
PHYSICAL REVIEW E 100, 062308 (2019)

Markovian approach to tackle the interaction of simultaneous diseases
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The simultaneous emergence of several abrupt disease outbreaks or the extinction of some serotypes of
multistrain diseases are fingerprints of the interaction between pathogens spreading within the same population.
Here, we propose a general and versatile benchmark to address the unfolding of both cooperative and competitive
interacting diseases. We characterize the explosive transitions between the disease-free and the epidemic regimes
arising from the cooperation between pathogens and show the critical degree of cooperation needed for the onset
of such abrupt transitions. For the competing diseases, we characterize the mutually exclusive case and derive
analytically the transition point between the full-dominance phase, in which only one pathogen propagates, and
the coexistence regime. Finally, we use this framework to analyze the behavior of the former transition point as
the competition between pathogens is relaxed.
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I. INTRODUCTION

Containing the spread of infectious diseases constitutes
one of the major challenges of modern societies [1]. Dur-
ing the past decades, empowered with tools from nonequi-
librium statistical physics and nonlinear dynamics, classical
epidemic models [2–5] have been progressively refined to
capture the many ingredients that interplay to give rise to
real epidemic outbreaks [6–9]. Epidemic modeling was par-
ticularly boosted by the incorporation of complex interaction
networks [10–12]: Capturing the backbone of interactions
through which pathogens spread allowed us to study how
network heterogeneity influences epidemic onsets [13–16].

The advances made in the representation of the interaction
map in a variety of complex systems (such as multilayer
frameworks [17–19] or time-varying graphs [20]) have al-
lowed us to improve epidemic models to tackle the analysis
about the role played by human interactions in contagion pro-
cesses. Examples of the ingredients incorporated in epidemic
models include: the volatile nature of human contacts [21–24],
the multiscale and recurrent mobility patterns in metapopula-
tion models [25–29], the coexistence of multiple interaction
or mobility modes [30–32], and the adaptation of human
behavior to epidemic waves [33–36]. All these studies put
the focus on understanding the role of the former ingredients
to propose efficient containment policies [37–39] aimed at
controlling and preventing the unfolding of epidemic states.

The vast majority of these models are designed to char-
acterize the spreading dynamics of single pathogens whose
evolution is assumed not to depend on the presence of others.

*gardenes@unizar.es

However, many diseases do not fulfill this assumption, since
their spreading patterns are strongly influenced by the simul-
taneous propagation of other pathogens. One paradigmatic
example where the interaction between simultaneous diseases
played a crucial role on their impact took place in 1918,
manifested by a sudden abrupt increase in the death rate per
Pneumonia cases matched with the onset of the Spanish Flu
[40]. The correlation between both diseases clearly suggested
their interplay in a cooperative way. Another emblematic
case is the interaction between Tuberculosis (TB) and HIV.
WHO reports [41] that the estimated risk of developing TB is
16–27 times higher in subjects with HIV than in the normal
population and that of the 10.4 million estimated cases of
TB worldwide, 1.2 million (the 11% of the total) are among
people living with HIV. However, there are other examples
in which the presence of one pathogen is detrimental to the
propagation of other infections, since being infected by one
disease confers partial or total immunity with respect to the
other one. Competitive interaction between diseases typically
occurs within the different serotypes of multistrain diseases,
such as DENV [42] and influenza [44], but also takes place
between pathogens corresponding to different diseases, such
as the recently reported interaction between ZIKV and DENV
[43]. For Influenza, for example, it has been proved that
interaction between strains in one season shapes the evolution
of the virus and development of the following season and that
the cross-immunity between strains—i.e., immunity to one
strain obtained through the exposure to a similar strain—from
one season to the other can reach up to the 88% [45].

In recent years, several works [46–57] have tackled the
extension of epidemic models to introduce the interaction be-
tween different coexisting diseases (see Ref. [58] for a recent
review on the subject). Remarkably, interesting theoretical
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results have been already found such as the emergence of
first-order transitions when two diseases cooperate [46–52]
or the extinction of some infectious strains due to the com-
petition with their counterparts [53–57]. However, some of
these findings have been obtained at the expense of relying on
strong assumptions regarding the contagion network structure
or the mechanisms driving the interaction between pathogens,
thus limiting their application to real scenarios where cooper-
ative or competitive spread of pathogens occurs. In addition,
many of the current models are specifically focused on under-
standing the effects of introducing either strong cooperation
or mutually exclusive competition between two diseases. This
way, the formulation of a consistent mathematical framework
to characterize diseases whose interaction lies in between the
former extreme cases remains an open theoretical challenge.

In this work, we propose a general epidemic model for
characterizing the spread of interplaying pathogens with ar-
bitrary degree of interaction, i.e., ranging from the mutu-
ally exclusive case to the strong cooperative regime. This
new framework is constructed by following the Microscopic
Markov Chain Approach (MMCA) [14,59]. This formalism
enables us to keep all the information about the structure of
the contact network and to track the evolution of individual
nodes, i.e., without the need of statistical assumptions such as
considering that all the agents within the same degree class
are dynamically equivalent (as assumed in the heterogeneous
mean field approximation). We show that the Markovian equa-
tions here proposed reproduce with great accuracy the variety
of phenomena observed in Monte Carlo simulations, such
as the explosive epidemic outbreaks in the cooperative case,
thus providing an alternative to computationally expensive
simulations. Despite the great agreement observed in most of
the phase diagram, some slight discrepancies appear close to
the critical points due to the emergence of strong dynamical
correlations induced by the contact network. The accuracy
of the Markovian framework opens the door to a reliable
mathematical analysis of the model. As an example, we derive
analytically the second epidemic threshold that, in the fully-
competitive case, separates the regions of full-dominance by
one single pathogen and that of coexistence.

The manuscript is organized as follows. In Sec. II we
present the description of the model for interacting diseases
and explain the mathematical formalism, including the the-
oretical assumptions and the rationale behind the equations
governing the evolution of the system. In Secs. III and IV,
we apply the theoretical framework to study cooperative and
competitive dynamics, respectively. In these sections we re-
port and discuss the phenomena resulting from the interaction
of the diseases, thus recovering, under a single framework, the
most important findings observed in previous works. In both
cases, we check the validity of the theoretical predictions by
comparing them with results obtained from extensive Monte
Carlo simulations. Finally, we round off the work in Sec. V
by giving some conclusions derived from our model and
discussing about its implication for future research.

II. THE MODEL

We start by assuming that contagion processes are dic-
tated by an unweighted and undirected contact network of N

FIG. 1. Contagion and recovery microscopical processes con-
sidered in our model. Note that the contagion processes involving
already infected individuals are influenced by the parameter q, which
encodes the interaction between the two coexisting diseases.

nodes, each accounting for an agent, whereas interactions are
determined by the L network links. The network is described
by its adjacency matrix A whose entries are defined as Ai j = 1
if nodes i and j are connected and Ai j = 0 otherwise. For
the spreading dynamics, we consider that each disease β can
be individually modeled as a susceptible-infected-susceptible
(SIS) dynamic, for which contagion and recovery probabil-
ities are denoted as pβ and rβ , respectively. In the absence
of other pathogens, each disease β spreads from an infected
agent to a susceptible one with probability pβ , whereas in-
fected agents become susceptible with probability rβ . Here,
for the sake of simplicity, we will restrict to the case of two
interacting diseases so that β = 1, 2. The interaction between
the two diseases at work requires to couple two SIS dynamics.
Therefore, agents subjected to a double SIS dynamics can be
in four possible states which are: susceptible of contracting
both diseases (SS), infected by the first disease and susceptible
of the second (IS), susceptible of the first and infected of the
second (SI), and infected by both pathogens (II).

We now describe the transitions that govern the two cou-
pled SIS dynamics, i.e., we define the transition probabilities
between the former four epidemic states. In Fig. 1 we show all
the microscopical processes involved in our model. First, for
healthy (SS) agents we consider that the probability of being
infected with pathogen β is not affected by the presence of
the other one. Therefore, both pathogens are transmitted to
SS agents with probabilities p1 and p2, respectively. To apply
our model to mutually exclusive diseases, double contagions
of fully susceptible agents are forbidden. The interaction
between both circulating diseases is included via scaling
parameters, q1 (q2), affecting the probability that an agent
already infected by one disease catches the other one, as
shown in Fig. 1 for the transitions IS → II and SI → II . This
way, qβ < 1 implies that infected agents by one disease are
less likely to get the other one, thus encoding a competition
between both. However, qβ > 1 means that contagions by
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one disease increase the vulnerability to the other one, which
corresponds to a cooperative regime. Finally, all the recovery
processes are assumed not to depend on the circulation of
other pathogens, so that individuals overcome diseases 1 and
2 with probabilities r1 and r2, respectively. In this sense, let us
remark that, in our model, II agents can recover from both
diseases simultaneously and become SS individuals. How-
ever, these flows are hardly observed. Therefore, the results
reported below would not be significantly different from those
obtained when double recovery events are forbidden.

Mathematically, our formalism contains a set of inter-
dependent Markovian equations which enable to track the
temporal evolution of the dynamical state of each agent i.
Since there are four possible epidemic states for each of the
N agents, we require 3N equations to completely characterize
the evolution of the network. Given an agent, say i, let us
denote as [ργ ]t

i the probability that this agent belongs to each
of the following states γ (γ = IS, SI, II) at time t . Under the
microscopical rules defined above, the temporal evolution of
these probabilities reads as follows:

[ρII ]t+1
i = [ρSI ]t

i (1 − r2)

⎧⎨
⎩1 −

N∏
j

[
1 − Ai j p1q2

(
[ρIS]t

j + [ρII ]t
j

)]⎫⎬⎭
+ [ρIS]t

i (1 − r1)

⎧⎨
⎩1 −

N∏
j

[
1 − Ai j p2q1

(
[ρSI ]t

j + [ρII ]t
j

)]⎫⎬⎭ + [ρII ]t
i (1 − r1)(1 − r2), (1)

[ρIS]t+1
i = [ρSI ]t

i

⎛
⎝r2

⎧⎨
⎩1 −

N∏
j

[
1 − Ai j p1q2

(
[ρIS]t

j + [ρII ]t
j

)]⎫⎬⎭
⎞
⎠ + [ρIS]t

i (1 − r1)
N∏
j

[
1 − Ai j p2q1

(
[ρSI ]t

j + [ρII ]t
j

)]

+ [ρII ]t
i r2(1 − r1) + [ρSS]t

i

⎧⎨
⎩1 −

N∏
j

[
1 − Ai j

(
p1

(
[ρIS]t

j + [ρII ]t
j

) + p2
(
[ρSI ]t

j + [ρII ]t
j

) − p1 p2
(
[ρII ]t

j

)2)]⎫⎬⎭ fIS,

(2)

[ρSI ]t+1
i = [ρIS]t

i

⎛
⎝r1

⎧⎨
⎩1 −

N∏
j

[
1 − Ai j p2q1

(
[ρSI ]t

j + [ρII ]t
j

)]⎫⎬⎭
⎞
⎠ + [ρSI ]t

i (1 − r2)
N∏
j

[
1 − Ai j p1q2

(
[ρIS]t

j + [ρII ]t
j

)]

+ [ρII ]t
i r1(1 − r2) + [ρSS]t

i

⎧⎨
⎩1 −

N∏
j

[
1 − Ai j

(
p1

(
[ρIS]t

j + [ρII ]t
j

) + p2
(
[ρSI ]t

j + [ρII ]t
j

) − p1 p2
(
[ρII ]t

j

)2)]⎫⎬⎭ fSI .

(3)

For the sake of readability, we have included the variable
[ρSS]t

i whose value is automatically calculated as [ρSS]t
i =

1 − [ρIS]t
i − [ρSI ]t

i − [ρII ]t
i . Note that the contagion processes

involving totally susceptible (SS) agents are shaped by fIS and
fSI . These factors account for the probability of contracting
one disease when exposed to the other pathogen as well.
To define this probability, we must define a rule for the
case in which a fully susceptible agent is in contact with
both pathogens when interacting with its neighbors. In this
scenario, we assume that each disease will be contracted with
the same probability. This way, the probabilities fIS and fSI

read as

fIS = gIS (1 − 0.5gSI )

gIS (1 − 0.5gSI ) + gSI (1 − 0.5gIS )
, (4)

fSI = gSI (1 − 0.5gIS )

gIS (1 − 0.5gSI ) + gSI (1 − 0.5gIS )
, (5)

where gIS and gSI are the probabilities of making at least one
infectious contact with individuals affected by the first and

the second disease, respectively. These two probabilities can
be expressed as

gIS = 1 −
N∏
j

[
1 − Ai j p1

(
[ρIS]t

j + [ρII ]t
j

)]
, (6)

gSI = 1 −
N∏
j

[
1 − Ai j p2

(
[ρSI ]t

j + [ρII ]t
j

)]
. (7)

With these two equations we complete the Markovian descrip-
tion for two interacting diseases provided by Eqs. (1)–(3).

In the following sections we apply the formalism proposed
above to study the impact of the interaction between simulta-
neous diseases. In particular, to put our focus on the effects
of the interaction between diseases, we assume that both
circulating pathogens, though different, are epidemiologically
equivalent. Therefore, the only epidemiological parameters to
be included in our framework are the infectivity p = p1 = p2,
the recovery rate, r = r1 = r2, and the degree of interaction
between pathogens, q = q1 = q2.
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FIG. 2. Panel (a) shows the epidemic size ρ as a function of the infectivity p for several values of the interaction parameter q. The
curves (solid and dashed) correspond to the results obtained by iterating Eqs. (1)–(3) when performing forward (solid) and backward (dashed)
continuation schemes (see text for details). In its turn, points represent the results from 50 realizations of Monte Carlo simulations for each
value of p. In panel (b) we plot the phase diagram ρ(q, p) for the cooperative case. The solid white curves indicate the infectivity values for
which the onset of epidemics takes place (ρ > 10−3) in both backward and forward continuation branches. The critical point at qc pinpoints
where the bistability (faded) region appears. In both panels we use an ER network of N = 1000 nodes with 〈k〉 = 8, while r = 0.75.

III. COOPERATIVE DISEASES

The spread of cooperative diseases can be captured in our
formalism by setting q � 1 in Eqs.(1)–(3). In this case, we
first explore the effects of increasing the cooperation strength.
To do so, we study the dependence of the epidemic size
on the infectivity p and the interaction parameter q. For
single diseases, the epidemic size is defined as the fraction of
agents remaining infected when the epidemic has reached its
stationary state. Following this definition, the epidemic size in
the case of two diseases, denoted in the following as ρ, reads
as

ρ = 1

N

N∑
i=1

(
ρIS

i + ρSI
i + ρII

i

)
. (8)

In Fig. 2(a) we represent the epidemic diagrams (curves)
of an Erdös-Renyí (ER) network for several values of q
which range from the noninteracting case (q = 1) to that of
large cooperation (q = 10). Similarly to the case of single
noninteraction diseases, there is a threshold pc that separates
the disease-free regime and the epidemic phase. Interestingly,
the shape of the transition between both solutions strongly
depends on the coupling q between the two SIS dynamics.
Specifically, for low values of the interaction between dis-
eases, we observe the characteristic second-order transition
of the single SIS model, i.e., at the epidemic threshold the
absorbing state is no longer stable and the epidemic size ρ

grows smoothly as the infectivity increases. However, as the
cooperation is strengthened, the continuous transition turns
into a discontinuous one identified by a sharp variation of
the epidemic size. This abrupt transition yields a bistable
region for some p values in which both the epidemic and the
disease-free states are simultaneously stable. This bistability
is manifested by making a forward and backward continuation
of in p when solving Eqs. (1)–(3) for a fixed value of q. The
continuation method for the forward (backward) continuation

branch solves Eqs. (1)–(3) by modifying adiabatically the
value of the infectivity p. This way, the initial state for an
infectivity value p + δ (p − δ) is the steady configuration
obtained for p plus a small perturbation which is introduced to
avoid remaining trapped in the absorbing state (ρ = 0) when
the forward continuation branch is calculated. The solutions
corresponding to the forward and backward continuations are
plotted as solid and dashed curves, respectively.

To confirm the change in the nature of the epidemic on-
set observed from the solution of Eqs. (1)–(3) we perform
simulations of the mechanistic model in which each agent
possesses a particular dynamical state (SS, IS, SI, or SS),
which is updated according to the contagion network and the
microscopic rules defined in Sec. II. Figure 2(a) shows the
results (points) obtained from 50 Monte Carlo simulations
for each pair of (p, q) values. From these results, it becomes
clear that our model is able to reproduce very accurately
the phenomena arisen from the cooperation between both
diseases. In particular, for q = 10, the Monte Carlo solutions
clearly reveal that the transition becomes abrupt yielding the
predicted bistable region in which both the epidemic and the
disease-free states are simultaneously stable.

Once we have validated the framework, we can take ad-
vantage of the Markovian formalism to fully characterize the
phase diagram in the (p, q) space. In Fig. 2(b) we show
the epidemic prevalence ρ(q, p) and the curve pc(q) where
epidemic onsets take place for each value of q. Interestingly,
we can accurately identify the critical value qc for which this
curve divides into two branches, signaling when bistability
region (faded in the panel) shows up. This critical point
(qc, pc(qc)) pinpoints the border between three phases: the
epidemic, the disease-free, and the bistable ones.

Finally, we study the role played by the contact network
on the abrupt onset of cooperative diseases. For this purpose,
we fix q = 10 and analyze the epidemic diagrams by tuning
the degree heterogeneity of the underlying network using
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FIG. 3. Epidemic size computed following the forward continu-
ation scheme as a function of the infectivity p and the heterogeneity
of the degree distribution of the underlying network governed by α

(see text for more details). The recovery parameter has been set to
r = 0.75 whereas the interaction is fixed to q = 10. Networks have
N = 1000 nodes and 〈k〉 = 8.

the model proposed in Ref. [60] (version A). In this model
a network is constructed by mixing a fraction α of links
randomly launched while the remaining (1 − α) fraction of
edges is set following a preferential attachment scheme. This
way, by tuning parameter α this model allows to generate a
uniparametric family of graphs that range from ER (α = 1)
and Barabási-Albert (α = 0) networks, so the larger is α the
more homogeneous is the network.

Figure 3 shows that, as expected, the epidemic threshold pc

decreases as heterogeneity increases. However, homogeneous
networks are less resilient to epidemic outbreaks than hetero-
geneous ones since the change in the epidemic size at the
transition point becomes more pronounced as heterogeneity
decreases. Thus, in cooperative scenarios, degree homogene-
ity, while delaying the epidemic onset, enhances the abrupt
change in the epidemic prevalence at the critical point.

IV. COMPETITIVE DISEASES

Once shown the formalism for the cooperative case, we
now tackle the competition between two pathogens that prop-
agate simultaneously. As a result of this competition, the
infection probability of a pathogen decreases when affect-
ing individuals who are already infected by the other one.
Competitive interactions can be accomodated in Eqs. (1)–(3)
by setting q < 1. This choice includes a particular case that
has drawn a lot of attention [53–56]: that of mutually exclu-
sive pathogens. This particular scenario corresponds to the
case q = 0 in Eqs. (1)–(3) and captures the situation in which
the infection by one pathogen generates cross-immunity to the
other one, thus making state II inaccessible to agents.

The theoretical study of mutually exclusive pathogens has
revealed the existence of different epidemic regimes depend-
ing on the value of the contagion rate p and also on the
initial partition of infected seeds for both diseases. According
to these studies [53–56], the outcome of fully competitive
disease ranges from the dominance of one single disease
(and the resulting extinction of the other one) to a regime of
coexistence in which the whole epidemic prevalence contains
infected individuals of both diseases.

To study this phenomenology in the Markovian framework
we set, as anticipated above, q = 0 and study the impact of
both diseases as a function of the contagion rate p. Regarding
the initial infectious seeds, we bias the initial configuration
toward one of the pathogens by infecting 2% of the population
with the first disease and 1% with the second one. Starting
from this setup we iterate Eqs. (1)–(3) and compute the global
epidemic size ρ together with the difference between the
prevalences of each disease, |ρIS − ρSI |, where

ρIS = 1

N

N∑
i=1

ρIS
i , (9)

ρSI = 1

N

N∑
i=1

ρSI
i . (10)

With these two order parameters we are able to distinguish
between the case of full dominance of one disease (ρ =
|ρIS − ρSI | > 0) and that corresponding to equal prevalence
(ρ > 0 and |ρIS − ρSI | = 0).

In Fig. 4 we monitor these two order parameters as a
function of the infection probability p. From this plot, it
becomes clear that the Markovian framework reproduces the
phenomenology previously reported for competitive diseases.
Namely, for p < pc, the absorbing disease-free state is the
only stable solution. Note that, being the infection probabil-
ities of both pathogens the same, this epidemic threshold is
exactly the same as for independent SIS diseases. Therefore,
pc is given by [14,59]

pc = r

�max(A)
, (11)

where �max(A) is the maximum eigenvalue of the adjacency
matrix A. Above this threshold, p > pc the global epidemic
size grows smoothly as the infectivity p increases. However,
two different behaviors show up. For p > pc we find a domi-
nance regime in which one disease (here the first one) prevails
over the other one (whose prevalence is zero). In particular,
the dominant disease is that with the larger initial proportion
of infected individuals (here the first one). However, the
dominance regime suddenly breaks up when the infectivity
reaches a second threshold, denoted in the following as p′

c.
For p > p′

c, the second pathogen no longer disappears and
the steady state now comprises an equal prevalence of both
diseases. Thus, the coexistence regime appears when p > p′

c.
These results [obtained by solving Eqs. (1)–(3) with q = 0]
are totally in agreement with those obtained from Monte Carlo
simulations of the mutually exclusive coupled SIS model,
reported as points in Fig. 4.

It is possible to explain the full dominance regime in
physical terms by recalling that once p � pc the most
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FIG. 4. Evolution of the global epidemic size ρ (purple empty
points) and the difference between the prevalences of both diseases
(orange solid points) as a function of the infectivity p in the fully
competitive case q = 0. These points are the results obtained from
50 realizations of Monte Carlo simulations for each value of p. In its
turn, solid lines denote the solution obtained by iterating Eqs. (1)–(3).
Finally, the cross shows the theoretical estimation of the threshold p′

c

as obtained from Eq. (18). The network and the recovery probability
are the same as those used in Fig. 2.

abundant pathogen blocks, due to the cross-immunization
effect, many contagion pathways for the minority one. This
way, the effective network that remains for the spread of the
minority pathogen has an effective epidemic threshold larger
than the original one, pc, thus preventing its dissemination
for p � pc. However, as p increases the initial unbalanced
configuration loses its relevance and the transmission of
both diseases become identical, thus leading to a coexistence
regime. This latter phase of the dynamics shows up when the
second threshold is exceeded, p > p′

c.
Let us now take advantage of the validity of the Markovian

formalism to derive some analytical calculations about the
second threshold, p′

c, separating the full dominance and the
coexistence regimes in the case of mutually exclusive dis-
eases (q = 0). We start by making the following change of
variables:

ρt
i = [ρIS]t

i + [ρSI ]t
i , (12)

�t
i = [ρIS]t

i − [ρSI ]t
i . (13)

Note that this change leaves the third set of variables [ρII ]t
i

unaltered since for the case q = 0 we have [ρII ]t
i = 0 ∀i. From

Eqs. (1)–(2) we can write the Markovian equations governing
the time evolution of the new variables as

ρt+1
i = (1 − r)ρt

i + (
1 − ρt

i

)
qi( �ρt ), (14)

�t+1
i = (1 − r)�t

i + (
1 − ρt

i

)
qi( �ρt )( f IS − f SI ), (15)

where f IS = f IS ( �ρt , ��t ) and f SI = f SI ( �ρt , ��t ), and we have
defined

qt
i ( �ρt ) =

⎡
⎣1 −

N∏
j=1

(
1 − pAi jρ

t
j

)⎤⎦, (16)

for the sake of clarity. Note that the first equation, Eq. (14),
is formally identical to that of an ordinary SIS model. This
implies that, either in the case that one pathogen dominates
over the other or in the regime in which they coexist, the
overall prevalence is the same as that of one single pathogen
spreading in the network. Thus, the form of Eq. (14) pinpoints
that, to capture the second transition point p′

c, we should focus
on the behavior of {�t

i}, Eq. (15), since in the full dominance
phase (pc < p < p′

c) we have {�t
i} = {ρt

i }, whereas the coex-
istence phase (p > p′

c) is characterized by {�t
i} = �0.

Let us consider that the dynamics is in its stationary
regime, i.e., ρt+1

i = ρt
i = ρ∗

i and �t+1
i = �t

i = �∗
i ∀i. In this

case, Eq. (15) becomes

�∗
i = ρ∗

i [ f IS ( �ρ∗, ��∗) − f SI ( �ρ∗, ��∗)]. (17)

Since we are interested in capturing the transition between
��∗ = 0 and ��∗ 	= 0 we consider that the values �∗

i are small,
�∗

i = ε∗
i . This allows us to linearize Eq. (17), and obtain the

equation that has to be fulfilled at p = p′
c:

ε∗
i =

N∑
l=1

{
ρ∗

i

p′
cAil qi( �ρ∗/2)

(1 − p′
cAilρ

∗
l /2)[1 − qi( �ρ∗/2)2]

}
ε∗

l

=
N∑

l=1

Mil ( �ρ∗; p′
c)ε∗

l . (18)

Thus, to find the value p′
c one needs to find the minimum

value of p that fulfills that matrix M has 1 as eigenvalue. In
practical terms, since M depends on the overall prevalence,
�ρ∗(p), one should first solve the SIS diagram �ρ∗(p) for a

single disease and, by inserting the resulting stationary values
�ρ∗(p) in matrix M, identify the value p′

c that fulfils Eq. (18).
Following Eq. (18) we obtained the estimation of p′

c for the
ER graphs used in our numerical simulations so far. The result
(see the cross in Fig. 4) reveals the accuracy of the theoretical
prediction. We can therefore use this result to analyze, without
the need of solving Eqs. (1)–(2), the two thresholds, pc and
p′

c, for any given network. To understand the role of network
topology on the coexistence of the two diseases, we have
explored the evolution of these two thresholds when varying
the degree heterogeneity of the underlying network. To this
end we make use of the interpolating model network [60] and
vary the parameter α ∈ [0, 1] governing the formation of the
network. In Fig. 5 we show the curves pc(α) and p′

c(α) as
obtained from Eqs. (11) and (18), respectively. As a result
we obtain the phase diagram in the (α, p) space showing
the limits between the three phases. Interestingly, the second
threshold p′

c follows a decreasing trend as heterogeneity in-
creases (α → 0+) similar to the well-known behavior of the
epidemic threshold pc.

Finally, we use the Markovian framework, Eqs. (1)–(3), to
explore less restrictive competitive scenarios in which q 	= 0.
This way, in Fig. 6 we study the dependency of the second
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FIG. 5. Phase diagram of the fully competitive model (q = 0)
in the (α, p) space. Parameter α governs the degree heterogeneity
of the underlying contact network (see main text). This diagram is
obtained by calculating the curves pc(α) and p′

c(α) obtained from
Eqs. (11) and (18), respectively. These curves pinpoint the borders
between the three possible regimes as reported in the plot and show
that the second threshold p′

c increases as homogeneity (α) increases,
as already known for the first (epidemic) threshold pc. The recovery
rate has been fixed to r = 0.75. Networks have N = 1000 nodes and
〈k〉 = 8.

epidemic threshold p′
c on the interaction parameter q for sev-

eral values of the recovery rate r and the average degree of the
ER contact network 〈k〉. In both panels of Fig. 6, it becomes
clear that increasing q from the fully-competitive case makes
the full-dominance regime more vulnerable. Note, however,

that, even when the two pathogens are not mutually exclusive
from a microscopical point of view (q 	= 0), the existence of a
negative interaction between them can lead to the vanishing
of the weak disease in the macroscopic state. Obviously,
as q increases, this competition is softened and the second
threshold p′

c approaches the first one pc (dotted lines in Fig. 6).
When p′

c = pc the full dominance phase no longer shows up.
Interestingly, this effect strongly depends on the value of the
recovery rate and the average degree. In particular, Fig. 6(a)
reveals that the larger is the recovery rate the more resilient is
the full dominance regime. This can be explained by noticing
that increasing the recovery rate reduces the formation of large
clusters of the weak disease, thus increasing the dynamical
advantage of the dominant one. In its turn, in Fig. 6(b) we
report that increasing the average degree of the network (while
keeping constant the recovery rate) favors the emergence of
the coexistence regime. To explain this, let us remark that the
extinction of one disease occurs since the other one blocks
many of its spreading pathways. Thus, a larger average degree
promotes more potential contagion routes, making the full
dominance regime more vulnerable.

V. CONCLUSIONS

Phenomena such as the existence of simultaneous out-
breaks or the extinction of some infectious strains due to
the presence of other ones demand the incorporation of the
interaction between different pathogens in epidemic models.
The most relevant contribution of this work is to provide a
versatile Markovian framework capable of capturing different
types of interaction between coexisting diseases. Besides, this
framework accounts for the whole structure of connections
of the underlying contact network, thus abandoning the as-
sumptions about the statistical equivalence of nodes within
the same degree class. The validity of the proposed equations
has been tested by comparing with the results obtained from
Monte Carlo simulations, showing an excellent agreement for
any degree of epidemic prevalence.

FIG. 6. In this figure we show the second epidemic threshold p′
c as a function of the interaction parameter q for several values of the

recovery rate r (a) and different average degree of the underlying ER network (b). In (a) the average degree has been set to 〈k〉 = 4, whereas
in panel (b) the recovery rate is fixed to r = 0.2. In both panels the crosses account for the theoretical estimation of p′

c in the fully competitive
case (q = 0) according to Eq. (18). Dotted lines indicate the value of the threshold pc obtained from Eq. (11) for each (r, 〈k〉).
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Supported by the validity of the Markovian equations, we
have explored the role that the interaction between diseases
plays on their unfolding. For cooperative diseases, we have
shown that, as the interaction between pathogens increases,
the smooth transition at the epidemic threshold turns into a
first-order one in which there is an abrupt transition between
the absorbing (healthy) state and the epidemic one. We have
used the formalism to compute the critical value for the degree
of cooperation, qc, that triggers the abrupt transition. In its
turn, for competitive diseases we have analyzed the case of
mutually exclusive pathogens. In this case we have shown that
the epidemic phase is divided into two different regimes: the
full dominance phase (in which only one pathogen spreads
across the network while the other disappears) and the co-
existence phase (in which both pathogens spread simultane-
ously). To shed more light into this phenomenon, we have
linearized the Markovian equation to derive an analytical
estimation of the infectivity threshold, p′

c, that separates both
phases.

Apart from recovering the phenomenology reported
in the literature for both competitive and cooperative
scenarios, the use of the MMCA enables to address the
impact of the network structure on the emergence of these
phenomena. In particular, we have revealed that, in the co-
operative case, the first-order transition is less abrupt for het-
erogeneous topologies, for it only affects the most connected
nodes and their neighborhood. However, the heterogeneity
of the underlying contact network favors the coexistence of
competing diseases, since the existence of more available
routes decreases the confluence of both pathogens.

Finally, although it is not explicitly studied in the
manuscript, few words should be spent on how interaction
also shapes the extinction probability and mean lifetime
of diseases since, on finite networks, the endemic state is
only metastable and every disease will eventually die due
to stochastic fluctuations [61,62]. On the one hand, for co-
operative diseases, the interaction between both pathogens
fosters their propagation over the network, leading to a higher
incidence and extremely long extinction times. This boost is

specially relevant in the early stages of the diseases, for it
clearly reduces the probability of remaining trapped in the
absorbing state. On the other hand, the competition between
two diseases blocks many of the available spreading routes
for each pathogen. This way, each disease propagates over an
effective network with smaller average degree, thus increas-
ing their extinction probabilities and making the metastable
endemic state more vulnerable.

In a nutshell, the Markovian benchmark presented here has
allowed a systematic study of different degrees of positive and
negative interactions between the pathogens and the accurate
characterization of the corresponding phase diagrams. The
analytical derivation of the infection threshold between full-
dominance and coxistence regime for any arbitrary network
opens the door to the design of containment measures via
the introduction of highly infective but innocuous computer
viruses aimed at decreasing the damage of malware [63].
Finally, our formalism paves the way for the study of more
sophisticated interacting spreading processes such as complex
social contagions [64–67] applied, for instance, to the compe-
tition of ideas [68] or innovations [69].
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