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Abstract: The observation of cosmic neutrinos up to 2 PeV is used to put bounds on the energy scale
of Lorentz invariance violation through the loss of energy due to the production of e+e− pairs in the
propagation of superluminal neutrinos. A model to study this effect, which allows us to understand
qualitatively the results of numerical simulations, is presented.
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1. Introduction

Special relativity (SR) postulates Lorentz invariance as an exact symmetry of Nature. It is at the
base of our quantum field theories of the fundamental interactions and has surpassed all experimental
tests up to date ([1–4]; see also the papers in Reference [5]). In general relativity (GR), local Lorentz
invariance still holds but not as a global symmetry of spacetime. When considering a curved spacetime,
the global symmetries are given by the isometries of the metric characterizing the curvature [6].
However, it is not clear how to introduce symmetries of spacetime in a quantum gravity theory (QGT),
since spacetime plays a completely different role in GR and in quantum field theory (QFT). In QFT,
a particular spacetime is given and one studies the properties and interactions of particles on it but in
GR spacetime it appears as a dynamical variable affected by the material content.

One possibility is that Lorentz invariance is indeed broken for high enough energies.
This is studied in Lorentz invariance violation (LIV) scenarios (see Reference [7] for a review),
usually formulated within the theoretical framework known as the standard model extension (SME),
an effective field theory in which new terms that violate Lorentz invariance are added to the usual
terms appearing in the Lagrangian of the standard model (SM) [8]. The existence of a violation of
Lorentz invariance implies a privileged system of reference, for which the cosmic background radiation
is usually assumed to be isotropic.

In this way, Lorentz symmetry would be only a good long-distance, or low-energy, approximation
to the true symmetries of a QGT, which should be parametrized by a certain high-energy scale Λ.
This scale is supposed to be of the order of the Planck mass, mP ≈ 1.2× 1019 GeV/c2, whose direct
exploration is certainly out of reach in present experiments. However, over the past few years it has
been realized that there are astrophysical observations that could be sensitive to such deviations [9].
For example, thresholds of reactions can be significantly changed by modifications of SR in such a
way that processes that are kinematically forbidden in SR could become allowed for a certain energy,
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much lower than the Planck mass. Also, the possible existence of an energy dependent velocity for
massless particles could be observed in measurements of the time of arrival of photons emitted by
very distant sources, since there is an amplification effect due to the long distance they travel.

Another possible observable effect could appear in the spectrum of the detected neutrinos in the
IceCube experiment [10–12]. In particular, there seems to be a cutoff in the spectrum for energies of the
order of some PeV, which is in contrast with an extrapolation of the energy dependence of the flux for
energies up to 60 TeV. Such an extrapolation, together with the presence of the Glashow resonance at
6.3 PeV [13] (for which an electronic anti-neutrino interacts with an electron at rest, producing a real
W− boson), would predict the detection of a few events at these energies that have not been observed.
Although more data have to be collected in order to assure the existence of a cutoff, one can speculate
about this suppression. Then, two options can be considered—either there is some kind of mechanism
at the source in such a way that high energy neutrinos are not emitted with the usual law for lower
energies, or there is an effect of new physics that has to be taken into account.

This is the proposal of Reference [14]. In this work, a LIV scenario was considered so that new
processes forbidden in SR are now kinematically allowed. In particular, they considered the processes
of neutrino splitting (NS) and vacuum electron-positron pair emission (VPE). With a Monte Carlo
analysis, they found that dimensions 6 operators produce a cutoff in the spectrum of detected neutrinos.

In this work, we find the same cutoff in the spectrum of neutrinos but, instead of considering a
Monte Carlo simulation, we will use an analytic method that follows the propagation of neutrinos by
considering their energy loss due to the universe expansion and the VPE effect. The NS process is not
considered in this analytic method since it involves a non-conservation of the number of neutrinos.
The inclusion of this effect will require to follow the evolution of the full neutrino spectrum rather than
of individual neutrinos and is left for a future work.

In Section 2, we will model the flux of detected and emitted neutrinos for one source, establishing
a relationship between them. This relationship between fluxes will depend on the relationship between
the emitted energy and the detected energy for each neutrino, which is computed in Section 3. Finally,
we will merge both results in Section 4, in order to obtain a prediction for the detected flux, knowing
the characteristics of the emission and the distribution of sources. We conclude in Section 5 with a
discussion of the very stringent bounds on the scale Λ of LIV that one gets from the observation by
IceCube of cosmic neutrinos up to 2 PeV.

2. Neutrino Flux

In order to relate the emitted neutrinos at ze to the detected neutrinos at z = 0, we will consider
a Friedman-Lemaître-Robertson-Walker (FLRW) model for the expanding Universe, for which the
redshift is defined from the evolution of the scale factor,

a(t) =
a0

1 + z
, (1)

where a0 is the scale factor at z = 0. From the previous expression, and introducing the Hubble
parameter H(t) = ȧ(t)/a(t), one gets the relation between dt and dz

dt = − dz
H(z)(1 + z)

, (2)

while the FLRW equation gives

H2(z) = H2
0

[
Ωm (1 + z)3 + Ωr (1 + z)4 + ΩΛ + Ωκ (1 + z)2

]
, (3)
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with H0 the value of the Hubble parameter today, and Ωm, Ωr, ΩΛ, Ωκ , the density fractions of matter,
radiation, dark energy and curvature respectively, with values [15]

ΩΛ ∼ 0.692± 0.012 Ωm ∼ 0.308± 0.012

Ωκ ∼ 0.005± 0.017 Ωr ∼ 5.38× 10−5 ± 0.0015 .
(4)

Neglecting the contributions of the density fractions of the radiation and curvature, one gets

H(z) ≈ H0

√
Ωm (1 + z)3 + ΩΛ . (5)

The comoving distance between the emission and detection points of a neutrino is related to ze by

re(ze) = −
∫ dt

a(t)
=
∫ ze

0

dz
a0H(z)

, (6)

where we have used the relation ds2 = 0 = dt2 − a2(t)dr2 from the FLRW metric and Equation (2).
Then the emitted neutrinos at ze are spread in an area 4πa2

0r2
e (ze) at z = 0.

In order to determine the flux of the detected neutrinos, we need to start from a model for the
origin of the high energy neutrinos. This model can be summarized in a function Pe(Ee, ze), which gives
the number of emitted neutrinos dNe in a time interval δte, with energies in the interval (Ee, Ee + dEe),
and at a distance from the detector corresponding to redshifts in the interval (ze, ze + dze), as

dNe(Ee, ze) = Pe(Ee, ze) dEedzeδte . (7)

Neutrinos emitted at redshift ze with an energy Ee arriving at the detector will be detected
with a lower energy Ed, which results from the energy loss in the propagation of the neutrinos.
Since the processes of energy loss that we are going to consider in this work do not change the
number of neutrinos during their propagation from its source to the detector, there exists a one-to-one
correspondence between a neutrino detected with energy Ed and the emission at a certain ze of a
neutrino with energy Ee, which will be a function of Ed and ze. Let us call g(Ed, ze) to this function,
that is, Ee = g(Ed, ze). The determination of the function g will be the objective of Section 3. It allows
us to write Equation (7) in terms of the detected energy:

dNe(g(Ed, ze), ze) = Pe(g(Ed, ze), ze)
∂g(Ed, ze)

∂Ed
dEddze

δtd
1 + ze

, (8)

where we have used that an interval δte at emission is stretched at detection by a factor (1 + ze),
which is the ratio of scale factors at the source and at the detector.

From Equation (8), one can get the number of neutrinos with energies in the interval (Ed, Ed + dEd),
which arrive in a time interval δtd to an area δA subtended by the detector from the source and then
the spectral neutrino flux (measured in convenient units as number of neutrinos per GeV · s · cm2 · str)
at an energy Ed will be

φd(Ed) ≡
dNd(Ed)

dEdδtdδA
=
∫

dzePe(g(Ed, ze), ze)
∂g(Ed, ze)

∂Ed

1
1 + ze

1
4πa2

0re(ze)2
. (9)

The function Pe(Ee, ze) depends on the model for the emission of the neutrinos. If we take the
simple model that the neutrinos are emitted from sources which follow a density distribution ρ(ze),
according to a power law E−α

e , α = 2 (this is the approximation made in Reference [14] from the data
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of IceCube; however, one could go beyond that approximation by including the neutrinos generated
in the interstellar medium by cosmic ray interactions (diffuse flux) [16]), then

Pe(Ee, ze) ∝
1

E2
e

ρ(ze) , (10)

where one can consider the scenario in which the redshift distribution of the sources ρ(ze) approaches
that of the star formation rate [17]. If C is the constant proportionality factor in Equation (10),
the detected spectral neutrino flux for this model of emission of neutrinos will be

φd(Ed) = C
∫

dze ρ(ze)
1

g2(Ed, ze)

∂g(Ed, ze)

∂Ed

1
1 + ze

1
4πa2

0re(ze)2
. (11)

3. Energy Loss in the Propagation of a Superluminal Neutrino

In this section, we will consider the differential evolution of the neutrino energy along the
trajectory, which will give us the relation g(Ed, ze) between the emitted and detected energies of a
neutrino propagating from the source to the detector. This will be determined by the classical effect of
the expansion of the universe, on the one hand, and by the effect of the VPE, the effect of new physics,
on the other hand. In order to get the total energy variation due to both effects, we will analyze each of
them independently.

3.1. Expansion of the Universe

The variation of the neutrino energy due to the expansion of the Universe is well known from the
dilation of the wavelength or the contraction of the frequency

νd =
ν

(1 + z)
. (12)

Recalling that for an (approximately) massless particle, E = hν, we get the relation

Ed =
E

(1 + z)
. (13)

This gives, for a fixed detected energy, the neutrino energy as a function of z. Now, differentiating
the previous relation, we obtain dE = Ed dz. Substituting here Equation (13), we get the differential
variation of the neutrino energy due to the expansion of the Universe:

dE
E

=
dz

(1 + z)
. (14)

3.2. Vacuum Pair Emission

The second mechanism of energy loss is the emission of electron-positron pairs through the process
νi → νi + e− + e+. In the process of VPE, a superluminal neutrino with an energy-momentum relation

E2 = p2 +
p2+n

Λn (15)

can produce two new particles when its energy is above a threshold energy E∗. This threshold energy
is given in terms of the energy scale Λ and the order of the correction n by [18]:

E∗ =
(

4m2
e Λn

)1/(2+n)
. (16)
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The disintegration can be produced two different ways—a neutral channel, mediated by a
boson Z0, and a charged channel, mediated by a boson W+ (Figure 1a and Figure 1b, respectively).
However, one should consider the charged channel as an additional contribution to the neutral channel
only for electron neutrinos, that is, roughly 1/3 of the time during superluminal propagation due to
the phenomenon of neutrino oscillations. As a first approximation, we can neglect it and consider the
neutral channel as the dominant one. With this simplification, the process has been characterized in
Reference [18]:

Γ =
G2

F p5

192π3

[
(1− 2s2

W)2 + (2sW)2
]( p

Λ

)3n
ξn , (17)

where GF is the Fermi constant, sW = sin(θW) is the sine of the Weinberg angle, and ξn is a constant
(dependent of n) of order 1. From this decay width, in the same reference, it is also obtained the
variation of the momentum in time

dp
dt

=
G2

F p6

192π3

[
(1− 2s2

W)2 + (2s2
W)
]( p

Λ

)3n
ξ ′n . (18)

Noting that for massless neutrinos, dp/dt = dE/dt, we can write

dE
dt

= −αnE6+3n , (19)

where we have defined αn as

αn =
G2

Fξ ′n
192π3Λ3n

[
(1− 2s2

W)2 + (2sW)2
]

. (20)

(a) Neutral channel (b) Charged channel
Figure 1. Neutrino disintegration through vacuum electron-positron pair emission (VPE).

Using the relation between dt and dz given by Equation (2), we get the evolution of the neutrino
energy due to the VPE

dE
E

=
αnE5+3ndz

H(z)(1 + z)
. (21)

3.3. Evolution in Case of VPE

As the process of VPE has a threshold energy, when the neutrino energy goes down below that
energy, pair production stops. Let us assume that the VPE has been occurring between points zi and z f
of the trajectory. In that case, the kinematics of the propagation of the neutrinos between those points
is determined by

dE
E

=
dz

(1 + z)
+

αnE5+3n dz
H(z)(1 + z)

, (22)
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where the first term on the right hand side takes into account the expansion and the second one,
the VPE. In order to determine E as a function of z, we start by defining Ẽ ≡ E/(1 + z):

E = Ẽ(1 + z) =⇒ dE = dẼ (1 + z) + Ẽ dz . (23)

Substituting Equation (22), one finds

dẼ (1 + z) + Ẽ dz
Ẽ(1 + z)

=
dz

(1 + z)
+

αnẼ5+3n(1 + z)5+3n dz
H(z)(1 + z)

, (24)

and then
dẼ
Ẽ

=
αnẼ5+3n(1 + z)4+3n dz

H(z)
. (25)

Using Equation (5) and defining y ≡ (1 + z)3, then dy = 3(1 + z)2dz, and therefore

dẼ
Ẽ6+3n

=
αn

3H0

y2/3+n√
Ωm y + ΩΛ

dy . (26)

Now, integrating from the initial point zi, where the neutrino has an energy Ei, to the final point
z f , where the neutrino has an energy E f , one gets

1
(5 + 3n)

(
Ẽ f
−(5+3n) − Ẽ−(5+3n)

i

)
=

αn

3H0

∫ (1+zi)
3

(1+z f )3

y2/3+n√
Ωm y + ΩΛ

dy . (27)

From this expression, one can write the initial energy as

Ei =
(1 + zi)

(1 + z f )
E f

1 + (5 + 3n)
αn

3H0
Jn(zi, z f )

(
E f

1 + z f

)5+3n
− 1

(5+3n)

, (28)

where we have defined

Jn(zi, z f ) ≡
∫ (1+zi)

3

(1+z f )3

y2/3+n√
Ωm y + ΩΛ

dy . (29)

Now, substituting Equation (20) (definition of αn) in Equation (28) and using Equation (16)
(definition of E∗) to express Λ as a function of E∗, we can rearrange the expression of the emitted
energy in the following way

Ei =
(1 + zi)

(1 + z f )
E f

(
1− λn(zi, z f )

(
Ec

E∗

)(E f

E∗

)5+3n
)− 1

(5+3n)

, (30)

where we have factorized the dependence on zi, z f introducing the quantity

λn(zi, z f ) ≡
(5 + 3n)ξ ′n

3

[
(1− 2s2

W)2 + (2sW)2
] Jn(zi, z f )

(1 + z f )5+3n , (31)

and the dependence on energy by defining an energy scale Ec

Ec ≡
G2

F
(
4m2

e
)3

192 π3 H0
, (32)

which is of order EeV.
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4. Deformation of the Spectrum of High-Energy Neutrinos

Having identified in the previous section the neutrino energy loss due to the production of e+e−

pairs in the propagation on an expanding universe, we study in this section the bounds on the energy
scale (Λ) of LIV that one can get from the observations of cosmic neutrinos by IceCube.

If we have a neutrino detected with an energy Ed greater than the threshold E∗ for e+e− pair
production in the decay of a neutrino, then one can apply the relation (30) with zi = ze, Ei = Ee, z f = 0
and E f = Ed. Then, the energy Ee of a neutrino emitted at a point with a redshift ze arriving to the
detector at z = 0 with an energy Ed is

Ee = (1 + ze) Ed

[
1− λn(ze, 0) (Ec/E∗) (Ed/E∗)5+3n

]−1/(5+3n)
≡ g(1)(Ed, ze) . (33)

From this expression, one can see that introducing z∗(1)e (Ed) by the condition

λn(z
∗(1)
e (Ed), 0) =

(
E∗

Ec

) (
E∗

Ed

)5+3n
, (34)

one has that the neutrino has to be emitted with ze < z∗(1)e (Ed), otherwise the neutrino can not arrive
to the detector with an energy Ed > E∗. Taking into account that Ec ∼ EeV, that all observations
of cosmic neutrinos are at energies much smaller than Ec, and that (E∗/Ed)

5+3n � 1 unless Ed is
extremely close to E∗, one has z∗(1)e (Ed)� 1.

Only neutrinos emitted from points very close to the detector (ze � 1) can arrive to the detector
with an energy Ed > E∗ and then, independently of the details of the model for the origin of the cosmic
neutrinos, one will have a strong suppression of the spectrum for Ed > E∗. Explicitly, one has

φd(Ed) = C
∫ z∗(1)e (Ed)

0
dze ρ(ze)

1
g(1)(Ed, ze)2

∂g(1)(Ed, ze)

∂Ed

1
1 + ze

1
4πa2

0re(ze)2
. (35)

Next, one can consider a neutrino detected with an energy Ed smaller than E∗. We introduce

z∗(Ed) ≡
E∗

Ed
− 1 , (36)

so that neutrinos emitted from ze < z∗(Ed) cannot produce e+e− pairs. Then, in this case, the change in
the energy of the neutrino in the propagation is just due to the expansion of the universe Ee = Ed(1+ ze).
If the neutrino is emitted from ze > z∗(Ed), then one can apply the relation (30) with zi = ze, Ei = Ee,
z f = z∗(Ed) and E f = E∗

Ee = (1 + ze) Ed [1− λn(ze, z∗(Ed)) (Ec/E∗)]−1/(5+3n) ≡ g(2)(Ed, ze) . (37)

Once more, one can introduce a critical value z∗(2)e (Ed) by the condition

λn(z
∗(2)
e (Ed), z∗(Ed)) =

(
E∗

Ec

)
, (38)
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so that one has that the neutrino is emitted from z∗(Ed) < ze < z∗(2)e (Ed). The neutrinos with Ed < E∗

which are affected by a suppression due to LIV effects in the propagation are those which are emitted
from ze > z∗(Ed). Then

φd(Ed) = C
∫ z∗(2)e (Ed)

z∗(Ed)
dze ρ(ze)

1
g(2)(Ed, ze)2

∂g(2)(Ed, ze)

∂Ed

1
1 + ze

1
4πa2

0re(ze)2

+ C
∫ z∗(Ed)

0
dze ρ(ze)

1
E2

d(1 + ze)2
1

4πa2
0re(ze)2

, (39)

and the suppression in the spectrum will decrease when Ed decreases.
The strong suppression of the spectrum of detected neutrinos at energies Ed > E∗ implies that,

from the observations of cosmic neutrinos by IceCube extending up to a few PeV, we can conclude
that the threshold energy (E∗) for e+e− production should be of the order of or greater than a few PeV.
The exact bound on E∗ (and then on Λ) will depend on the details of the model for the origin of the
cosmic neutrinos.

As in Reference [14], we will assume, as an illustrative example, that the neutrino sources have a
redshift distribution similar to that of the star formation rate [19]. In particular, we will consider sources
from z = 0.2 to z = 6.8. Let us start with the first integral of Equation (35), that takes into account
the neutrinos detected with an energy higher than the threshold energy, which we will consider to be
10 PeV in order to have a suppression in the neutrino spectrum due to LIV in the range of energies
accessible to IceCube. It is not difficult to show that one would not detect such neutrinos, since the
value of z∗(1)e (Ed) is lower than the redshift of the nearest considered source, z = 0.2. To illustrate that,
one can see that for the particular case of Ed = E∗, one finds z∗(1)e (E∗) = 4× 10−5 and this value will
get smaller for higher energies, so there is a total suppression to detect neutrinos with Ed > E∗.

For the second integral, Equation (39), we obtain the normalized distribution for n = 1 and for
n = 2 represented in Figures 2 and 3, respectively.

0 2 4 6 8 10

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Detected energy Ed [PeV]

L
og

[
(E
d
)2
*
Φ
d
(E
d
)/
Φ
d
(1
)
]

Figure 2. Logarithmic representation of the flux of neutrinos for n = 1.
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Figure 3. Logarithmic representation of the flux of neutrinos for n = 2.

We find in both cases a cutoff in the spectrum of neutrinos below the threshold energy, preceded by
a small bump. This is in fact the same result obtained in Reference [14] with a Monte Carlo simulation
when only VPE was considered.

From the cutoff, one could extract a constrain to Λ for this model in order to be compatible with
the neutrino observations until 2 PeV. If one forgets the neutrino splitting effect, this model could
give an explanation of the absence of detected neutrinos for energies above 2 PeV despite the Glashow
resonance at 6.3 PeV, imposing that the rapid fall of the probability of detection occurs between 2 PeV
and the resonance energy 6.3 PeV.

Since the last detected neutrino of the spectrum has an energy of 2 PeV, we know from our model
that the threshold energy has to be greater than this value. From this, we can get the minimum value
of Λ for n = 1 and n = 2 from Equation (16), obtaining 7.6× 1018 PeV and 3.9× 109 PeV respectively.
While in the first case the high energy scale is five orders of magnitude grater than the Planck energy,
in the second one is four orders below. These bounds on Λ should be compared with the less stringent
bounds obtained from other possible observable effects of LIV, like time delays in gamma-ray bursts
(GRBs) or the end of the ultra-high-energy cosmic ray (UHECR) spectrum.

The conclusions obtained with this simple model for the origin of the neutrinos can be easily
extended to a more realistic model that takes into account a more trustworthy punctual source
distribution, together with a diffuse component due to the production of neutrinos in interactions of
ultra energetic cosmic rays in the gas of our galaxy, in other galaxies, or in the intergalactic medium [16].
All these contributions will change the detected spectrum in a small range of energies below the scale
E∗, where the rapid fall of the spectrum occurs.

5. Discussion and Conclusions

We have used the detection of high energy neutrinos as an example where a breaking of Lorentz
invariance with an energy scale much larger than the energy scale of any observation can lead to
observable effects, thanks to the amplification due to the propagation of a particle over very large
distances. The best candidate for the particle is a neutrino, due to the very weak interaction which
allows to consider a free propagation. If one has a modification of the energy-momentum relation
of SR such that the energy of a particle with a given momentum is increased due to the breaking of
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Lorentz invariance, then, for sufficiently high energies, the lightest neutrino becomes unstable since it
can decay through weak interactions into a neutrino and an e+e− pair (one could also have a µ+µ−

pair or a τ+τ− pair but the higher masses of the charged leptons make the threshold energy of the
decay far beyond any accessible energy, except in the case of e+e−). We have considered the relation
between the energy of a neutrino at the source and at the detector due to the effect of the expansion
of the universe, and the loss of energy in the production of e+e− in the propagation of the neutrino
between the source and the detector.

Given this relation between the emitted and detected energies, one can determine the distortion
of the neutrino spectrum due to the breaking of LIV for a given model for the spectrum of emission
of neutrinos and the distribution of sources. Such distortion produces a very step fall in the flux of
neutrinos in a range of energies below the threshold of the neutrino decay. We have determined the
range of energies where this fall in the neutrino flux occurs using a simplified model for the origin of
the high energy neutrinos. The observation of cosmic neutrinos up to 2 PeV implies that the threshold
of the decay has to be larger than a few PeV and this translates to a very stringent lower bound on the
energy scale Λ of LIV.

There is another possible decay of neutrinos due to weak interactions with the production of a
neutrino-antineutrino pair (neutrino splitting). In this case, one has a cascade of neutrinos associated
with each emitted neutrino instead of a single neutrino and one has to go beyond the model presented
in this work. The distortion of the neutrino spectrum can not be obtained in this case from a model for
the evolution of the energy of a neutrino in the propagation from the source to the detector. A model
allowing the incorporation of the effects of all the decays of neutrinos will be the subject of future
work. In any case, this is an effect on top of the effect due to the production of e+e− pair, which will
not invalidate the bound obtained in this work but will replace it by still a more stringent constraint on
the scale Λ of LIV.
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