(A)

ajj
+ hi(A) +

n∑
j=i+1

aij
hj(A)

ajj
,

which can be expressed in the following form using (1), (2) and the sign pattern
of a Z-matrix:

n∑
j=i+1

(−aij)

(
1− hj(A)

ajj

)
=

n∑
j=i+1

|aij|ajj − hj(A)

ajj
=

n∑
j=i+1

|aij|Δj(A)

ajj
. (5)

Computing the row sums requires n − 1 quotients of the form Δj(A)

ajj
for

j = 2, . . . , n, n(n−1)
2

sums and n(n−1)
2

products. The total number of required

operations is at most 3n(n−1)
2

additions, 2n(n− 1) multiplications and 2n− 1
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quotients. We do not perform any subtraction in this procedure and so it is
subtraction–free.

Let us introduce some basic notations related with Gaussian and Gauss–
Jordan elimination. Gaussian elimination without pivoting for a nonsingular
n× n matrix A consists of a procedure of at most n− 1 steps resulting in the
following sequence of matrices:

A =: A(1) −→ A(2) −→ · · · −→ A(n), (6)

where A(t) has zeros below its main diagonal in the first (t− 1) columns and
A(n) is an upper triangular matrix. To obtain A(t+1) from A(t) we produce zeros
in column t below the pivot element a

(t)
tt by subtracting adequate multiples of

row t from the rows beneath it. The same transformation can be performed
with the matrix (A | B(1)), where B(1) := I is the identity matrix,

(A | I) =:
(
A(1) | B(1)

)
−→

(
A(2) | B(2)

)
−→ · · · −→

(
A(n) | B(n)

)
. (7)

Now we proceed analogously, starting from the last row and producing zeros
above the main diagonal of A(k) (n ≤ k ≤ 2n− 1) to obtain the sequence:

(
A(n) | B(n)

)
−→ · · · −→

(
A(2n−1) | B(2n−1)

)
−→

(
A(2n) | B(2n)

)
=: (I | A−1).

(8)

In this case, A(t) = (a
(t)
ij )1≤i,j≤n, t = n + 1, . . . , 2n − 1, has zeros above its

main diagonal in the last (t − n) columns. To obtain A(t+1) from A(t), t =
n, . . . , 2n − 1, we produce zeros in column 2n − t above the pivot element
a
(t)
2n−t,2n−t by subtracting multiples of row 2n−t from the rows above it. Finally,

A(2n) = I is obtained from A(2n−1) by dividing each row of A(2n−1) by its
diagonal entries. This well–known method is called Gauss–Jordan elimination.

Let Qk,n be the set of increasing sequence of k positive integers in N . Given
α, β ∈ Qk,n, we denote by A[α|β] the k × k submatrix of A containing rows
numbered by α and columns numbered by β. If α = β, then we have the
principal submatrix A[α] := A[α|α]. The complement αC is the increasingly
rearranged N \ α.

For DDM -matrices, algorithms with HRA starting from their DD-parametrization
were presented in [8] and [13]. In both papers, Gaussian elimination is used,
but with a different pivoting strategy in each of them. In order to obtain the
inverse with HRA, a pivoting strategy is not necessary, as the following result
shows.

Proposition 2.4 Let A = (aij)1≤i,j≤n be a DD nonsingular Z-matrix with
positive diagonal entries. If we know the row sums and the off–diagonal entries
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of A (i.e., its DD-parameters), then we can compute A−1 with a subtraction–
free algorithm (and so, with HRA) performing O(n3) elementary operations.

PROOF. By the hypotheses, A is nonsingular and A + D is SDD (and so,
nonsingular) for any positive diagonal matrix D. Then, by using property
(C10) of Theorem 2.2. of chapter 6 of [3] we deduce that A is a nonsingular
M -matrix. In order to obtain A−1 with HRA, we are going to use Gauss–
Jordan elimination without pivoting. We form the augmented matrix M̃ :=
(A|I|s), which coincides with the first matrix in (7) but with a last column
with the vector s formed by the row sums of A: s = (s1, . . . , sn)

T and, for
i = 1, . . . , n, si :=

∑n
j=1 aij. Then, we apply the elementary operations of the

Gaussian elimination of A to the whole matrix M̃ . We start by computing
the first pivot, a11, by adding s1(≥ 0) and the sum of the absolute values
of the first row off–diagonal entries: a11 = s1 +

∑
j �=1 |a1j|. Then we produce

zeros in the first column of A by adding positive multiples of the first row
and, with the exception of the diagonal entries of A(2)[2, ..., n], every entry
of M̃ (2) = (A(2) | B(2) | s(2)) is computed with HRA. Nevertheless, we can
obtain analogously the first diagonal entries of A(2)[2, ..., n], . . . , A(n−1)[n−1, n]
with HRA when they are needed as pivots at the corresponding steps of the
Gaussian elimination of A, and a(n)nn after finishing the elimination procedure.

In order to start the second iteration, it only remains to obtain a
(2)
22 with HRA.

Since A(2)[2, ..., n] is the Schur complement of an M -matrix it is also an M -
matrix (see [9]). The vector of row sums is obtained as Ae = s, where e =
(1, . . . , 1)T . Observe that s = s(1) ≥ 0 and the way of constructing M̃ (2) from
M̃ imply that s(2) ≥ 0. Besides, e will be also the solution of the linear system
A(2)x = s(2), which implies by the sign pattern of A(2) that the components
of s(2) coincide again with the row sums of A(2). So, a

(2)
22 can be computed

with HRA by adding s
(2)
2 (≥ 0) and the absolute values of the off–diagonal

entries of the second row of A(2). Now we continue the Gaussian elimination
and make zeros in the second column below a

(2)
22 . We repeat this procedure

until when we obtain the upper triangular matrix U := A(n) with HRA. Then
A(n) preserves the Z-matrix sign pattern. In this process, the identity matrix
becomes the lower triangular matrix B(n), with ones on the diagonal and
nonnegative entries below it.

Now, we continue the elimination procedure of A(n) starting with the last row
and producing zeros above the main diagonal of A(k) (n ≤ k ≤ 2n − 1), as

described in (8), and we apply it to the whole matrix
(
A(n) | B(n)

)
. The sign

pattern of
(
A(n) | B(n)

)
allows us to carry out this elimination process without

subtractions, and so, with HRA.

The computational cost is given by the cost of Gauss–Jordan elimination (and
so of O(n3) elementary operations) in addition to the elementary operations to
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compute the pivots a11, a
(2)
22 , . . . , a

(n)
nn and to update the vectors s, s(2), . . . , s(n)

(of O(n2) elementary operations in both cases).

Remark 2.5 By the characterization (I28) of Theorem (2.3) of chapter 6 of
[3], a Z-matrix A is a nonsingular M-matrix if and only if there exists a vector
z with positive entries such that s := Az has positive entries. Then the same
proof of Proposition 2.4 can be used to prove that, if we know the n2 + n
parameters of A given by its n2 − n off–diagonal entries, the n entries of
z := (z1, . . . , zn)

T and the n entries of Az = s(= (s1, . . . , sn)
T ), then we can

compute A−1 with HRA. The analogous proof to that of Proposition 2.4 will use
now the augmented matrix M̃ := (A|I|s), where s = Az, z will play the role of

(1, . . . , 1)T and the expression of a11 will be now a11 =
(
s1 +

∑
j �=1 |a1j|zj

)
/z1.

Besides, z will be again the solution of the linear systems A(k)x = s(k) for
k = 2, . . . , n. The result can be stated as follows: “If A = (aij) is a nonsingular
M-matrix and we know its off–diagonal entries as well as z > 0 such that
s := Az > 0, then we can compute A−1 with a SF algorithm (and so with
HRA) performing O(n3) elementary operations”.

The following result is a consequence of Theorem 2.3 and Proposition 2.4 and
guarantees the construction of the inverse of Nekrasov Z-matrices A in the
particular case that hi(A) �= 0 for all i.

Corollary 2.6 Let A = (aij)1≤i,j≤n be a Nekrasov Z-matrix with positive di-
agonal entries such that hi(A) �= 0 for i = 1, . . . , n (see (1)). If we know its n2

N-parameters (2) then we can compute A−1 with a subtraction–free algorithm
(and so, with HRA) performing O(n3) elementary operations.

PROOF. Let S be the matrix given by (3), which can be obtained with HRA
and O(n2) elementary operations, without performing any subtraction. Then
B := AS is a nonsingular diagonally dominant M -matrix and by Theorem 2.3
we can compute its DD-parameters (i.e., off–diagonal entries and row sums)
with HRA. With these DD-parameters we can compute B−1 with HRA by the
procedure described in Proposition 2.4.

Since B = AS, we conclude that A−1 = SB−1 and so each entry of the
inverse of A can be computed by multiplying the corresponding entry of B−1

by the corresponding diagonal entry of S. This step can be computed with n2

elementary operations, without performing any subtraction.

Remark 2.7 The accurate inverse A−1 obtained in Corollary 2.6 (and also
for a general Nekrasov Z-matrix with positive diagonal entries, obtained in the
following section) can be used to compute with HRA the solution of a linear
system Ax = b with b ≥ 0 by the direct computation x = A−1b, since the
constructed matrix with HRA A−1 ≥ 0 and so subtractions are not performed.
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In Section 4, our numerical experiments also show that the solution of the
linear system Ax = b for any b, computed by this procedure, is also accurately
computed.

3 Accurate inverses in the general case

We show in this section that the condition hi(A) �= 0 for i = 1, . . . , n can be
suppressed in Corollary 2.6. In order to prove this fact, it is crucial to study
first the distribution of the zero entries of a Nekrasov matrix that satisfies
hi(A) = 0 for some i ∈ N .

Lemma 3.1 Let A = (aij)1≤i,j≤n be a Nekrasov matrix, and let J = {i1, . . . , ik} ⊆
N (i1 ≤ i2 ≤ · · · ≤ ik) be the ordered set of indices such that hij(A) = 0. Then
at least n−j off–diagonal elements of the row ij are zero for each j = 1, . . . , k.

PROOF. Assuming that J �= ∅, we start by considering the row i1:

hi1(A) =
i1−1∑
k=1

|ai1k|
hk(A)

|akk| +
n∑

k=i1+1

|ai1k| = 0. (9)

Since hk(A) �= 0 for k < i1, we deduce from (9) that ai1k = 0 when k �= i1,
that is, all the off–diagonal entries of the i th row are zero. Now we consider
the row ij ∈ J with j > 1:

ij−1∑
k=1

|aijk|
hk(A)

|akk| +
n∑

k=ij+1

|aijk| =
ij−1∑

k=1, k /∈J
|aijk|

hk(A)

|akk| +
n∑

k=ij+1

|aijk| = 0.

In this case, we have that aijk = 0 whenever k /∈ {i1, . . . , ij}. So there are
at least n − j zero entries corresponding to the columns with index k /∈
{i1, . . . , ij}.

By the previous result, observe that the first row of a Nekrasov matrix A =
(aij)1≤i,j≤n that satisfies hi(A) = 0 has exactly n− 1 zero entries.

Theorem 3.2 Let A = (aij)1≤i,j≤n be a Nekrasov Z-matrix with positive di-
agonal entries. If we know its n2 N-parameters (2), then we can compute A−1

with HRA performing a subtraction–free algorithm of O(n3) elementary oper-
ations.

PROOF. We start by computing h1(A), a11, . . . , hn(A), ann by (1) and (2)
from the N-parameters of A without subtractions. This computation requires
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O(n2) elementary operations. Let us define the ordered set I ⊆ N given by
the increasing sequence of indices such that hi(A) �= 0. If I = N we can apply
Theorem 2.6. So, from now on we consider the case I �= N .

Let S be the diagonal matrix given by (3). We define the submatrices Â := A[I]
and B := (AS)[I]. Observe that B is DD because it is a principal submatrix
of AS. It is possible to compute its inverse without performing subtractions
and with O(n3) elementary operations. In order to prove it, we first obtain
an adecuate parametrization of B with a subtraction–free algorithm. In this
case, the required parameters are its off–diagonal elements, aij

hj(A)

ajj
, and its

row sums (i.e., its DD-parameters), which can be written by the choice of I,
formulae (1), (2) and the sign pattern of a Z-matrix in the following form, as
in (5):

∑
j∈I,j �=i

aij
hj(A)

ajj
+hi(A) =

i−1∑
j=1

aij
hj(A)

ajj
+hi(A)+

n∑
j=i+1

aij
hj(A)

ajj
=

n∑
j=i+1

|aij|Δj(A)

ajj
.

So, the mentioned DD-parametrization of B can be obtained from (2) by
a subtraction–free procedure and O(n2) elementary operations. With these
parameters we can apply Theorem 2.6 in order to obtain the inverse of the
diagonally dominantM -matrix B = (AS)[I] with a subtraction–free algorithm
and O(|I|3) elementary operations. Then it is straightforward to compute
accurately (and with O(|I|2) elementary operations) Â−1 = S[I]B−1.

The |I| × |I| matrices Â and Â−1 allow us to define the following procedure,
key to obtain A−1 with HRA. It consists of n− |I| major steps resulting in a
sequence of matrices as follows:

Â := Â(1) → Â(2) → . . . → Â(n−|I|+1) = A, (10)

For each p ∈ {2, . . . , n − |I| + 1}, we obtain the matrix Â(p) by adding to
Â(p−1) the row and column of A corresponding to the biggest index i ∈ N
that was not already involved in it. We form the new matrix keeping the

row/column ordering of A, and then we construct the inverse
(
Â(p)

)−1
using

the information provided by
(
Â(p−1)

)−1
. The last step will give us A−1. To

carry out the first step we start by choosing the biggest k ∈ Ic . Then we form
the (n− |I|+ 1)× (n− |I|+ 1) matrix Â(2) adding the corresponding entries
of the kth row and column of A to Â in the corresponding place. In order to
obtain the inverse of this new matrix from C = Â−1 we use Lemma 3.1, which
states that the new row added to Â has at least |I| zeros that will appear
as off–diagonal elements. The new row has only one element in Â(2) different
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from zero, akk. In this case the entries of C(2) := (Â(2))−1 are the following:

c
(2)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cij, i, j ∈ I,

1
akk

, i = j = k,

0, i = k, j ∈ I,

c
(2)
ik , i ∈ I, j = k.

We need to check this fact and find the expression of the entries c
(2)
ik . We

consider the product Â(2)C(2), which has to be the identity matrix of order
|I|+1. Let us start with the case when both i, j ∈ I. Since the inverse of Â is
C, the performed operation to obtain the element (i, j) of the product is:

∑
s∈I

aiscsj + aik · 0 =

⎧⎪⎨
⎪⎩
0, i �= j,

1, i = j.

Now, if i = k, j ∈ I, we have

∑
s∈I

akscsj + akkckj =
∑
s∈I

0 · csj + akk · 0 = 0

If i = j = k, we obtain

∑
s∈I

akscsk + akkckk =
∑
s∈I

0 · csk + akk
akk

= 1

It remains the case i ∈ I, j = k, which determines the missing entries of C(2):

∑
s∈I

aisc
(2)
sk +

aik
akk

= 0, i ∈ I.

Let us define c :=
(
c
(2)
ik

)
i∈I , the vector composed by the missing entries. Then,

we can express the system of equations in terms of the matrix Â:

Âc = − (aik)i∈I

(
1

akk

)
.

We have already computed Â−1 with HRA, and the right hand side is nonneg-
ative, so we obtain c with HRA (see Theorem 2.6) by performing the product:

c = C (aik)i∈I

(−1

akk

)
= Â−1(aik)i∈I

(−1

akk

)
.

So we obtain C(2). We can continue analogously. In general, after performing
p − 1 major steps we may obtain A−1 and finish the procedure, or we may
have to continue it adding the row and column of index k, where k ∈ Ic is the
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biggest index such that the kth row was not involved in Â(p−1). The added
row had at least |I| + p − 1 zeros in the original matrix, A. Now these zeros
are the off–diagonal elements of the added row. We define I(p), the ordered set
of indices of the rows from A used in Â(p−1). Then we perform the product
c = C(p−1) (aik)i∈I(p−1)

( −1
akk

)
in order to obtain the missing entries of the matrix

C(p) = (Â(p))−1. After computing c, we build C(p):

c
(p)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
(p−1)
ij , i, j ∈ I(p),

1
akk

, i = j = k,

0, i = k, j ∈ I(p),

c, i ∈ I(p), j = k.

Clearly, we can perform these calculations with HRA and with O(n3) elemen-
tary operations.

4 Algorithms and numerical tests

In the previous section we have presented a procedure that allows us to
compute the inverse of a Nekrasov Z-matrix accurately if we know its N-
parameters (2) with HRA. In this section, we are going to present the algo-
rithms to compute such inverses following Theorem 3.2 and we are going to
test them with some numerical examples.

The first algorithm introduced, Algorithm 1, starts with the N-parameters of
the Nekrasov Z-matrix and performs the required preparation to compute its
inverse depending on the distribution of the zero entries of the matrix.

If hi(A) �= 0 for i = 1, . . . , n the procedure corresponds to Theorem 2.3, and
it calculates the DD-parameters of AS. Otherwise, the algorithm works with
the adequate submatrix as described in Theorem 3.2. The output consists of
the matrix A, where the parameters of (AS)[I] are stored in the submatrix
A[I] (the case I = N corresponds to Theorem 2.3), the ordered set of indices
I and, if the cardinal |I| > 1, the diagonal matrix S.

Once we obtain the DD-parameters of the DD M -matrix AS (or (AS)[I]),
our goal is to compute its inverse with HRA. We can compute it using the
subtraction–free implementation of Gauss–Jordan elimination without pivot-
ing described in the proof of Proposition 2.4. For brevity, we do not include
this algorithm, which can be easily derived. The inverse can be stored in A
using again the submatrix A[I].

11



Algorithm 1 nektoDD

Input: A = (aij)(i �= j), Δ � The N-parameters (2)
for i = 1 : n do

hi =
∑i−1

j=1 aijkj +
∑n

j=i+1 aij
aii = Δi + hi

ki = hi/aii
end for
Build I, the set of indices such that hi(A) �= 0.
if |I| > 1 then

for i = I do
aii =

∑n
j=i+1 aijΔj/ajj

for j = I\{i} do
aij = aijkj

end for
end for
Build S, the |I|× |I| diagonal matrix whose diagonal entries are kj, j ∈

I.
else if |I| = 1 then

aII = 1/aII
else

ann = 1/ann
I = [n]

end if

If we have the case that hi(A) �= 0 for i = 1, . . . , n (analogously, |I| = n),
it only remains to perform the product S(AS)−1, since we obtained (AS)−1

applying Gauss–Jordan elimination. Otherwise, we need to build the inverse
of AS starting with ((AS)[I])−1. Algorithm 2 performs this computation. Its
input is the matrix A obtained after running Algorithm 1 and the set of indices
I (we just need to perform the direct product S[I]((AS)[I])−1 before, as done
in Algorithm 3).

Algorithm 2 buildnekinv

Input: A, I � A[I] contains A[I]−1

Build the set of ordered indices J := Ic = {j1, . . . , jk} such that j1 > j2 >
. . . > jk.
for i = J do

aii = 1/aii
A[I|i] = −A[I](A[I|i]. ∗ aii) � .∗ means component–wise multiplication
I = I ∪ {i} (ordered)

end for

With Algorithm 1, Gauss–Jordan elimination adapted according to Proposi-
tion 2.4 and Algorithm 2, we can give a general method to compute the inverse
of a Nekrasov Z-matrix with positive diagonal with HRA starting with its N-
parameters. Algorithm 3 performs all the process.
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Algorithm 3 Computation of the inverse

Input: A = (aij)(i �= j), Δ � N-parameters
[A, I, S] = nektoDD(A = (aij)(i �= j), Δ)
if |I| > 1 then

Compute B = A[I]−1 using the adapted Gauss–Jordan elimination
A[I] = S ∗B

end if
A−1 = buildnekinv(A)

Condition number MATLAB HRA

6.7161e+03 2.5585e-13 4.4536e-15

7.4296e+04 5.4000e-12 8.9743e-15

2.1634e+06 3.7380e-11 4.4752e-15

1.2159e+05 4.5739e-12 2.9456e-15

6.4136e+03 5.1254e-13 1.6247e-15

1.6378e+05 1.9921e-11 2.2964e-15

1.9344e+06 1.3436e-13 3.7407e-14

2.0715e+05 3.0038e-11 2.2757e-15

2.9297e+05 7.1062e-12 1.5991e-15

1.7608e+03 4.9903e-14 1.6191e-15

Table 1
Maximum relative errors when computing A−1

The numerical experiments have been carried out computing the inverses with
Algorithm 3. The errors were estimated comparing the computed approxima-
tions with the exact arithmetic solutions obtained with the Symbolic Math
Toolbox of MATLAB. In order to illustrate the accuracy of the method pre-
sented in this paper, the same problems are also solved using the usual MAT-
LAB commands. In Table 1 we show the maximum relative errors obtained
computing the inverse of ten 20×20 Nekrasov Z-matrices generated randomly.
The column labeled MATLAB shows the error when the inverse is computed
using the MATLAB command inv, and the column HRA shows the error when
the inverse is obtained from the N-parameters using the procedure with HRA.
We observe better results with our method, but the obtained difference is not
large since the generated examples are not ill–conditioned.

Besides, since all off–diagonal entries are generated randomly, these first exam-
ples do not include any matrix satisfying hi(A) = 0 for some i = 1, . . . , n. One
way to obtain examples with a greater condition number consists precisely in
generating matrices using this additional condition. If we impose hj(A) = 0
whenever j ∈ J ⊆ N, the entries aij with j ∈ J and i > j may be arbitrar-
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Condition number MATLAB HRA

4.8463e+11 1.4620e-04 8.7273e-16

1.8512e+11 1.5955e-12 9.0349e-16

1.1334e+11 9.1933e+14 6.3183e-16

3.6138e+11 2.4059e-05 8.5640e-16

8.4356e+10 3.1290e+05 9.1776e-16

1.0278e+11 3.7958e-02 8.7454e-16

1.0960e+11 1.0160e-12 7.6520e-16

1.1049e+12 2.2165e-04 3.8750e-15

2.0787e+11 2.2370e-05 1.5643e-15

1.8109e+11 5.8134e-06 1.1298e-15

Table 2
Maximum relative errors when computing A−1, with the condition hi(A) = 0 for
some i

ily large. By generating these entries significantly larger than the others, we
obtain Nekrasov matrices that are far from being diagonally dominant. For
such matrices, the MATLAB command inv gives unaccurate inverses and the
procedure with HRA introduced in Theorem 3.2 performs as expected. The
results can be seen in Table 2, which contains ten examples of 20×20 Nekrasov
Z-matrices.

As we mentioned earlier in Remark 2.7, computing the inverse of a Nekrasov
Z-matrix A with HRA also allows us to solve with HRA the linear system
Ax = b with b ≥ 0 by performing the computation x = A−1b. In Table 3, we
show the maximum relative error obtained computing the solution in ten cases
considering b = e = (1, . . . , 1)T . The involved matrices are 20 × 20 Nekrasov
Z-matrices with positive diagonal, generated as in the previous case. We show
the results obtained computing the solution with the MATLAB command \
and the method with HRA, which computes the inverse from the N-parameters
and performs the direct computation x = A−1b. We observe the great accuracy
of our method, in contrast to MATLAB.

In order to assure the HRA, we required b ≥ 0. However, we may obtain accu-
rate solutions even without this requirement. For this purpose, we generated
ten 20× 20 Nekrasov Z-matrices with positive diagonal entries and we solved
the system Ax = b with b = (bi)1≤i≤n, bi = (−1)i+1. Table 4 shows the results
obtained with the MATLAB command \ and with the procedure with HRA.
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Condition number MATLAB HRA

1.5337e+11 5.5757e-05 9.7469e-16

5.2794e+10 9.0848e-07 3.4470e-16

8.7214e+10 1.5188e-05 6.6034e-16

1.2596e+11 2.3053e-14 1.3981e-15

6.3378e+10 2.6565e-14 5.2600e-16

7.1578e+10 4.8790e-05 3.6567e-16

4.6526e+10 1.3704e-14 5.5542e-16

7.7622e+10 5.8318e-06 5.1943e-16

4.1758e+10 4.5051e-15 5.8087e-16

7.2351e+10 1.2952e-13 5.6605e-16

Table 3
Maximum relative errors when solving Ax = b with b = e

Condition number MATLAB HRA

1.8080e+11 2.0521e-13 3.9922e-16

1.6297e+12 8.7030e-14 3.2741e-14

1.6561e+12 6.1643e-04 1.5069e-15

6.7289e+10 1.9126e-14 2.6656e-15

1.1951e+11 3.0361e-14 8.7663e-16

2.7320e+11 7.5251e-15 1.1204e-15

4.6654e+10 9.9933e-06 7.0215e-16

1.1328e+11 2.3099e-06 3.1267e-16

5.7753e+11 1.7024e-13 3.5437e-15

7.4226e+10 1.9813e-06 8.1572e-16

Table 4
Maximum relative errors when solving Ax = b with bi = (−1)i+1
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