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Abstract

Malware detection is a challenge that has increased in complexity in the last few

years. A widely adopted strategy is to detect malware by means of analyzing

network traffic, capturing the communications with their command and con-

trol (C&C) servers. However, some malware families have shifted to a stealth-

ier communication strategy, since anti-malware companies maintain blacklists

of known malicious locations. Instead of using static IP addresses or domain

names, they algorithmically generate domain names that may host their C&C

servers. Hence, blacklist approaches become ineffective since the number of

domain names to block is large and varies from time to time. In this paper,

we introduce a machine learning approach using Random Forest that relies on

purely lexical features of the domain names to detect algorithmically generated

domains. In particular, we propose using masked N-grams, together with other

statistics obtained from the domain name. Furthermore, we provide a dataset

built for experimentation that contains regular and algorithmically generated

domain names, coming from different malware families. We also classify these

families according to their type of domain generation algorithm. Our findings

show that masked N-grams provide detection accuracy that is comparable to

that of other existing techniques, but with much better performance.
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1. Introduction

The malicious software (malware) scene has changed since the early 90s,

when the main goal of malware research groups such as 29A (29a, 1995) was

to gain kudos among peers, to improve their knowledge of technology, and to

expose security risks to the public. However, nowadays malware has become a5

highly profitable business. For instance, Europol stated in 2013 that the global

impact of cybercrime rose close to US $3 Trillion, making it more profitable

than the global trade in marijuana, cocaine, and heroin combined (soc, 2013).

This cybercrime profit strongly relies on malware, including banking trojans,

ransomware, and other sophisticated types of malware.10

According to (AV Test, 2017), the number of malware samples has exponen-

tially increased since 2006, although the number of new malware programs has

followed a more linear trend. To manually analyze and understand the behavior

of a malware sample by means of reverse engineering is a very error-prone and

time-consuming task, becoming infeasible for anti-malware companies which15

analyze large corpuses of malware samples daily. For instance, Kaspersky re-

ported a daily analysis of 350, 000 malware samples in 2013 (Kaspersky Lab,

2014). Therefore, many studies of automatic malware detection approaches have

been published in the literature in the last few years.

Many of these works address network-based malware detection approaches,20

since most malware samples communicate with their Command & Control

(C&C) servers using the Internet. Malware uses a large corpus of network

communication protocols (such as IRC, HTTP, or even DNS, to name a few),

depending on its design. In any event, it eventually connects to specific domain

names or IP addresses from the Internet. When a malicious domain name (or25
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IP address) is detected, several actions are taken in cooperation with the cor-

responding Internet service providers and domain registrars to take down the

malicious server and add the domain name (or the IP address) to a blacklist of

well-known malicious locations.

To avoid early detection of C&C servers, malware developers have started30

to use a stealthier communication strategy. Specifically, they algorithmically

generate domain names that may host a C&C server. Then, a malware sample

tries to reach such a domain server. When it connects, the malware sample

starts to communicate. Otherwise, another C&C domain name is automatically

computed and tested. These algorithmically generated domain names are com-35

puted by a Domain Generation Algorithm (DGA), a technique which became

popular in 2008 thanks to the Conficker worm (Porras et al., 2009). Since these

algorithms generate domain names in a dynamic way, anti-malware companies

have more difficulties in discovering the malicious locations and in blacklisting

them in a timely and efficient manner.40

However, algorithmically generated (DGA-based) domain names are far dif-

ferent from regular domain names. Regular domain names are commonly based

on a word (or a set of words) which is fairly representative of the service provided

by the server (usually a name easy to remember and type). On the other hand,

the outcomes of a DGA are always proportional to the domain name length and45

the randomness used by the algorithm. As a result, most DGA-based domain

names seem like random,“weird” words to the human eye.

The contribution of this paper is two-fold. First, we build a dataset con-

taining regular and DGA-based domain names and classify different malware

families according to their type of DGA. We have also publicly released our50

dataset for the sake of reproducibility. Second, we introduce a machine learning

approach to detect algorithmically generated domain names in a network com-
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munication. Obviously, although Domain Generation Algorithm is a technique

that malware developers use, overcoming this technique does not mean over-

coming malware itself. There are other approaches for C&C communications55

that they could use. The solution that we propose in this paper should be seen

as a part of an in-depth defense strategy, and not as a solution to malware on

its own.

In particular, we use Random Forest as a machine learning model and Boruta

as the feature selection algorithm. Our approach relies on a set of characteristics60

(features) extracted from the domain names. Besides statistical features, in this

paper we propose the use of what we have termed as “masked N-grams”. Recall

that a N-gram is a contiguous sequence of N items from a given sample of

text (or speech). In masked N-grams, every character of the given sample is

substituted by a character that represents its type (i.e., consonant, vowel, digit,65

or other symbol). We also evaluate the detection accuracy when masked N-

grams are used. Our findings show that similar results of detection accuracy

are achieved with fewer features when masked N-grams are used, thus improving

the performance of the detection system.

This paper is organized as follows. Section 2 introduces related work. Sec-70

tion 3 describes the dataset and the classification of malware families according

to their DGA, and also introduces the set of statistical features and masked N-

grams that we propose. Section 4 then details the machine learning models used

as a detection strategy. In Section 5 we present our experiments and discuss

our findings. Finally, Section 6 concludes the paper.75

2. Related Work

In the last few years, a combination of network and lexical features has

been used to detect DGA-based domain names. The Domain Name Server
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FQDN Hostname Subdomain Domain TLD
www.google.com www google com

jselvi.blogs.uv.es jselvi blogs uv es

Table 1: Examples of structure of a FQDN.

(DNS) protocol (Mockapetris, 1987) is responsible for locating Internet domain

names and translating them into Internet IP addresses. The DNS protocol80

describes how request and response messages are built, including fields with

information other than the requested domain name itself, such as the message

type, destination IP addresses, or Time-To-Live (TTL), among others.

A fully qualified domain name (FQDN) is the complete domain name for

a specific system on the Internet. The FQDN is divided into two parts, the85

hostname and the domain name. For instance, imagine an email server located

at the FQDN myemail.foo.bar.com. The hostname is myemail, while the

domain is foo.bar.com. The division of a domain name string is read from right

to left, and is composed of the top-level domain (TLD), second level domain

(often simply known as “domain”), and subdomains (third level domain, fourth90

level domain, and so on). Examples of how a FQDN is divided are given in

Table 1. Note that a FQDN lacks the TCP/IP protocol name (e.g., http:// or

ftp://).

In 2011, Bilge et al. published EXPOSURE (Bilge et al., 2011), later im-

proved in (Bilge et al., 2014). EXPOSURE is a detection system of malicious95

domains that employs passive DNS analysis techniques relying on 15 composed

features, organized in 4 groups: time-based features, DNS answer-based fea-

tures, TTL-based features, and domain name-based features. Most of these

features must be extracted from real-time (or recently captured) DNS traffic,

since they rely on volatile data that may change over time.100

These features were selected after a manual analysis process, targeting well-
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known malware behaviors. In terms of lexical features, they focused on two val-

ues: the percentage of numerical characters and the percentage of the longest

meaningful substring length. These features were selected in order to detect

DGA-based domain names. However, the approach lacked a full lexical anal-105

ysis for domain names. EXPOSURE achieved 98.4% successful detection with

around 1% of false positives, using a J48 decision tree (Witten et al., 2011).

Antonakakis et al. introduced Pleiades in (Antonakakis et al., 2012). Their

approach focused on failed DNS requests, since a DGA generates hundreds to

thousands of domain names, but only a few of them are successfully resolved.110

Pleiades clusters those failed domains with lists of previously known DGA-based

and legitimate domains. In addition to those features based on volatile informa-

tion, a set of statistical features of the domain names (e.g., similar length, level

of randomness, and frequency distribution of characters) was used as a detec-

tion trigger. A hidden Markov model was finally used to cluster the suspicious115

domains.

Schiavoni et al. proposed Phoenix in (Schiavoni et al., 2014), a layered sys-

tem that detects DGA-based domain names and classifies them based on the IP

addresses resolved. Their approach relies on two features widely used in linguis-

tics: meaningful characters ratio and N-gram normality score. These features120

provide a measurement of meaning and pronounceability, as a means to de-

tect randomly generated strings. They used a well-known list of non-malicious

domain names (namely, Alexa’s list) to calculate the probabilistic distribution

for legitimate domains based on those linguistic features. The Mahalanobis dis-

tance and an empirical threshold were finally used to classify a suspicious domain125

name as a DGA-based domain name. Later on, they clustered those malicious

domain names together with well-known DGA-based domains to classify them

as belonging to a specific malware family.
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Finally, in (da Luz, 2013) Da Luz used a combination of 18 lexical features

(such as N-gram statistics, Shannon entropy, length, number of vowels per con-130

sonant, among others) and 17 network features (such as TTL statistics and

number of IP subnetworks, to name a couple) extracted from a (passive) DNS

system. His approach is based on some of the lexical features used by Anton-

akakis et al. (Antonakakis et al., 2012), although most of them were simplified

to reduce dimensionality and to improve speed. These features were used with135

two different datasets and three different machine learning models (namely, k-

Nearest Neighbors, Decision Trees, and Random Forests). The best results were

achieved with Random Forests.

Note that although all the previous works produce very good results (in

terms of detection accuracy), they rely strongly on volatile information that may140

change over time. For instance, IP addresses in a DNS response can differ at any

given moment from those obtained with the same requests a few weeks earlier.

In such cases, it is very unlikely that experiments can be reproduced obtaining

similar results since the datasets are not captured at the same time interval.

Therefore, it is difficult to train a machine learning model with algorithmically145

generated domain names that are inactive today or that cannot be artificially

generated, since real DNS responses cannot be obtained.

For example, Kraken was a famous piece of malware using a DGA. It was

active for several years and, at some point, started using a new DGA. When the

first DGA is no being longer used, it is impossible to capture some characteristics150

used in previous works for this classification problem, so it is impossible to train

a model using this information.

To overcome these issues, in this paper we propose a detection technique

based on a purely lexical analysis of the domain names. Domain names, unlike

other fields within DNS packets, never change over time, and thus they are155

7



suitable for training a machine learning model with DGA-based domain names

that are currently inactive. Furthermore, our approach allows other researchers

to reproduce our work, verify our results, and use them as a baseline for future

research. Thus, our work seeks to maintain the good results from previous

works, but with a more restricted set of characteristics.160

3. Datasets and Features

This section first describes the dataset that we built for experimentation.

The features that are extracted from the domain names are then introduced.

3.1. Dataset

To evaluate our approach, we needed a representative set of clean domain165

names and of algorithmically generated domain names. Unfortunately, the lack

of best practices and interest in sharing between academia and business com-

munities in the realm of computer security makes it difficult for academic re-

searchers to access datasets (Rossow et al., 2012). Therefore, researchers have

to create their own datasets for experimentation using the data that they are170

able to collect – which may not be an easy task.

Clean domain names are associated to legitimate Internet services (i.e., not

malicious). In this paper, we assume that most Internet traffic is related to

web services (i.e., HTTP protocol). In this regard, we built our dataset of

clean domains using the top lists provided by the well-known Internet portal175

Alexa (ale, 2016). These lists include the most visited websites on the Internet,

thus representing a good set of legitimate domain names. In particular, Alexa

publishes various top rankings (top 10, 100, 1000, and so on) and classifies them

under different criteria, such as global, per country, or per topic (e.g., news,

computers, health, among others). To obtain as much information as possible,180

we downloaded Alexa’s top 1 million list (ale, 2016). We labeled this dataset
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gvllisqi.eu odgmmjwsdsrb.net
wfxspste.cc uuummdqifcon.ru
pvtlkprr.co washingtoncalanthe.net
hzsitbdm.eu mjuwntiwmtya.net
xxlzgrom.cc gacyzuh.com
qhbynrab.co dbzwestnessbiophysicalohax.com

Table 2: Example of DGA generated domains (extracted from (Bader, 2016)).

as CLEAN dataset. Examples of these sites are google.com, amazon.com, or

qq.com, to name a few.

For algorithmically generated domain names, we used the freely available

repository of J. Bader (Bader, 2016). This repository contains thousands of185

these domains, provided by 26 implementations of existing DGAs in malware

samples (at the time of writing). A few examples of these domains are shown

in Table 2.

Bader published several Python scripts emulating the DGAs used by mal-

ware samples, plus some domain names generated by those scripts. These al-190

gorithms follow different approaches. The two main approaches to generating

a pseudo-random string are using an initial seed and selecting characters at

random, or randomly combining words from a given word list. As a result, the

algorithmically generated domain names have different characteristics. Table 3

categorizes under these approaches the DGAs given in (Bader, 2016).195

Unfortunately, Bader provided widely varying amounts of algorithmically

generated domain names for each malware family in his repository. For instance,

there are a thousand examples for the Murofet family, whereas only 12 examples

are cited for the Gozi family. This data imbalance makes the data less useful for

training a machine learning model aimed at detecting algorithmically generated200

domain names. In this study, we generated our own list of 100, 000 domains

per malware family to build a more balanced dataset, and then we randomly
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Family Example Type of DGA
Banjori zvfdestnessbiophysicalohax.com First domain name is fixed and used

as initial seed.
Corebot ybylsvo0ahwpe2i0mdinibo.ddns.net Static (fixed) “ddns.net” domain.

Subdomain is generated by DGA.
Dircrypt ktqyrmiyvnidd.com Pseudo-random domain.
Dnschanger tcfejerekw.com Pseudo-random domain.
Fobber ugovykiwouxhdlrtj.net Pseudo-random domain.
Gozi ulpurgatoriopetrum.com Wordlist-based DGA.
Kraken v1 ozyqosysu.dyndns.org Small set of fixed domains. Subdo-

main is generated by DGA.
Kraken v2 ygdcdhonlxxs.com Pseudo-random domain.
Locky qtysmobytagnrv.it Pseudo-random domain.
Murofet nwpyftn30gso51krkrnzh64f62aym29lvmtlu.biz Pseudo-random domain.
Necurs iqdpvmeywdb.kz Pseudo-random domain.
Newgoz p46prua8qn39yijcj2n2o0xq.net Pseudo-random domain.
Nymaim shlxqighem.com Pseudo-random domain.
Padcrypt nmcdnfbacafmecab.co.uk Pseudo-random domain.
Pykspa uyznvxlof.info Pseudo-random domain.
Qadars lensxmn0puz8.com Pseudo-random domain.
Qakbot xzzicwkdvayojtkckzzlr.biz Pseudo-random domain.
Ramnit ppvrnfkbarbnlm.com Pseudo-random domain.
Ranbyus tuusskblufagqnjan.pw Pseudo-random domain.
Shiotob hey9ydfb5v5o2.net Pseudo-random domain.
Simda purywoq.com Pseudo-random domain.
Sisron mjcwntiwmtya.net Pseudo-random domain (based on

timestamp).
Suppobox willoughbyalbertson.net Wordlist-based DGA.
Symmi ofvaucifadvukii.ddns.net Static (fixed) “ddns.net” domain.

Subdomain is generated by DGA.
Tinba srqpkllgskhw.in First domain name is fixed and used

as initial seed.
Unnamed javascript dga rnjaigkfu.co Pseudo-random domain.

Table 3: Types of DGAs of malware families from Bader’s repository (Bader, 2016).
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selected one thousand of these domains. We labeled this dataset as MALWARE

dataset.

Note that although we analyzed 26 malware families, we obtained 32, 000205

DGA-based domain names. This is because there are different implementations

of DGA for some of the malware families under consideration. In particular, the

malware families with two (or more) types of DGA are Fobber, Kraken (each

DGA of a different type, as shown in Table 3), Locky, Murofet (three different

DGAs), and Ranbyus.210

Dataset # domains Selected Classification
Alexa 1M 1,000,000 32,000 CLEAN

Bader repo extended 3,198,304 32,000 MALWARE

Table 4: Experiment dataset.

It is important to remark that we are detecting algorithmically generated

domain names suspected of being used by malware, not malware itself. As a

consequence, it could be that a legitimate service using algorithmically generated

domain or host names with similar characteristics to those generated by malware

would be detected as malware. However, such situations occur very rarely, and215

thus we will consider them as regular false positives.

Note that the combination of both datasets provides a dataset with very

unbalanced classes. To solve this issue, as shown in Table 4, we decided to

select the first 32, 000 domain names from the Alexa dataset. We decided to

select the top domains instead of a randomly selected set of domains, since the220

former are more representative of how a legitimate domain looks.

Following best practices (Rossow et al., 2012), to allow other researchers to

replicate our work and to foster research in this area, the dataset built in this

study is freely available at https://github.com/jselvi/phd/tree/master/

dga.225
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ID Description
F1 − 3 Mean, variance, and standard deviation (1-gram).
F4 − 6 Mean, variance, and standard deviation (2-gram).
F7 − 9 Mean, variance, and standard deviation (3-gram).

F10 − 12 Mean, variance and standard deviation (4-gram).
F13 − 14 Shannon entropy of the second and third level domain.

F15 Number of different characters.
F16 Number of digits/domain name length.
F17 Number of consonants/domain name length.
F18 Number of consonants/number of vowels.

Table 5: Lexical features considered by Da Luz in (da Luz, 2013).

3.2. Domain name features

There are a number of features that can be extracted from a FQDN. Since a

FQDN is a sequence of strings separated by a dot character, it can be managed as

a single string, or it can be split into different parts, such as the TLD, domain

(and subdomains), or the hostname, thus allowing features to be extracted230

separately from all of them. For instance, Da Luz (da Luz, 2013) used a set

of lexical features applied to the whole string. Table 5 summarizes the lexical

features of Da Luz considered for our experiments, which are described below.

As explained in Section 2, we have focused on these characteristics extracted

from the domain name and discarded the network features proposed by Da Luz.235

Features F1 to F12 are statistical information (namely, mean, variance, and

standard deviation) from the 1- to 4-grams extracted from the raw domain

name. These features provide interesting results when the domain name is large

enough, since the statistical information is more significant than with shorter

domains, where just a few N-grams can be extracted, as described in Section 1.240

Features F13 and F14 compute the Shannon entropy (Shannon, 1948) for

the second and the third level domain. The Shannon entropy measures the ran-

domness in the domain name string, excluding the TLD. As a randomness score,

Shannon entropy scores higher for algorithmically generated domain names than
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for regular domain names, which are usually composed of more human-friendly245

terms.

Finally, features F15 to F18 describe the balance between vowels, consonants,

digits, and string length. Compared to the outcomes of a DGA, natural language

has a completely different distribution of vowels and consonants.

In general, all these features are statistical features that aim to measure the250

randomness of domain names as a way to identify algorithmically generated

domain names.

In this paper, we propose using features based on the numbers of N-gram oc-

currences in addition to the lexical, statistical features proposed by Da Luz (da Luz,

2013). For instance, when we evaluate a string such as “www.google.com”, the255

feature of the N-gram “ww” has a value of two (since it appears twice in the

string), whereas other features like “go” have a value of one.

However, using the occurrence of N-grams as a feature has a huge disadvan-

tage: the number of features that we need to manage increases exponentially.

For instance, a 3-gram occurrence approach means that we need to manage a260

feature for every possible 3-gram. In an alphabet that consists of 36 elements,

that means 363 additional features. Similarly, the same alphabet for every possi-

ble 4-gram means 364 additional features. Hence, the computational complexity

makes it impossible to manage a model with such a large number of features.

To overcome this issue, in this paper we propose to use masked N-grams of265

the domain names. In our approach, every character is substituted by a symbol

representing its character type: a constant is substituted by ‘c’, a vowel by ‘v’,

a digit by ‘n’, and any other symbol by ‘s’. For instance, the website “www.my-

website.com” is masked as “cccsccscvccvcvscvc”. This approach reduces the

elements of the alphabet to just 4, thus also reducing the number of combina-270

tions of N-grams to 4N . As a result, considering the aforementioned 3-gram
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example, the number of additional features would be 43 features. This number

of features is easily handled by state-of-the-art machine learning models.

Let us remark that, unfortunately, we are obviously losing some of the orig-

inal information provided by the domain name: N-grams such as “car”, “bus”,275

or “yet” are represented by the same masked N-gram, “cvc”. However, our ap-

proach provides a much higher level of detail than when we only use statistical

information.

A combination of the features proposed by Da Luz (based on raw domain

names) and masked N-Grams (N-Grams from masked domain names) have been280

used in our experiments in order to evaluate the quality of the new proposed

features.

4. Selection of Machine Learning Model and Tuning of the Algorithm

In this section, we introduce in detail the machine learning model on which

we rely and the particular tuning of the algorithm that we have performed.285

Decision Tree techniques (Breiman et al., 1984) have been extensively used

in the cybersecurity industry (Markey, 2011; Dua & Du, 2011; Gandotra et al.,

2014) due to their good performance: once the model is built, it is a very fast

classification model. In the cybersecurity industry, the faster the classification

algorithm is, the better, since the threat responses will be performed in a timely290

manner (as soon as possible once the threat is detected).

A technique that builds a number of decision trees using bootstrapped train-

ing samples is Random Forest (Hastie et al., 2009). When building such trees,

a subset of features is randomly selected from a full set of features every time

the tree is split. The final prediction of the algorithm is selected using a voting295

schema from all the (sub)trees’ results. In particular, Random Forest offers a

very good generalization, since malware or other malicious threats are usually

14



similar rather than identical.

In this paper, we chose Random Forest as a machine learning model. In

particular, Random Forest works well with both numerical and literal features,300

and it does not require any specific normalization or tuning of the dataset.

In addition, it was previously used to address similar problems with good re-

sults (da Luz, 2013).

Furthermore, we used Boruta (Kursa & Rudnicki, 2010), a feature selection

algorithm based on Random Forest. Boruta creates randomness by means of305

duplicating features and shuffling their values. Once the Random Forest is

built, an importance function evaluates the degree of importance of the original

features compared with the artificial ones, thus providing a good insight for

relevant feature selection.

The Random Forest algorithm is available in many different machine learning310

libraries and for many different programming languages. In this paper, we use

the R language (R Core Team, 2017) and the Caret library (Kuhn, 2008), which

provides an abstraction layer to other well-known, powerful R libraries.

Specifically, we use the rf method, a wrapper of the randomForest library

as implemented in R (Liaw & Wiener, 2002). By default, it uses a forest com-315

posed of 500 trees and evaluates the model with a different number of variables

randomly sampled as candidates at each split. The number of randomly sam-

pled variables is chosen considering the value that produces the best Receiver

Operating Characteristic curve.

Finally, the full (CLEAN + MALWARE) dataset was split into two parts:320

60% of randomly selected domain names were chosen for the training dataset,

whereas the rest were chosen for the testing dataset. The training dataset was

equally split into ten parts in order to implement a k-fold cross validation. This

operation was performed three times.
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5. Experiments and Discussion of Results325

In this section, we first describe our experiments and the experimental set-

tings. We then discuss our findings.

5.1. Design of Experiments

In this paper, we designed three different experiments:

Experiment 1. As a first experiment, we used the (standard) Random For-330

est classification method as implemented in Caret (i.e., no specific pre-

processing or tuning were used). We have evaluated this model from uni-

grams to four-grams in terms of its accuracy, sensitivity, and performance.

Experiment 2. Here, we applied the Boruta method considering all the

features in order to establish a top ranking of the most important features335

(in terms of classification). This ranking shows us the importance of the

masked N-gram features compared with the statistical features described

in Section 3.2. As an outcome of this experiment, we generated a new

labeled dataset that contains all the statistical features plus features for

N-grams of different sizes.340

Experiment 3. As a last experiment, we repeated the first experiment but

with a reduced set of features. In particular, we considered only those fea-

tures classified as the most important features by the second experiment.

The results of this experiment were compared with the best performance

and accuracy obtained from the first experiment.345

As a hardware platform, we used a computer with an Intel Core i5 (7600)

3.5GHz, 40 GB RAM DDR4 2400 MHz, and 512 GB SSD. As software, R version

3.4.2 was run on top of MacOS X 10.12.7.
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5.2. Discussion of Results

First experiment. We performed our first experiment for N-grams of dif-350

ferent sizes, with N ranging from 1 to 4. We obtained a high accuracy rate,

up to 98.91%, with a very low rate of false positives (i.e., a few clean domain

names were classified as malicious domains) – around 0.16% for bigram. This

misclassification is acceptable from an intrusion detection context.

There are two possible approaches to cybersecurity. When detecting but355

not blocking threats, such as in an Intrusion Detection System, it is better

to detect all threats, even if some legitimate domains are wrongly detected as

threats. This is because detections are handled by a group of cybersecurity

analysts and no automatic action is taken before the analysts verify that an

alert is a true positive. On the other hand, when detecting and automatically360

blocking threats, such as in an Intrusion Prevention System, it works the other

way round. It is better to make sure that every detection is a true positive, even

if some malicious domain names are missed, since false positives could create

Denial of Service conditions for legitimate users.

Obviously, both the testing time and, especially, the training time are in-365

creased when bigger N-grams are used, since the number of features increases

and, as a result, more time to converge is needed. Usually, performance de-

creases in a similar way as accuracy increases when the number of features is

increased. However, based on our results, we observe that the best accuracy is

obtained from a smaller number of features, corresponding to the 1-grams and370

2-grams setup. Table 6 summarizes the results for the first experiment. Train-

ing time is expressed in hours (h), while testing time is expressed in seconds (s).

The best results have been highlighted in the table.

Second experiment. With this experiment we aimed to select the most rel-

evant features. We discarded features of four-grams because of the long train-375
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1-grams 2-grams 3-grams 4-grams
Number of features 22 34 82 274

Training time 0.65 h 1.21 h 4.21 h 47.74 h
Testing time 1 s 1 s 2 s 4 s

Accuracy 0.9890 0.9891 0.9879 0.9873
Kappa 0.9780 0.9783 0.9758 0.9747

Sensitivity 0.9896 0.9859 0.9857 0.9848
Specificity 0.9884 0.9924 0.9901 0.9899

Clean prediction value 0.9884 0.9924 0.9900 0.9899
DGA prediction value 0.9896 0.9860 0.9858 0.9848

Table 6: Results of the first experiment (standard Random Forest classification).

ing time. Furthermore, we created another dataset combining the lexical and

statistical features together with N-grams of different sizes (from unigrams to

trigrams) to evaluate their importance in our classification problem.

Figure 1 plots the results of the Boruta algorithm (we only depict the features

with an importance greater than the best random variable created by Boruta).380

As shown, the feature importance increases linearly up to 15 features. After that

point, it starts to increase exponentially. The three most important features are

the mean, the variance, and the standard deviation of unigrams, as previously

proposed by Da Luz (da Luz, 2013). However, more than half of the other

features in the top 15 (specifically, nine features) are based on masked N-grams.385

Unsurprisingly, the accuracy of the model is reduced when the number of

features is reduced. Surprisingly, we have observed that the accuracy is only

reduced by 0.5%, while the training time is clearly improved. Specifically, the

training process took 7 times less time when reducing from 22 features to the top

5 most important. This performance improvement is usually highly desirable in390

most real systems. In our case, it is particularly beneficial for two reasons: First,

a better performance will enable us to train our model with a larger amount

of data. Second, fewer characteristics to extract means a faster classification,

which could allow real-time classification and be used in an intrusion preven-
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Figure 1: Boxplot of the results of Boruta feature selection algorithm.
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2-grams Top 25 Top 20 Top 15 Top 10
Features 34 25 20 15 10

Training time 1.21 h 1.18 h 0.82 h 0.63 h 0.44 h
Accuracy 0.9891 0.9865 0.9865 0.9873 0.9832

Kappa 0.9783 0.9730 0.9730 0.9747 0.9664
Sensitivity 0.9859 0.9851 0.9848 0.9859 0.9827
Specificity 0.9924 0.9880 0.9883 0.9888 0.9837

Clean prediction 0.9924 0.9879 0.9882 0.9888 0.9836
DGA prediction 0.9860 0.9851 0.9848 0.9859 0.9828

Table 7: Results of the third experiment (considering features by their importance as given
by Boruta).

tion approach. A more detailed description of these results is provided in the395

following experiment.

Third experiment. Finally, in our third experiment we considered the fea-

tures classified as most important following the previous experiment. As a

baseline for comparison, we considered the best results in the first experiment

(i.e., 2-grams).400

Table 7 shows the results for this third experiment. The best results are

achieved when the Random Forest method uses only the top most important

features as indicated by the Boruta results. Furthermore, we have observed

that a Random Forest model using the top 15 features found by Boruta obtains

similar results to the same model but using a combination of statistical and405

2-grams information. However, the training time in the first scenario decreased

by almost half compared to the second scenario.

The top 15 features provided by Boruta are shown in Table 8. As men-

tioned previously, nine out of fifteen features are based on the masked N-grams

that we proposed in this study (highlighted in the table). Hence, we conclude410

that masked N-grams can benefit machine learning models especially during the

training phase, maintaining a good trade-off between accuracy and performance.
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Rank Feature
1 Mean (1-gram)
2 Variance (1-gram)
3 Standard deviation (1-gram)
4 Standard deviation (2-gram)
5 Different characters
6 String length

Rank Feature
7 ‘ccc’
8 ‘cvc’
9 ‘vcc’
10 ‘vcv’
11 ‘cv’
12 ‘vc’
13 ‘cc’
14 ‘c’
15 ‘v’

Table 8: Top 15 features found by Boruta. Masked N-grams are ranked at the bottom (from
seventh to fifteenth position).

1-Gram Mean 1-Gram Std 1-Gram Var 2-Gram Std
facebook.com 1.33 0.71 0.50 0.00

wxhyqqrbouru.pw 1.36 0.50 0.25 0.00

Table 9: Features based on N-gram statistics from the domain name.

5.3. Running Examples

In order to illustrate how our model works, we have chosen a legitimate

domain (facebook.com) and a malware domain (wxhyqqrbouru.pw) from our415

testing dataset as running examples. Facebook.com is a well-known legitimate

domain, whereas wxhyqqrbouru.pw is a DGA generated domain by the Tiny

Banker Trojan, also known as Tinba. Both domains were excluded from the

training dataset in our experiments, so our model does not have any previous

knowledge about them. For this example, we focus on the 15 features which420

proved to be the most important for our classification problem.

First, as shown in Table 9, unigram and bigram statistics are extracted from

the string of the domain name. We calculate mean, standard deviation and

variance for the distribution of N-grams. This gives a sense of randomness.

Domain names in which each character is used only once will result in a smaller425

standard deviation and variance than domain names where some characters are

repeated.
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Different #chars Length
facebook.com 9 12

wxhyqqrbouru.pw 11 15

Table 10: Features based on other statistics from the domain name.

Domain name Masked domain ccc cvc cc cv vcc vc v c vcv
facebook.com cvcvcvvc.cvc 0 3 0 4 0 4 5 6 2

wxhyqqrbouru.pw ccccccccvvcv.cc 6 0 8 2 0 1 3 11 1

Table 11: Features based on N-gram from the masked domain name.

Second, other statistics not related to N-grams (see Table 10) are extracted:

the number of unique characters and the domain name’s total length. These

features are also extracted from the string of the domain name and, together430

with the previous ones, represent a subset of the features previously used by Da

Luz and other authors.

Finally, we generate the masked domain name as explained in Section 3.2,

and we extract from it a set N-grams (sizes between one and three) that have

been proven to be good features for our classification problem. We count435

how many times each N-gram appears in the masked domain name, as shown

in Table 11. For example, it can be seen that facebook.com (masked to

cvcvcvvc.cvc) does not contain any substring composed of three consonants,

so the masked N-gram feature “ccc” is zero. Similarly, the domain name

wxhyqqrbouru.pw (masked to ccccccccvvcv.cc) contains up to 6 substrings440

composed of three consonants, so the “ccc” feature is 6. This feature is repre-

sentative for this example, since it is easy to see that a string with too many

consonants together does not look like natural language to the human eye.

6. Conclusions

Malware is normally detected by capturing communications with malicious445

servers in network traffic. In recent years, malware has adopted a stealthier
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communication strategy in order to remain undetected in a compromised sys-

tem: instead of communicating with fixed IP addresses or domain names, it

algorithmically generates domain names that host its malicious servers.

In this paper, we have proposed a set of lexical features based on masked N-450

grams of the domain name as a way to detect algorithmically generated domains.

In masked N-grams, every character of the given string is substituted by a

character that represents its type (i.e., consonants as ‘c’, vowels as ’v’, digits as

’n’, or other symbols as ‘s’). Furthermore, we have evaluated masked N-grams

with other lexical features using Random Forest as a machine learning model455

and Boruta as a feature selection algorithm. Our findings show that masked

N-grams are good features for the detection of algorithmically generated domain

names. In particular, bigrams and trigrams representing combinations of vowels

and consonants (such as “cc”, “ccc”, or “vcv”, to name a few) were found to

have a high importance for classification. However, the three most important460

features are still based on the statistical features of unigrams (namely, mean,

variance, and standard deviation).

Our results also shown that using N-grams of a fixed size considerably in-

creases the number of features, as well as the training time. Furthermore, the

detection accuracy is decreased. We found that a combination of lexical and465

statistical features together with bigrams achieved the best results in terms

of accuracy. Nevertheless, a selection of the 15 most important features, which

combines statistical features and masked unigrams, bigrams, and trigrams, gave

very similar results with much better performance.

For the sake of reproducibility, we have publicly released the dataset that470

we built for the experimentation. This dataset contains 32, 000 algorithmically

generated domain names from real malware families and the same quantity

of legitimate domain names. Furthermore, we have classified these malware
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families according to their domain name generation algorithms.
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