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Learning a local symmetry with neural networks
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We explore the capacity of neural networks to detect a symmetry with complex local and non-local patterns:
the gauge symmetry Z2. This symmetry is present in physical problems from topological transitions to quantum
chromodynamics, and controls the computational hardness of instances of spin-glasses. Here, we show how to
design a neural network, and a dataset, able to learn this symmetry and to find compressed latent representations
of the gauge orbits. Our method pays special attention to system-wrapping loops, the so-called Polyakov loops,
known to be particularly relevant for computational complexity.
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The physics community is greatly excited by the possibil-
ities offered by machine-learning tools, which have reached
superhuman performance in tasks of significant complexity
(think, for instance, of Go playing [1]). Indeed, deep (convolu-
tional) neural networks (DCNN) [2,3], initially developed for
classification and pattern-recognition tasks, have been applied
to the identification of phases of matter [4–10], including
glasses [11–13] and topological states [14], or even to seem-
ingly for-humans-only tasks, such as finding real-space renor-
malization group transformations [15] (this is just a somewhat
arbitrary selection of, literally, hundreds of applications to
physics).

In this context, local (or gauge) symmetries pose a major
challenge due to the absence of any local or global order
parameter [16], which explains why only preliminary studies
have been conducted [5,6]. In fact, thanks to their convolu-
tional layers, DCNN successfully handle locally global trans-
lations and rotations: even if moved, DCNN still identify a
previously learned image. The obvious next step for physicists
is to consider more general symmetries for practical purposes.

The specific question we had in mind was whether DCNNs
could be used to predict the computational complexity of a par-
ticular optimization problem instance. Spin-glasses represent
the perfect playground to test this idea, because finding the
ground state of a simple Hamiltonian, such as

H = −
∑

〈x,y〉
Jxyσxσy , (σx = ±1 for all sites x) , (1)

is an NP-complete problem as soon as the underlying inter-
action graph is non-planar [17,18] (we consider statistically
independent couplings Jxy = ±1 with 50% probability). The
classification problem is motivated because the computational
difficulty of solving different problem instances of Eq. (1)
spreads over several orders of magnitude [19–24], even for

such a modest number of spins as N ∼ 500.1 In spite of
the question’s practical relevance, it is still unknown which
features of the coupling-matrix Jxy cause this tremendous
disparity of computational cost [21]. DCNNs would be an ob-
vious choice to address the computational-cost classification
problem, were it not for the gauge symmetry of Hamiltonian
(1) (the εx = ±1 are arbitrary) [25]

Jxy → J̃xy = Jxyεxεy and σx → σ̃x = εxσx . (2)

All problem instances related by this transformation belong to
the same gauge orbit. Now, the difficulty for solving problems
from the same orbit is identical. Hence, our desired DCNN
should first be able of telling us with certainty whether or not
two problem instances belong to the same gauge orbit. For this
task, one direct solution would be to embed the symmetry in
the architecture of the neural network (as done in Refs. [26,27]
to build a gauge equivariant DCNN). However, in this work,
we will rather explore the difficulties standard DCNNs face
when trying to discover a complex symmetry not pre-inserted
on their structure, which is strongly related to the problem of
automatically learning of phases of matter that has recently
attracted lots of attention in physics.

Here, we present a machine-learning algorithm that solves
the problem of gauge-orbit identification as formulated for
spin-glasses on the square lattice. The same algorithm works
in the cubic lattice, although we are limited to systems of
smaller linear size due to memory and computational costs.
Interestingly, all the standard DCNNs for image classification

1Actually, Refs. [19–21,23,24] attempted to find equilibrium con-
figurations using a Parallel Tempering algorithm down to some
minimal temperature Tmin. In order to compute the ground state, one
needs to push Tmin = 0, as done in Ref. [22]. Unfortunately, the lower
Tmin, the larger the spread over the samples of the computational
hardness, see, e.g., Refs. [19,23,24].
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FIG. 1. (a) Chess transformation from the lattice (x, y), 0 �
x, y � L − 1, to the image (x1, x2), 0 � x1, x2 � 2L − 1. Periodic
boundary conditions (PBC) are implemented by two additional rows
and columns framing the image (for clarity, we only show the
additional row at x2 = −1 and the additional column at x1 = 2L).
The spin at site x = (x, y) is assigned to the pixel (x1 = 2x, x2 =
2y) in the image, depicted as dummy gray cells, which are set
to zero when fed to the neural-network. The coupling Jx,y with
x = (x, y) and y = (x + 1, y) is in the pixel (x1 = 2x + 1, x2 = 2y)
which is set to black if J = 1 (white if J = −1). Similarly, the pixel
(x1 = 2x, x2 = 2y + 1) contains the coupling between (x, y) and
(x, y + 1). The remaining pixels at the center of each plaquette, i.e.,
(x1 = 2x + 1, x2 = 2y + 1), are also fixed as dummy gray pixels. We
indicate with red dots the spin-pixels per site, while the blue edges
are in the J-pixels joining neighboring spin-pixels. We also show the
pixels necessary to compute a plaquette and a Polyakov loop [the
(say) vertical line, which is a closed loop thanks to the PBC]. (b) A
problem instance and one of its gauge transforms. Both instances
lead to the same comb-gauge representation after gauge-fixing.

tried, including the ResNet [28], completely failed at this task.
A careless posing of the problem could make it wrongly seem
trivial. Indeed, instances from the same orbit share the value
of every Wilson loop [29] [the product of couplings along a
closed loop in the lattice, which is gauge invariant Eq. (2)]. At-
tention immediately falls on the plaquette, the shortest Wilson
loop, see Fig. 1(a). However, two instances sharing the value
of every plaquette, but differing on the so-called Polyakov
loops (the shortest Wilson loops wrapping the system through
the periodic boundary conditions), may have vastly different
computational complexity [23]. We improve over Ref. [5] by
teaching our machine to consider both local and non-local
Wilson loops when studying a Z2 gauge symmetry.

Let us highlight two other aspects of this problem that
machine-learning practitioners may find attractive: (i) a train-
ing set of (essentially) arbitrary size can be easily generated
and (ii) we have a gauge-fixing algorithm that tells us unam-
biguously if two coupling matrices belong to the same gauge
orbit. The computational cost of this algorithm scales as a
power of the system size L.

Below, we present two different approaches to solve this
classification problem using DCNN (we employed the Keras-
tensorflow and scikit-learn libraries [30,31]). Our first algo-
rithm tells us if two instances are in the same gauge orbit.
Our second algorithm is an autoencoder, a DCNN capable of
finding a latent representation of a gauge orbit by means of an
approximate gauge fixing. Although the latent representation

can be used for classification purposes, it further allows
clustering instances by orbits.

For square lattices, it is natural to feed the coupling matrix
J to the neural network as an image. After considering several
alternatives, our choice was to map our physical square lattice
of size L to a square image of size 2L through the chess
transformation illustrated in Fig. 1(a) (the chess transforma-
tion generalizes to three dimensions). Although one pixel
out of two is wasted in the resulting image, we found that
the learning process and the interpretation of results were
easier with the chess transformation than with less memory-
demanding representations.

Gauge-fixing and the comb gauge—Gauge transformations
O are also illustrated in Fig. 1(b): the naked eye can hardly
tell whether or not the images corresponding to two coupling
matrices belong to the same gauge orbit. This question can
be answered by fixing the gauge,2 that is, to use a map fG :

JOk → Ĵ
Ok from any instance J from gauge orbit Ok to a

single representative of it, Ĵ. Thus, two instances are in the
same orbit if, and only if, fG (J) = fG (J′). We construct our
mapping by changing the gauge: the ε ≡ {εx} in Eq. (2) are
chosen in such a way that J̃x,y = 1 for any horizontal coupling
x − y = (±1, 0) (but for J̃x=(L−1,y),y=(0,y) which is equal to a
gauge-invariant Polyakov loop), as well as J̃x=(0,y),y=(0,y+1) =
1 for 0 � y < L − 2. We call this transform, the comb-gauge.
We include a code performing this gauge-fixing in the Supple-
mental Material (SM) [32].

Construction of the dataset—We found inconvenient for
our purposes the approach used in Ref. [5] to detect the gauge
symmetry, namely constructing a (balanced) dataset of pairs
of systems, a group with pairs of instances from the same orbit
and the other group with pairs of randomly chosen Js. Indeed,
this classification problem is too easy. Most of the time, and
this is what the DCNN learns, the pair of randomly chosen Js
will be so different that one could tell that they do not belong
to the same orbit just by looking at a very reduced number of
plaquettes.3 A DCNN trained in this way would completely
miss situations in which just a few couplings changed, and it
would be blind to extensive transformations that leave every
plaquettes unaltered. Therefore, we need to ensure that in our
dataset it is not enough to check one (or few) plaquette(s).

Specifically, our dataset is composed of Ns pairs {J, O(J′)},
with J′ = F(J), where O is a random gauge transform (i.e.,
with random {εx}) and F a simple transformation (see below
and SM [32]). In 50% of the cases, F is the identity mapping
(and J = J′), and in the other half, some transformations that
change only a small fraction of the Jx,y.

In the so-called J′ = Rq(J) transformation, a fraction q of
randomly chosen Jxy is flipped.

In the (horizontal) line-transformation J′ = L(J), J′ is
obtained from J by flipping the couplings joining x = (0, y)
and y = (1, y) for any y [vertical transformation: x = (x, 0)

2In this work we deal with an Abelian gauge group which makes
gauge-fixing simple (difficulties arise for non-Abelian gauge groups,
see, e.g., Ref. [41]).

3For two randomly chosen Js, the probability of coincidence in k
fixed, non-overlapping plaquettes falls as 1/2k .
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FIG. 2. (a) The typical architecture used for detecting the gauge
symmetry between pairs of systems. It is important to scan both
square-like kernels for the plaquettes and full-line kernels for the
Polyakov loops. (b) Schematic representation of the autoencoder.
The encoder is very similar to the architecture above, the decoder
is typically made of upsampling layers (increasing the size of the
input) and of convolutional layers.

and y = (x, 1), for all x]. The line transformation preserves the
value of each plaquette, but the sign of all the horizontal (ver-
tical) Polyakov loops is reversed. These line transformations,4

are important when assessing the computational hardness
[23].

In our dataset, when J �= J′, we choose with 1/3 prob-
ability J′ = L(J) or, with probability 2/3, J′ = Rq(J). Line
transformations are equally likely to be horizontal or vertical.
If the chosen transformation is Rq, in order to force the scan
of every plaquette, we pick q ∼ 1/L2 with 50% probability
(we invert randomly 1–5 couplings), or q = qR where qR is a
uniform random number with 1/(2L2) � qR < 1/4.

Construction of the DCNN—We build a DCNN that inputs
the chess-transformed [see Fig. 1(a)] images representing a
pair of coupling matrices {J, O(J′)} and outputs the probabil-
ity that the two instances belong to the same gauge-orbit.5

4Any other transformation can be expressed as a combination of
broken plaquette(s) and/or line(s).

5The output of our trained DCNN is a continuous value in between
0 and 1. During the training, the gradient-descent algorithm imposes
that, given a pair of coupling-matrices, the output is 0 (or 1) if the
two are in the same gauge orbit (or not). However, because of the
minimization algorithm, the optimization is done on a continuous
function (defined in [0,1]). In that case, the results can be interpreted
formally as a probability (i.e., how confident the network is that two

The Euclidean geometry of our problem suggests to use
convolutional neural networks (CNN) [33–35], which are well
adapted to translational symmetry. Specifically, we combine
in parallel three CNNs that scan simultaneously all the pixels
that would be necessary to compute the plaquettes [i.e., the
pixels inside the square in Fig. 2(a)], and the Polyakov loops
[that is, the pixels on the horizontal and vertical 1 × L slabs
in Fig. 2(a)]. We stress here that we feed the CNNs only
the value of the pixels within these regions, and not the the
product of the couplings along the loops, which means that,
even with help, the machine still needs to learn alone how to
compute gauge-invariant quantities to succeed. The first CNN
allows us to find quickly small defects in the gauge symmetry,
while the other two search for non-local defects. These three
CNNs serve as feature detectors before a fully-connected
layer that performs the classification. We illustrate in Fig. 2(a)
the general architecture of our DCNN. Additional details, as
well as sample programs, can be found in the SM [32].

Results for the classifying DCNN—For our dataset, we
manage to obtain almost 100% of accuracy on sizes of L =
5, 10. Of course, the accuracy needed is application-specific.
Consider, for instance, the problem of chaos (either in tem-
perature or couplings) in spin-glasses, which is the physical
origin of the variable computational hardness of different
samples discussed in the introduction. We know that the
fraction of links (hence of plaquettes) that can be randomly
flipped without generating a catastrophic effect scales with L
as 1/Lb, with an exponent b ≈ 1, both in D = 2 [36] and in
D = 3 [37] (D is the space dimension). This scaling-law sets
a scale: If the approximate algorithm fails to recognize the
Gauge transformation when the fraction of flipped plaquettes
goes above 1/L, it will be useless for tasks related to the
investigation of chaotic effects. We note that we have shaped
our first algorithm to detect even one flipped plaquette. Our
criterion was to stop the training when the accuracy reached
the value 0.995 (it becomes extremely slow at this point).
Within this setup, we reach accuracies on the test-set of
0.9938(3) for L = 5 and 0.9947(10) L = 10. In other words,
even for our very exigent dataset, the DCNN learns to tell
whether or not two problem instances really are the same
orbit.

However, let Ns(p) be the size of the training-set needed
to reach a target accuracy p. We see in Fig. 3 that Ns(p) is
much smaller in the training-set that in the test-set (problem
instances in the test-set are new to the DCNN). Furthermore,
Ns(p) grows significantly with L. We repeat exactly the same
process but replacing our DCNN by the ResNet DCNN [28].
Being this DCNN more complex, it always overfits the data
(it does not classify correctly unseen data). We observe that
even the L = 5 case, in the range of Ns studied (see Fig. 3),
the accuracy on the test-set remains fixed to that of a purely
random guess. It is important to stress that training the ResNet
is much costlier, and GPUs were necessary.

instances are in the same gauge orbit). If needed, the output can be
mapped to {0, 1} by assigning all answers below 0.5 to 0, and to 1
the rest.
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FIG. 3. General accuracy of the classification task of the pairs
of coupling matrices in our dataset (both for the training and the
test-set), as computed for lattices of sizes L = 5 and 10 using our
DCNN, and for L = 5 using the ResNet DCNN. Data and errors
are computed from averages over 5 independent learning runs and
datasets.

We have found that the difficulty of the problem is largely
caused by the Polyakov-loop flipping line transformations.
More details on this analysis can be found in the SM [32].

Learning to fix the gauge—Gauge-fixing may be regarded
as an algorithm to reduce the dimensionality of the coupling-
matrix J with no information loss. Hence, it is natural to
ask ourselves if a particular type of DCNN, an autoencoder
(AE) [38,39], may learn to fix the gauge. Indeed, an AE
takes an input vector x and maps it to a latent representation
fE (x) [typically, fE (x) is of smaller dimensionality than x].
A decoder generates a reconstructed vector from the latent
representation afterwards, x′ = fD( fE (x)). The weights of
the encoder fE and the decoder fD functions are chosen to
minimize a loss function (e.g., the L2 distance between x
and x′).

At variance with the traditional approach, we will not ask
our AE to reconstruct the input but to fix the gauge, that is to

TABLE I. The autoencoder as a classifier. Fraction of not-
trivially-one couplings that are different in the “comb-gauge” output
of the AE as applied to two instances {J, O(J′)} from: J = J′

[pJ,J )], J′ = Rq=0.5(J′) [pJ,J ′
], J ′ = Rq=0.1(J) [pJ,Rq (J )], or J ′ = L(J)

[pJ,L(J )] [where the exact value is L/(L2 + 1)]. The AE was trained
with Ns instances, randomly extracted from NO orbits. The results
were computed from 1000 pairs {J, O(J′)}, with J extracted from
orbits outside the training-set, and five independent learnings.

L Ns NO pJ,J pJ,J ′
pJ,Rq=0.1(J ) pJ,L(J )

5 100k 1k 0.020(6) 0.494(3) 0.410(6) 0.20(2)
6 400k 1k 0.028(8) 0.500(4) 0.422(2) 0.17(3)
8 800k 8k 0.044(14) 0.470(13) 0.394(11) 0.105(11)

reconstruct a unique Ĵ (the comb-gauge described above) for
all the instances in a given gauge orbit.

Our encoder will essentially share the architecture of our
classifying DCNN (namely, the three CNNs of Fig. 2 without
the classification layer). The decoder takes the encoder’s
output, and pipes it to an upsampling layer, followed by our
three feature-detector CNNs and by a last CNN from which
we take the output (more details can be found in the SM [32]).
The output from a given coupling-matrix J is an attempted
reconstruction of its comb-gauge representation [Fig. 1(b)].

The AE can be used as a classifier simply by comparing
the “comb-gauge” obtained from two problem instances. As
shown in Table I, only pairs of instances from the same
orbit have a similar “comb-gauge” (the performance does not
deteriorate when the system size increases).

We can gain some understanding by visualizing the latent
representation, see Fig. 4. Indeed the AE’s latent representa-
tion clusters problem instances belonging to the same orbit.
Furthermore, not only the representation for two problems
from the same orbit is nearly identical: changing a few links

FIG. 4. Visualizing the 50-dimensional AE’s latent representation. (a) scatter-plot comparison for pairs of problem instances {J, O(J′)}.
We display 50 points for each pair {J, J′}, namely (xJ

i , xJ′
i ), where xJ

i and xJ′
i are the ith coordinates of both latent representations. We consider

pairs {J, O(J ′)}, with J′ = J (blue squares), J′ = Rq=0.5(J) (orange crosses), J′ = Rq=0.1(J) (red circles), and J′ = L(J) (green triangles). The
plot contains data from 50 pairs of each type. (b) two-dimensional t-sne representation [40] of the latent representation as obtained for 20000
instances randomly extracted from 200 (unrelated) gauge orbits. Instances from the same orbit are represented by points of the same color
(some orbits share color, due to our limited palette) forming the bigger regions of the same color since they clusterize around the same position.
The black points inside each cluster are the t-sne coordinates for the latent representation obtained for the gauge-comb representative of each
of these orbits.
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or performing a line transformation results into a significantly
different latent representation. Theoretically, we know that
the minimal number of pixels necessary to encode the orbit
would be L2 + 1 (the pixels that do not belong to the comb
in the comb-gauge). Here, we found practical to speed up
the learning, to consider latent representations of twice this
value.

Conclusions—We have demonstrated a successful
machine-learning approach to detect whether or not two
spin-glass instances are mutually related by a gauge
transformation. This problem is particularly challenging for
neural networks due to the absence of an order parameter. In
fact, we have checked the failure of the standard DCNNs for
image classification, such as pre-trained DCNNs, no matter
the size of the training set. Our results underline the necessity
of carefully choosing the learning dataset, if we want the
DCNN to learn the full symmetry (which includes global

Wilson loops). We show that our DCNNs are able to learn the
gauge symmetry and even to find a latent representation that
can be used to fix the gauge. This success comes at the cost
of very large training datasets, whose size need to grow with
the system size. Now that we have in our hands DCNNs able
to identify gauge symmetries, we will approach our original
question, namely what makes certain problem instances far
more computationally costly than others?
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