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Abstract.- Relations between the symplectically harmonic cohomology and the coeffective cohomology of a symplectic

manifold are obtained. This is achieved through a generalization of the latter, which in addition allows us to provide

a coeffective version of the filtered cohomologies introduced by C.-J. Tsai, L.-S. Tseng and S.-T. Yau. We construct

closed (simply connected) manifolds endowed with a family of symplectic forms ωt such that the dimensions of

these symplectic cohomology groups vary with respect to t. A complete study of these cohomologies is given for

6-dimensional symplectic nilmanifolds, and concrete examples with special cohomological properties are obtained

on an 8-dimensional solvmanifold and on 2-step nilmanifolds in higher dimensions.
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1. Introduction

Let (M2n, ω) be a symplectic manifold. The notion of symplectically harmonic form was introduced by
Brylinski in [7] as a closed form α such that its symplectic star is also closed, i.e. dα = 0 = d ∗ α.
Mathieu [20] proved (see also [29] for a different proof) that every de Rham cohomology class has a
symplectically harmonic representative if and only if (M2n, ω) satisfies the Hard Lefschetz Condition (HLC
for short), i.e. the homomorphisms Lk : Hn−k(M) −→ Hn+k(M) are surjective for every 1 ≤ k ≤ n. Here
Hq(M) denotes the q-th de Rham cohomology group of M and Lk is the homomorphism given by the
cup product with the class [ωk] ∈ H2k(M). Since there exist many symplectic manifolds which do not
satisfy the HLC, one has that the quotient Hq

hr(M) = Ωqhr(M)/(Ωqhr(M)∩ im d), Ωqhr(M) being the space of
symplectically harmonic q-forms, counts the de Rham cohomology classes in Hq(M) containing harmonic
representative.

Additional symplectic invariants of cohomological type were introduced by Bouché [6] as follows. A
differential form α is called coeffective if it annihilates ω, i.e. α∧ω = 0. The space of coeffective forms with
the (restriction of the) exterior derivative provides a subcomplex of the de Rham complex that is elliptic in
any degree q 6= n. It turns out [6] that for compact Kähler manifolds (M2n, ω) and for every q ≥ n+ 1, the
q-th coeffective cohomology group, that we will denote here by Hq

(1)(M), is isomorphic to the [ω]-truncated
q-th de Rham group. However, this is no longer true for arbitrary compact symplectic manifolds [11]. On
the other hand, Tseng and Yau have developed in [26, 27] a symplectic Hodge theory by considering various
cohomologies where the primitive cohomologies PHd+dΛ(M), PHddΛ(M), PH∂+(M) and PH∂−(M) play
a central role. Recently, Eastwood [10] has introduced an extension of the coeffective complex which is
elliptic in any degree and such that the corresponding cohomology groups are isomorphic to the primitive
cohomology groups.

The symplectically harmonic cohomology and the coeffective cohomology, to our knowledge, have been
studied separately in the literature. Our first goal in this paper is to obtain some relations between both
cohomologies by considering a natural generalization of the coeffective cohomology, which in addition
will allow us to provide a coeffective version of the filtered cohomologies. The latter have recently been
introduced by Tsai, Tseng and Yau [25], and extend the primitive cohomologies [26, 27].

Another aspect in the study of the symplectic harmonicity is the notion of flexibility, motivated by the
following question, which seems to be related to some problems of group-theoretical hydrodynamics [1],
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posed by Khesin and McDuff (see [29]): which closed manifolds M possess a continuous family ωt of
symplectic forms such that the dimension of Hq

hr(M,ωt) varies with respect to t? In [29] Yan proved the
existence of a 4-dimensional flexible manifold, whereas in [16] several 6-dimensional nilmanifolds satisfying
such property were found. Recently, Cho has proved in [8] the existence of simply-connected flexible exam-
ples of dimension six. Our second goal in this paper is to relate the harmonic flexibility to corresponding
notions of flexibility for the generalized coeffective and filtered cohomologies, as well as to construct closed
manifolds which are flexible with respect to these symplectic cohomologies.

In greater detail, the paper is structured as follows.
In Section 2 we introduce and study the generalized coeffective cohomologies of a symplectic manifold

(M2n, ω). For each integer k, 1 ≤ k ≤ n, we consider the complex of k-coeffective differential forms as the
subcomplex of de Rham one constituted by all the forms that annihilate ωk. The associated cohomology
groups are denoted by Hq

(k)(M). This complex is elliptic in any degree q 6= n − k + 1, however one can

define in a natural way a quotient Ĥn−k+1(M) of Hn−k+1
(k) (M) which shares the same properties as the

cohomology groups Hq
(k)(M), q ≥ n−k+ 2 (see Propositions 2.5 and 2.7). The spaces Ĥ1(M), . . . , Ĥn(M)

play an important role in this paper since they will allow us to relate the different symplectic cohomologies
involved. We will refer to the collection

(1) Ĥn−k+1(M), Hn−k+2
(k) (M), . . . , H2n

(k)(M), 1 ≤ k ≤ n,

as the generalized coeffective cohomology groups of the symplectic manifold (M2n, ω). It turns out that
these spaces are symplectic invariants that only depend on the de Rham class [ωk] ∈ H2k(M) (see Re-
mark 2.10 and Lemma 2.11). When M is of finite type, in Proposition 2.9 we prove that, for each 1 ≤ k ≤ n,
the alternating sum χ(k)(M) of the dimensions of the generalized k-coeffective cohomology groups only
depends on the topology of the manifold M .

Eastwood [10] has introduced an elliptic extension of the usual coeffective complex (i.e. k = 1) such that
the corresponding cohomology groups are isomorphic to primitive cohomology groups defined by Tseng and
Yau [26, 27]. In Section 3, for any 1 ≤ k ≤ n, we consider an extension of the k-coeffective complex, which
is also elliptic, whose cohomology groups Ȟq

(k)(M) (0 ≤ q ≤ 2n + 2k − 1) are isomorphic to the filtered
cohomology groups introduced by Tsai, Tseng and Yau in [25] (see Remark 3.7 for details); in particular,

Ȟq
(1)(M) ∼= PHq

∂+
(M), Ȟ2n−q+1

(1) (M) ∼= H2n−q
(1) (M) ∼= PHq

∂−
(M), 0 ≤ q ≤ n− 1,

and
Ȟn+k−1

(k) (M) ∼= PHn−k+1
ddΛ (M), Ȟn+k

(k) (M) ∼= PHn−k+1
d+dΛ (M), 1 ≤ k ≤ n.

In Proposition 3.1 we show that these extended cohomologies also satisfy the main properties of the gen-
eralized coeffective cohomology groups. When M is of finite type, we consider χ̌(k)

+ (M) as the alternating
sum of the dimensions of the cohomology groups of the first half of the extended complex, and in Corol-
lary 3.6 we prove the following characterization of the HLC: (M2n, ω) satisfies the HLC if and only if
χ̌

(k)
+ (M) = χ(k)(M) for every 1 ≤ k ≤ n.

In Section 4 we obtain some relations of the generalized coeffective cohomologies (and therefore also of
the filtered cohomologies) with the symplectically harmonic cohomology. Concretely, using the description
of Hq

hr(M) obtained in [16, 28, 29] we prove that the generalized coeffective cohomologies measure the
differences between the harmonic cohomology groups in the following sense: if (M2n, ω) is a symplectic
manifold of finite type, then

dimHn−k+1
hr (M)− dimHn+k+1

hr (M) = dim Ĥn−k+1(M)

for every k = 1, . . . , n (see Theorem 4.4). As a consequence, we find the relation between the dimension of
the primitive cohomology group PHq

d+dΛ(M) and the harmonic cohomology for q = 1, 2, 3.
We introduce in Section 5 the notion of generalized coeffective flexibility and filtered flexibility, as an

analogous notion of the concept of harmonic flexibility. We say that a closed smooth manifold M2n is
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c-flexible (resp. f-flexible or h-flexible) if M possesses a continuous family of symplectic forms ωt such
that the dimension of some generalized coeffective (resp. filtered or symplectically harmonic) cohomology
group varies with t. We prove in Theorem 5.3 that in four dimensions M is never c -flexible, and that M
is f -flexible if and only if it is h -flexible. This result allows us to prove, for each n ≥ 2, the existence of
2n-dimensional f -flexible closed manifolds having a continuous family of symplectic forms ωt such that the
dimension of the primitive cohomology group PH2

d+dΛ(M,ωt) varies with respect to t (see Theorem 5.6).
In Theorem 5.7 we use a result in [8] to prove that, for every n ≥ 3, there exists a 2n-dimensional simply-
connected closed manifold M with a continuous family ωt for which the dimensions of the primitive groups
PH3

d+dΛ(M,ωt) and PH3
ddΛ(M,ωt) vary with t. In Theorem 5.8 and Proposition 5.11 we study flexibility

in higher dimensions; in particular, it turns out that in dimension 2n ≥ 6, if M is c -flexible then M

is f -flexible or h -flexible. This shows that coeffective flexibility is a stronger condition than the other
flexibilities.

All the cohomology groups can be computed explicitly for symplectic solvmanifolds satisfying the Mostow
condition, in particular for any symplectic nilmanifold. In Section 6 we consider the class of 6-dimensional
nilmanifolds and compute the dimensions of all the cohomology groups for any symplectic form. This
extends the previous study for the symplectically harmonic cohomology given in [16, 17]. As a consequence,
we identify all the 6-dimensional nilmanifolds which are c -flexible, f -flexible or h -flexible (see Table 1). A
solvmanifold of dimension 8 that is c -flexible, f -flexible and h -flexible is described in Section 7. Section 8
is devoted to symplectic 2-step nilmanifolds and, based on results by Sakane and Yamada [23, 28], we
obtain examples of arbitrary high dimension which are c -flexible, f -flexible and h -flexible.

2. Generalized coeffective cohomologies

Let (M2n, ω) be a symplectic manifold of dimension 2n and let k be an integer such that 1 ≤ k ≤ n. Next
we introduce the notion of k-coeffective forms.

Definition 2.1. A q-form α on M is said to be k-coeffective if α annihilates the form ωk, i.e. α∧ ωk = 0.
The space of k-coeffective forms of degree q will be denoted by Cq(k)(M,ω), or simply Cq(k)(M).

Remark 2.2. The above definition makes also sense in the “limit” case k = n+ 1 because ωn+1 = 0 and
then C∗(n+1)(M) = Ω∗(M). Also the case k = 0 makes sense if we consider ω0 as the constant function 1,
i.e. C∗(0)(M) = {0}. Thus, there exists the following strictly increasing sequence of differential ideals

{0} = C∗(0)(M) ⊂ C∗(1)(M) ⊂ · · · ⊂ C∗(n)(M) ⊂ C∗(n+1)(M) = Ω∗(M).

Since for each k the space C∗(k)(M) is closed by d, we can consider the k-coeffective complex

(2) · · · d // Cq−1
(k) (M) d // Cq(k)(M) d // Cq+1

(k) (M) d // · · · ,

which is a subcomplex of the standard de Rham complex (Ω∗(M), d).

Definition 2.3. The q-th k-coeffective cohomology group will be denoted by

Hq
(k)(M) =

ker {d : Cq(k)(M) −→ Cq+1
(k) (M)}

im {d : Cq−1
(k) (M) −→ Cq(k)(M)}

.

It is clear that the k-coeffective cohomology groups are invariant by symplectomorphism. Moreover, we
will show below that, for each k, they are invariants of the de Rham class [ωk] ∈ H2k(M).

Let Lkω : Ω∗(M) −→ Ω∗(M) be given by Lkω(α) = α ∧ ωk. Since Cq(k)(M) = ker{Lkω : Ωq(M) −→
Ωq+2k(M)} and the map Lkω : Ωq(M) −→ Ωq+2k(M) is injective for any q ≤ n − k and surjective for any
q ≥ n− k, one has that Hq

(k)(M) = 0 for q ≤ n− k and Hq
(k)(M) ∼= Hq(M) for every q ≥ 2n− 2k + 2.
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The short exact sequence

0 // C∗(k)(M) i // Ω∗(M)
Lkω // Lkω(Ω∗(M)) // 0,

where i denotes the inclusion, provides the following short exact sequence of complexes

0 0 0

· · · d // Lkω(Ωq−1(M))
d //

OO

Lkω(Ωq(M))
d //

OO

Lkω(Ωq+1(M))

OO

d // · · ·

· · · d // Ωq−1(M)
d //

Lkω

OO

Ωq(M) d //

Lkω

OO

Ωq+1(M)

Lkω

OO

d // · · ·

· · · d // Cq−1
(k) (M) d //

i

OO

Cq(k)(M) d //

i

OO

Cq+1
(k) (M)

i

OO

d // · · ·

0

OO

0

OO

0

OO

Now, since Lkω(Ωq−2k(M)) = Ωq(M) for any q ≥ n + k we have that Hq(Lkω(Ω∗(M))) = Hq(M) for
q ≥ n+ k + 1, and therefore the associated long exact sequence in cohomology is

0 // Hn−k(M)
Lk // Hn+k(Lkω(Ω∗(M)))

fn−k+1 // Hn−k+1
(k) (M)

(3)
H(i) // Hn−k+1(M)

Lk // Hn+k+1(M)
fn−k+2 // Hn−k+2

(k) (M)

H(i) // Hn−k+2(M)
Lk // Hn+k+2(M)

fn−k+3 // Hn−k+3
(k) (M) · · · ,

where H(i) and Lk are the homomorphisms in cohomology naturally induced by i and Lkω, respectively,
and fq is the connecting homomorphism. Recall that fq is defined by fq([α]) = [dβ], where β ∈ Ωq−1(M)
is any (q − 1)-form satisfying Lkω(β) = α.

Definition 2.4. When the group Hq
(k)(M) has finite dimension, we will denote it by c(k)

q (M) and we shall
refer to it as the q-th k-coeffective number of (M2n, ω).

Notice that c(k)
q (M) = 0 for any q ≤ n− k, and c

(k)
q (M) = bq(M) for any q ≥ 2n− 2k + 2.

In what follows, by a manifold of finite type we mean a manifold, not necessarily compact, such that its
Betti numbers bq(M) = dimHq(M) are all finite.

Proposition 2.5. Let (M2n, ω) be a symplectic manifold of finite type and let 1 ≤ k ≤ n. Then, for every
q ≥ n− k + 2, the following properties hold:

(i) Finiteness and bounds for the coeffective numbers: the group Hq
(k)(M) is finite dimensional and

its dimension c
(k)
q (M) satisfies the inequalities

(4) bq(M)− bq+2k(M) ≤ c(k)
q (M) ≤ bq(M) + bq+2k−1(M).

(ii) Symplectic manifolds satisfying the HLC: if (M2n, ω) satisfies the HLC then the lower bound in
(4) is attained, i.e.

c(k)
q (M) = bq(M)− bq+2k(M).

(iii) Exact symplectic manifolds: if ω is exact then the upper bound in (4) is attained, i.e.

c(k)
q (M) = bq(M) + bq+2k−1(M).
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(iv) Poincaré lemma: if U is the open unit disk in R2n with the standard symplectic form ω =∑n
i=1 dx

i ∧ dxn+i, then c
(k)
q (U) = 0.

Proof. From the long exact sequence (3), one has for any q ≥ n− k + 2 the five-term exact sequence

(5) 0 // im fq ↪→ Hq
(k)(M)

H(i) // Hq(M) Lk // Hq+2k(M)
fq+1 // im fq+1

// 0 .

If the manifold is of finite type then it is clear that Hq
(k)(M) has finite dimension for any q ≥ n − k + 2.

Moreover, taking dimensions in (5)

c
(k)
q (M) = dim (im fq) + bq(M)− bq+2k(M) + dim (im fq+1) ,

which implies the inequalities (4). This completes the proof of (i).
Property (ii) is a direct consequence of (5) taking into account that HLC implies that Lk : Hq−1(M) −→

Hq+2k−1(M) are surjective and then the connecting homomorphisms fq vanish for every q ≥ n− k + 2.
Property (iii) is a consequence of (5) since Lk : Hq−1(M) −→ Hq+2k−1(M) are identically zero because ω

is exact, and then the connecting homomorphisms fq are injective for every q ≥ n− k + 2.
Finally (iv) is a direct consequence of (iii) since ω is exact on U . �

Notice that for k = 1 the previous proposition was proved by Fernández, Ibáñez and de León in [12].
It is easy to check (see [6] for k = 1) that, for each 1 ≤ k ≤ n, the k-coeffective complex (2) is elliptic in
any degree q 6= n− k + 1. The coeffective group Hn−k+1

(k) (M) can be infinite dimensional, however in view
of the sequence (3) there is a natural quotient of this coeffective group by considering the (in general also
infinite dimensional) space Hn+k(Lkω(Ω∗(M))). We will see below that such quotient has finite dimension
on symplectic manifolds of finite type.

Definition 2.6. Let us consider the space

Ĥn−k+1(M) :=
{α ∈ Ωn−k+1(M) | dα = 0 and α ∧ ωk = 0}
{dβ | β ∈ Ωn−k(M) and dβ ∧ ωk = 0}

.

If its dimension is finite, then we will denote it by ĉn−k+1(M).

Hence, we have an additional collection of n symplectic invariants given by Ĥn−k+1(M) for k = 1, . . . , n,
that is,

Ĥn(M), Ĥn−1(M), . . . , Ĥ2(M), Ĥ1(M).

From now on, we will refer to the collection (1) as the generalized coeffective cohomology groups of the
symplectic manifold (M2n, ω).

From the long exact sequence (3) we get the following isomorphisms

Ĥn−k+1(M) ∼= imH(i) ∼= Hn−k+1
(k) (M)/im fn−k+1,

where im fn−k+1
∼= Hn+k(Lkω(Ω∗(M)))

Lk(Hn−k(M))
. Hence, we can consider the short exact sequence

0 // Ĥn−k+1(M)
ı̂ // Hn−k+1(M)

Lk // Hn+k+1(M)
fn−k+2 // im fn−k+2

// 0 ,

where ı̂ is the homomorphism naturally induced by H(i). Since ı̂ is injective, it is clear that Ĥn−k+1(M) is
finite dimensional whenever Hn−k+1(M) is, and in such case we have

ĉn−k+1(M) = bn−k+1(M)− bn+k+1(M) + dim(im fn−k+2).

Therefore, the properties obtained in Proposition 2.5 extend to the space Ĥn−k+1(M) as follows:

Proposition 2.7. Let (M2n, ω) be a symplectic manifold of finite type and let 1 ≤ k ≤ n. The following
properties hold for ĉn−k+1(M):
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(i) Finiteness and bounds for the coeffective number ĉn−k+1(M): the space Ĥn−k+1(M) is finite
dimensional and its dimension satisfies the inequalities

(6) bn−k+1(M)− bn+k+1(M) ≤ ĉn−k+1(M) ≤ bn−k+1(M).

(ii) Symplectic manifolds satisfying the HLC: if (M2n, ω) satisfies the HLC then the lower bound in
(6) is attained, i.e.

ĉn−k+1(M) = bn−k+1(M)− bn+k+1(M).

(iii) Exact symplectic manifolds: if ω is exact then the upper bound in (6) is attained, i.e.

ĉn−k+1(M) = bn−k+1(M).

(iv) Poincaré lemma: if U is the open unit disk in R2n with the standard symplectic form ω =∑n
i=1 dx

i ∧ dxn+i, then ĉn−k+1(U) = 0.

Inspired by the definition of the Euler characteristic of a manifold, we define the following symplectic
invariants:

Definition 2.8. Let (M2n, ω) be a symplectic manifold of finite type. For each 1 ≤ k ≤ n, we define

χ(k)(M) = (−1)n−k+1ĉn−k+1(M) +
2n∑

i=n−k+2

(−1)i c(k)
i (M).

The next proposition shows that each χ(k)(M) is actually a topological invariant of the manifold.

Proposition 2.9. Let (M2n, ω) be a symplectic manifold of finite type. For any 1 ≤ k ≤ n,

χ(k)(M) =
n+k∑

r=n−k+1

(−1)r br(M).

Proof. The long exact sequence (3) implies

0 = ĉn−k+1 − bn−k+1 + bn+k+1 +
n+k∑
j=2

(−1)j−1(c(k)
n−k+j − bn−k+j + bn+k+j).

Writing this sum in terms of χ(k) we get

(−1)n−k+1χ(k) +
n+k∑
j=1

(−1)jbn−k+j −
n+k∑
j=1

(−1)jbn+k+j = 0.

Since bi = 0 for i ≥ 2n+ 1, the previous equality reduces to:

0 = (−1)n−k+1χ(k) +
n+k∑
j=1

(−1)jbn−k+j −
n−k∑
j=1

(−1)jbn+k+j

= (−1)n−k+1χ(k) +
2n∑

r=n−k+1

(−1)r−n+k br −
2n∑

r=n+k+1

(−1)r−n−k br.

Equivalently,

χ(k) =
2n∑

r=n−k+1

(−1)rbr −
2n∑

r=n+k+1

(−1)rbr =
n+k∑

r=n−k+1

(−1)rbr.

�

Observe that the Euler characteristic of M is recovered if we allow k = n+ 1 (see Remark 2.2).
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Remark 2.10. It is clear from the long exact sequence (3) that, for each k, the generalized k-coeffective
cohomology groups (1) are invariants of the de Rham cohomology class [ωk] given by the cap product
of [ω] by itself k times. Even more, if [ωk] 6= 0 and we denote by [[ωk]] the corresponding element in
P(H2k(M)), then all the generalized k-coeffective groups are invariants of [[ωk]]. In conclusion, if (M2n, ω)
is a symplectic manifold and ωk are not exact, then the generalized coeffective cohomologies only depend
on the element [[ω]] ∈ P(H2(M)).

From this remark it follows

Lemma 2.11. Let F : (M,ω) −→ (M ′, ω′) be a diffeomorphism such that F ∗[ω′] = λ[ω] for some non-zero
λ ∈ R. Then, for any 1 ≤ k ≤ n, Ĥn−k+1(M ′) ∼= Ĥn−k+1(M) and Hq

(k)(M
′) ∼= Hq

(k)(M) for every
q ≥ n− k + 2.

Notice that it suffices to know the de Rham cohomology of M together with the action of Lk on it, in
order to know the generalized k-coeffective cohomology. This can be applied in particular to solvmanifolds
satisfying the Mostow condition [21], that is to say, to compact quotients G/Γ of solvable Lie groups G by
a lattice Γ satisfying that the algebraic closures A(AdG(G)) and A(AdG(Γ)) are equal. In fact, under this
condition one has that the natural map (

∧∗
g∗, d) ↪→ (Ω∗(M), d) from the Chevalley-Eilenberg complex

of the Lie algebra g of G to the de Rham complex of the solvmanifold M = G/Γ is a quasi-isomorphism,
i.e. Hq(M) ∼= Hq(g) for any 0 ≤ q ≤ dimM . The following result is straightforward from the long exact
sequence in cohomology:

Proposition 2.12. Let (M = G/Γ, ω) be a 2n-dimensional symplectic solvmanifold satisfying the Mostow
condition. Let g be the Lie algebra of G and let ω′ ∈

∧2
g∗ be a left-invariant symplectic form representing

the de Rham class [λω] ∈ H2(M) for some λ 6= 0. Then, for any 1 ≤ k ≤ n, the inclusion
∧∗

g∗ ↪→ Ω∗(M)
induces isomorphisms Ĥn−k+1(M,ω) ∼= Ĥn−k+1(g, ω′) and Hq

(k)(M,ω) ∼= Hq
(k)(g, ω

′) for every q ≥ n−k+2.

In particular, the previous result holds for nilmanifolds [22] and in the completely solvable case [15], i.e.
when the adjoint representation adX has only real eigenvalues for all X ∈ g.

Note that for the usual coeffective cohomology, i.e. k = 1 and q ≥ n+ 1, this result was proved in [11]
(see also [12]).

Remark 2.13. For other results on the de Rham cohomology of compact solvmanifolds G/Γ, even in
the case that the solvable Lie group G and the lattice Γ do not satisfy the Mostow condition, see [9, 14].
Notice that for infra-solvmanifolds Baues proved in [4] an analogous result to Nomizu’s theorem about the
isomorphism of its cohomology and that of a certain complex of left-invariant forms, result that is used in
[18] to study the 1-coeffective cohomology of certain symplectic aspherical manifolds.

Remark 2.14. For general symplectic manifolds (not necessarily of finite type), from the long exact
sequence (3) one has the following isomorphism

Hq
(k)(M)

ker H(i)
∼= ker{Lk : Hq(M) −→ Hq+2k(M)}

for every q ≥ n− k + 2, where ker H(i) = im fq ∼= Hq+2k−1(M)
Lk(Hq−1(M))

. In particular, if the HLC is satisfied then
Hq

(k)(M) ∼= ker{Lk : Hq(M) −→ Hq+2k(M)}. Since any compact Kähler manifold satisfies the HLC, we
conclude that, for any q ≥ n − k + 2, the k-coeffective group Hq

(k)(M) is isomorphic to the space of de
Rham cohomology classes that annihilate the class [ωk]. For k = 1 this result was proved by Bouché in
[6], where he refers to the latter groups as the truncated de Rham groups. In [11, 18] the relation of the
1-coeffective cohomology with the truncated de Rham cohomology is also investigated.
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3. Extension of the generalized coeffective complexes

In [10] Eastwood introduced an elliptic extension of the usual coeffective complex and showed that the
corresponding cohomology groups are isomorphic to the primitive cohomology groups defined by Tseng
and Yau in [26, 27]. In this section, for every 1 ≤ k ≤ n, we consider an extension of the k-coeffective
complex and study its relation to the filtered cohomologies of Tsai, Tseng and Yau [25].

Let us fix k such that 1 ≤ k ≤ n. For each q, let us consider the quotient space Ω̌q(k)(M) = Ωq(M)
Lkω(Ωq−2k(M))

.

We denote by ď : Ω̌q(k)(M) −→ Ω̌q+1
(k) (M) the natural map induced by the exterior differential, i.e. ď(α̌) =

(dα)̌ = dα+ Lkω(Ωq−2k+1(M)), for any α̌ ∈ Ω̌q(k)(M). Then, we have the following complex

(7) 0 // Ω0 //d // Ω1
d // · · · d // Ω2k−1

ď // Ω̌2k
(k)

ď // · · · ď // Ω̌n+k−2
(k)

ď // Ω̌n+k−1
(k)

D

��

0 Ω2noo Ω2n−1
doo · · ·doo Ω2n−2k+1

doo C2n−2k
(k)

doo · · ·doo Cn−k+2
(k)

doo Cn−k+1
(k)

doo

where D is a second-order differential operator defined as D(α̌) = dγ, being γ the unique (n − k)-form
satisfying dα = Lkω(γ). It can be checked that this complex is elliptic in any degree, however we will not
use this fact in what follows since the main properties of its cohomology groups will be derived from a long
exact sequence as in Section 2.

Let us denote by Ȟq
(k)(M) the cohomology groups associated to the complex (7) for 0 ≤ q ≤ 2n+2k−1.

Notice that Ȟq
(k)(M) = Hq(M) for any q ≤ 2k − 2 and Ȟq

(k)(M) = Hq−2k+1
(k) (M) for any q ≥ n+ k + 1.

Now, the sequences of complexes

Ωn+k−1
d // Ωn+k

d // Ωn+k+1
d // Ωn+k+2

d // Ωn+k+3
d // · · ·

Ωn−k−1
d //

Lkω

OO

Ωn−k
d //

Lkω

OO

Ωn−k+1
d //

Lkω

OO

Ωn−k+2
d //

Lkω

OO

Ωn−k+3
d //

Lkω

OO

· · ·

· · · ď // Ω̌n+k−3
(k)

ď // Ω̌n+k−2
(k)

ď // Ω̌n+k−1
(k)

D // Cn−k+1
(k)

i

OO

d // Cn−k+2
(k)

i

OO

d // Cn−k+3
(k)

i

OO

d // · · ·

· · · d // Ωn+k−3

p

OO

d // Ωn+k−2

p

OO

d // Ωn+k−1

p

OO

d // Ωn+k
d // Ωn+k+1

· · · d // Ωn−k−3

Lkω

OO

d // Ωn−k−2

Lkω

OO

d // Ωn−k−1

Lkω

OO

d // Ωn−k
Lkω

OO

d // Ωn−k+1

Lkω

OO

where i denotes the inclusion and p the natural projection, give rise to the following long exact sequence
in cohomology:

· · ·
f̌n−k−2 // Hn−k−2(M)

Lk // Hn+k−2(M)
H(p) // Ȟn+k−2

(k) (M)

f̌n−k−1 // Hn−k−1(M)
Lk // Hn+k−1(M)

H(p) // Ȟn+k−1
(k) (M)

(8)
f̌n−k // Hn−k(M)

Lk // Hn+k(M)
f̌n−k+1 // Ȟn+k

(k) (M)

H(i) // Hn−k+1(M)
Lk // Hn+k+1(M)

f̌n−k+2 // Ȟn+k+1
(k) (M)

H(i) // Hn−k+2(M)
Lk // Hn+k+2(M)

f̌n−k+3 // Ȟn+k+2
(k) (M) · · · .
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Here H(i) and H(p) are the homomorphisms induced in cohomology by i and p, respectively, and f̌q are
the connecting homomorphisms, which are given as follows:
• for any j ≤ n+ k − 1 and [α] ∈ Ȟj

(k)(M): f̌j−2k+1([α]) = [β], where dα = Lkω(β);
• for any j ≥ n+ k and [α] ∈ Hj(M): f̌j−2k+1([α]) = [dβ], where α = Lkω(β).

Let č(k)
q (M) be the dimension of Ȟq

(k)(M) when it is finite. As in Section 2, using five-term exact
sequences from (8), we arrive at the following result, that provides an extension of Proposition 2.5.

Proposition 3.1. Let (M2n, ω) be a symplectic manifold of finite type and let 1 ≤ k ≤ n. Then, for every
0 ≤ q ≤ 2n+ 2k − 1, the following properties hold:

(i) Finiteness and bounds for the numbers č(k)
q (M): the group Ȟq

(k)(M) is finite dimensional and its

dimension č
(k)
q (M) satisfies the inequalities

(9) bq−2k+1(M)− bq+1(M) ≤ č(k)
q (M) ≤ bq−2k+1(M) + bq(M).

(ii) Symplectic manifolds satisfying the HLC: if (M2n, ω) satisfies the HLC then the lower bound in
(9) is attained for every q ≥ n+ k, i.e.

č(k)
q (M) = bq−2k+1(M)− bq+1(M), q ≥ n+ k.

(iii) Exact symplectic manifolds: if ω is exact then the upper bound in (9) is attained, i.e.

č(k)
q (M) = bq−2k+1(M) + bq(M).

(iv) Poincaré lemma: if U is the open unit disk in R2n with the standard symplectic form ω =∑n
i=1 dx

i ∧ dxn+i, then č
(k)
0 (U) = 1 = č

(k)
2k−1(U) and č(k)

q (U) = 0 for any other value of q.

Remark 3.2. By (ii) the lower bound in (9) is attained for every q ≥ n + k for symplectic manifolds
satisfying the HLC. Similarly, it can be proved from (8) that if (M2n, ω) satisfies that all the maps
Lk : Hn−k(M) −→ Hn+k(M) are injective then č

(k)
q (M) = bq(M)− bq−2k(M) for every q ≤ n+ k − 1. In

conclusion, if Lk : Hn−k(M) −→ Hn+k(M) is an isomorphism for any 1 ≤ k ≤ n (for instance, if (M2n, ω)
is a closed symplectic manifold satisfying the HLC) then the following equalities hold:

č(k)
q (M) = bq(M)− bq−2k(M), 0 ≤ q ≤ n+ k − 1;

č(k)
q (M) = bq−2k+1(M)− bq+1(M), n+ k ≤ q ≤ 2n+ 2k − 1.

Example 3.3. By Proposition 3.1 (iv) we have č(k)
2k−1(U) = 1. Next we show the non-zero cohomology

class generating Ȟ2k−1
(k) (U). Let α =

∑n
i=1 x

i ∧ dxn+i. The (2k− 1)-form β = α∧ωk−1 is ď-closed because
dα = ω and hence dβ = ωk ∈ Lkω(Ω0(U)). Clearly, β is not ď-exact, because it is not d-exact. In conclusion,
[β] defines a non-zero cohomology class and Ȟ2k−1

(k) (U) = 〈[β]〉.

Remark 3.4. Notice that the generalized coeffective space Ĥn−k+1(M) is isomorphic to a quotient of
Ȟn+k

(k) (M); concretely,

(10) Ĥn−k+1(M) ∼=
Ȟn+k

(k) (M)

Hn+k(M)/Lk(Hn−k(M))
.

Let (M2n, ω) be a symplectic manifold of finite type. For every 1 ≤ k ≤ n, we define

χ̌(k)(M) =
2n+2k−1∑
i=0

(−1)i č(k)
i (M).
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Let us write χ̌(k)(M) = χ̌
(k)
+ (M) + χ̌

(k)
− (M), where

χ̌
(k)
+ (M) =

n+k−1∑
i=0

(−1)i č(k)
i (M), and χ̌

(k)
− (M) =

2n+2k−1∑
i=n+k

(−1)i č(k)
i (M).

Proposition 3.5. Let (M2n, ω) be of finite type. For every 1 ≤ k ≤ n:

(i) χ̌(k)(M) = 0; consequently, χ̌(k)
− (M) = −χ̌(k)

+ (M).
(ii) χ̌

(k)
+ (M) = (−1)n+k+1(č(k)

n+k(M)− ĉn−k+1(M)) + χ(k)(M).

Proof. Property (i) follows from (8) arguing similarly to the proof of Proposition 2.9.
For the proof of (ii), taking into account that (−1)n+k+sč

(k)
n+k+s(M) = −(−1)n−k+s+1c

(k)
n−k+s+1(M)

for s ≥ 1, by Proposition 2.9 we get χ(k)(M) + χ̌
(k)
− (M) = (−1)n+k(č(k)

n+k(M) − ĉn−k+1(M)). Since

χ̌
(k)
+ (M) = −χ̌(k)

− (M), relation (ii) follows. �

Equality (ii) in the above proposition means that the behaviour of the symplectic invariant χ̌(k)
+ (M)

only depends on č
(k)
n+k(M) − ĉn−k+1(M), because χ(k)(M) is a topological invariant by Proposition 2.9.

Moreover, one has the following characterization of the HLC in terms of χ̌(k)
+ (M), which in particular

implies that the HLC is determined by the cohomology of the first half of the complexes (7).

Corollary 3.6. A symplectic manifold (M2n, ω) of finite type satisfies the HLC if and only if χ̌(k)
+ (M) =

χ(k)(M) for every 1 ≤ k ≤ n.

Proof. By (10), a symplectic manifold satisfies the HLC if and only if Ĥn−k+1(M) ∼= Ȟn+k
(k) (M) for every

1 ≤ k ≤ n. Therefore, if M is of finite type then, (M2n, ω) satisfies the HLC if and only if ĉn−k+1(M) =
č
(k)
n+k(M) for every 1 ≤ k ≤ n. By Proposition 3.5 (ii), this is equivalent to χ̌(k)

+ (M) = χ(k)(M) for every
1 ≤ k ≤ n. �

Remark 3.7. In [25, Theorem 3.1] Tsai, Tseng and Yau have introduced elliptic differential complexes
of filtered forms that extend the complex of primitive forms [27, Proposition 2.8] (see also [24] for recent
progress). The difference with (7) is precisely that the second half of the complex is the image of the
complex in [25] by the symplectic star operator (see Section 4), so in this sense the complex (7) can be
thought as a coeffective version of the filtered complex.

On the other hand, [25, Theorem 4.2] gives long exact sequences that provide a resolution of the Lefschetz
maps Lk. Comparing with (8), which also gives a resolution of the same Lefschetz maps, one immediately
concludes that the cohomology Ȟ∗(k)(M) is isomorphic to the (k − 1)-filtered cohomology as follows:

• Ȟn+k−s
(k) (M) ∼= F k−1Hn+k−s

+ (M), for s = 1, . . . , n+ k,

• Ȟn+k+s
(k) (M) ∼= F k−1Hn+k−s−1

− (M), for s = 0, 1, . . . , n+ k − 1.

In particular, for any k ≥ 1 one has the following isomorphism between the (k − 1)-filtered cohomology
group and the k-coeffective cohomology group

(11) F k−1Hn+k−s−1
− (M) ∼= Hn−k+s+1

(k) (M) ∼= Ȟn+k+s
(k) (M), 1 ≤ s ≤ n+ k − 1.

For k = 1 we recover the isomorphisms proved in [10] between the extended coeffective cohomology of East-
wood and the primitive cohomology PH = F 0H of Tseng-Yau [26, 27]. More generally, the isomorphism
for any primitive cohomology group is as follows:

PHq
∂+

(M) ∼= F 0Hq
+(M) ∼= Ȟq

(1)(M), 0 ≤ q ≤ n− 1;

PHq
∂−

(M) ∼= F 0Hq
−(M) ∼= Ȟ2n−q+1

(1) (M) ∼= H2n−q
(1) (M), 0 ≤ q ≤ n− 1;

PHn−k+1
ddΛ (M) ∼= F k−1Hn+k−1

+ (M) ∼= Ȟn+k−1
(k) (M), 1 ≤ k ≤ n;

PHn−k+1
d+dΛ (M) ∼= F k−1Hn+k−1

− (M) ∼= Ȟn+k
(k) (M), 1 ≤ k ≤ n.
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From now on, due to the above identifications, we will refer to the cohomology groups Ȟq
(k)(M) as the

filtered cohomology groups of (M2n, ω).

Notice that an analogous observation as Remark 2.10 is also valid for the filtered cohomologies. Hence,
a similar result to Lemma 2.11 holds:

Lemma 3.8. Let F : (M,ω) −→ (M ′, ω′) be a diffeomorphism such that F ∗[ω′] = λ[ω] for some non-zero
λ ∈ R. Then, for any 1 ≤ k ≤ n, Ȟq

(k)(M
′) ∼= Ȟq

(k)(M) for every 0 ≤ q ≤ 2n+ 2k − 1.

A similar result to Proposition 2.12 for computation of the filtered cohomologies of certain solvmanifolds
is also available:

Proposition 3.9. Let (M = G/Γ, ω) be a 2n-dimensional symplectic solvmanifold satisfying the Mostow
condition. Let g be the Lie algebra of G and let ω′ ∈

∧2
g∗ be a left-invariant symplectic form representing

the de Rham class [λω] ∈ H2(M) for some λ 6= 0. Then, for any 1 ≤ k ≤ n, the inclusion
∧∗

g∗ ↪→ Ω∗(M)
induces isomorphisms Ȟq

(k)(M,ω) ∼= Ȟq
(k)(g, ω

′) for every 0 ≤ q ≤ 2n+ 2k − 1.

Remark 3.10. In [26] Tseng and Yau introduced and studied more generally Bott-Chern and Aeppli type
cohomologies using d and dΛ for a symplectic manifold. A characterization of the HLC in the compact case
from an à la Frölicher inequality is given in [3]. Note that for the Bott-Chern and Aeppli type symplectic
cohomologies, a similar result to Proposition 3.9 is obtained in [19, Theorem 3] (see also [2, Theorem 2.31])
by using another argument.

4. Relations with the symplectically harmonic cohomology

In this section we relate the symplectically harmonic cohomology with the cohomologies studied in the
previous sections.

Let (M2n, ω) be a symplectic manifold of dimension 2n. The symplectic star operator ∗ : Ωq(M) −→
Ω2n−q(M) is defined by

α ∧ (∗β) = Λq(Π)(α, β)
ωn

n!
,

for every q-forms α and β, where Π is the bivector field dual to ω, i.e. the natural Poisson structure
associated to ω.

Let δ : Ωq(M) −→ Ωq−1(M) be the operator given by δα = (−1)q+1 ∗d∗α, for every q-form α. Brylinski
proved that δ = [i(Π), d], where i(·) denotes the interior product.

Definition 4.1. [7] A form α is called symplectically harmonic if dα = 0 = δα.

We denote by Ωqhr(M) the linear space of symplectically harmonic q-forms. Unlike the Hodge theory,
there are non-zero exact symplectically harmonic forms. Now, following Brylinski [7], one defines the
symplectically harmonic cohomology

Hq
hr(M) =

Ωqhr(M)
Ωqhr(M) ∩ im d

,

for 0 ≤ q ≤ 2n. Hence, Hq
hr(M) is the subspace of the q-th de Rham cohomology group consisting of

all the de Rham cohomology classes of degree q containing a symplectically harmonic representative. By
analogy with the Hodge theory, Brylinski [7] conjectured that any de Rham cohomology class admits a
symplectically harmonic representative. Mathieu [20] (and independently Yan [29]) proved that Brylinski
conjecture holds, namely Hq

hr(M,ω) = Hq(M) for every 0 ≤ q ≤ 2n, if and only if (M2n, ω) satisfies
the HLC.

An important result is that for any symplectic manifold every de Rham cohomology class up to de-
gree 2 admits a symplectically harmonic representative [29] (see also [16] for more general results), that is,
Hq

hr(M) = Hq(M) for q = 0, 1, 2. For every q ≤ n, if we set

P q(M) = {[α] ∈ Hq(M) |Ln−q+1[α] = 0},
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then P q(M) ⊂ Hq
hr(M) [29]. Moreover, the following result (proved in [16, Corollary 2.4] and [28, Lemma

4.3]) gives a description of the spaces Hq
hr(M):

Theorem 4.2. Let (M2n, ω) be a symplectic manifold of dimension 2n. Then,

Hq
hr(M) = P q(M,ω) + L(Hq−2

hr (M)), for 0 ≤ q ≤ n;

Hq
hr(M) = Im {Lq−n : H2n−q

hr (M) −→ Hq(M)}, for n+ 1 ≤ q ≤ 2n.

Next we suppose that (M2n, ω) is of finite type and denote by hq(M) the dimension of Hq
hr(M).

Example 4.3. Let Mn be a manifold of dimension n and of finite type, and let (T ∗M,ω0) be the cotan-
gent bundle endowed with the standard symplectic form. Since ω0 is exact, the homomorphisms Lk are
identically zero and by Theorem 4.2 we have

hq(T ∗M,ω0) = bq(M), for q ≤ n, and hq(T ∗M,ω0) = 0, for n+ 1 ≤ q ≤ 2n.

For the generalized coeffective cohomology, from Propositions 2.5 (iii) and 2.7 (iii) it follows that

ĉn−k+1(T ∗M,ω0) = bn−k+1(M)

and

c(k)
q (T ∗M,ω0) = bq(M) + bq+2k−1(M), for n− k + 2 ≤ q ≤ 2n.

Furthermore, from Proposition 3.1 (iii) we get

č(k)
q (T ∗M,ω0) = bq−2k+1(M) + bq(M), for q ≤ 2n+ 2k − 1.

In the following result we relate the generalized coeffective cohomology with the harmonic cohomology
via the coeffective groups Ĥ1(M), . . . , Ĥn(M).

Theorem 4.4. Let (M2n, ω) be a symplectic manifold of finite type. The following relation holds for every
k = 1, . . . , n:

hn−k+1(M)− hn+k+1(M) = ĉn−k+1(M).

Proof. By Theorem 4.2, Hn−k+1
hr (M) = Pn−k+1(M) + L(Hn−k−1

hr (M)). Hence,

hn−k+1(M) = dimPn−k+1(M) + dimL(Hn−k−1
hr (M))− dim(Pn−k+1(M) ∩ L(Hn−k−1

hr (M))).

It follows from (3) that Pn−k+1(M) is isomorphic to the space Ĥn−k+1(M), and therefore, dimPn−k+1(M) =
ĉn−k+1(M). On the other hand,

Pn−k+1(M) ∩ L(Hn−k−1
hr (M)) = kerLk

∣∣
L(Hn−k−1

hr (M))
.

Now,

hn−k+1(M) = ĉn−k+1(M) + dimL(Hn−k−1
hr (M))− dim

(
kerLk

∣∣
L(Hn−k−1

hr (M))

)
= ĉn−k+1(M) + dim(Lk+1(Hn−k−1

hr (M)))

= ĉn−k+1(M) + hn+k+1(M).

�

From Proposition 2.7 we get directly upper and lower bounds for the difference hn−k+1(M)−hn+k+1(M).
Moreover, the previous theorem, together with Proposition 2.9 and (11), provides further relations between
the harmonic and the filtered cohomologies.

Next we derive some concrete relations of the harmonic cohomology with the groups Ȟq
(k)(M).
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Proposition 4.5. Let (M2n, ω) be a symplectic manifold of finite type. For every 1 ≤ k ≤ n we have

0 ≤ č(k)
n+k(M)− ĉn−k+1(M) ≤ bn+k(M)− hn+k(M),

where the latter equality holds if and only if Lk(Hn−k
hr (M)) = Lk(Hn−k(M)).

Proof. It follows from (10) that ĉn−k+1(M) = č
(k)
n+k(M) − bn+k(M) + dimLk(Hn−k(M)). Taking into

account that dimLk(Hn−k(M)) ≥ hn+k(M) by Theorem 4.2, we conclude the relation. �

The following consequence will be useful later for symplectic manifolds of low dimension.

Corollary 4.6. Let (M2n, ω) be a symplectic manifold of finite type. Then:

č
(n)
2n (M) = b1(M) + b2n(M)− h2n(M),

č
(n−1)
2n−1 (M) = b2(M) + b2n−1(M)− h2n−1(M)− h2n(M),

č
(n−2)
2n−2 (M) = b2n−2(M) + h3(M)− h2n−2(M)− h2n−1(M).

Proof. Notice that Lk(Hn−k
hr (M)) = Lk(Hn−k(M)) is satisfied for k = n, n−1 and n−2 because Hq

hr(M) =
Hq(M) for q = 0, 1, 2. Hence, it suffices to apply Proposition 4.5 and use Theorem 4.4 to relate the
coeffective numbers with the harmonic cohomology. �

Next we show some other general properties that we will use later in the following sections.

Proposition 4.7. Let (M2n, ω) be a symplectic manifold of finite type. Then:

(i) ĉ1(M) = b1(M), and c(n)
q (M) = bq(M) for every 2 ≤ q ≤ 2n.

(ii) For any 1 ≤ k ≤ n, č(k)
q (M) = c

(k)
q−2k+1(M) for every n+ k + 1 ≤ q ≤ 2n+ 2k − 1.

Proof. (i) is clear from the definition of the generalized coeffective cohomology for k = n and from the long
exact sequence (3). Equalities (ii) are direct from the definition of Ȟq

(k)(M). �

For closed manifolds one has additional relations. For instance, the numbers č(k)
q (M) satisfy certain

duality (see [25, Proposition 4.8] for the corresponding duality for the filtered cohomology groups), whereas
the harmonic number h2n−1(M) is always even [16, Lemma 1.14]. The proof of these facts follows from the
existence of the usual non-singular pairing p([α], [β]) =

∫
M
α ∧ β, for [α] ∈ Hq(M) and [β] ∈ Hm−q(M),

valid on any closed m-dimensional manifold M . In the following proposition we collect these results together
with other properties.

Proposition 4.8. Let (M2n, ω) be a closed symplectic manifold. Then:

(i) For any 1 ≤ k ≤ n− 1, c(k)
q (M) = bq(M) for every 2n− 2k + 1 ≤ q ≤ 2n.

(ii) For any 1 ≤ k ≤ n, č(k)
q (M) = č

(k)
2n+2k−q−1(M) for every 0 ≤ q ≤ n+ k − 1.

(iii) h2n(M) = b2n(M), and h2n−1(M) is always even.
(iv) hn−1(M)− (č(1)

n+1(M)− ĉn(M)) ≤ hn+1(M) ≤ hn−1(M).

Proof. By definition of the coeffective cohomology one always has that c(k)
q (M) = bq(M) for any 1 ≤ k ≤

n−1 and for every q ≥ 2n−2k+2. Moreover, since M is closed, H2n(M) = 〈[ωn]〉 and Lk : H2n−2k(M) −→
H2n(M) is surjective, so the long exact sequence (3) implies c(k)

2n−2k+1(M) = b2n−2k+1(M). This proves (i).
Property (ii) follows from [25, Proposition 4.8] taking into account the identifications given in Re-

mark 3.7.
The proof of (iii) is a consequence of the fact that the rank of Ln−1 : H1(M) −→ H2n−1(M) is always

an even number [16, Lemma 1.14].
To prove (iv), since Hn+1

hr (M) = L(Hn−1
hr (M)), we have

hn−1(M) = hn+1(M) + dim
(
ker{L : Hn−1

hr (M)→ Hn+1(M)}
)
.
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Therefore,

hn−1(M)− hn+1(M) = dim
(
ker{L : Hn−1

hr (M)→ Hn+1(M)}
)

≤ dim
(
ker{L : Hn−1(M)→ Hn+1(M)}

)
= bn−1(M)− dim

(
im {L : Hn−1(M)→ Hn+1(M)}

)
= bn+1(M)− dim

(
im {L : Hn−1(M)→ Hn+1(M)}

)
= č

(1)
n+1(M)− ĉn(M),

where the last equality follows from Remark 3.4. �

Notice that Theorem 4.4 does not provide any relation for hn+1, so (iv) in the above proposition provides
upper and lower bounds for the harmonic number hn+1 on closed symplectic manifolds.

Corollary 4.9. Let (M2n, ω) be a closed symplectic manifold. Then,

(12) ĉ1(M) = č
(n)
2n (M) = b1(M) and ĉ2(M) = b2(M)− 1.

Hence, the generalized coeffective cohomology groups (1) for k = n and n − 1, as well as the n-filtered
cohomology groups are topological invariants.

Proof. The formulas for χ(n) and χ(n−1) given in Proposition 2.9 together with part (i) in Proposition 4.7
and Proposition 4.8 imply (12), so all the generalized n- and (n − 1)-coeffective numbers are topological.
For the n-filtered cohomology it suffices to use Corollary 4.6 and the fact that č(n)

q = c
(n)
q−2n+1 for 2n+ 1 ≤

q ≤ 4n− 1. �

We finish this section noticing that from Theorem 4.2 it follows directly that an analogous result to
Lemmas 2.11 and 3.8 also holds for the symplectically harmonic cohomology [28, Proposition 1], and in
the case of solvmanifolds satisfying the Mostow condition, a result similar to Propositions 2.12 and 3.9
is also valid (this was first observed in [28, Proposition 2], see also [16, 17], for the class of symplectic
nilmanifolds).

5. Symplectic flexibility of closed manifolds

In this section we focus on closed symplectic manifolds, for which we introduce a notion of flexibility for the
generalized coeffective and filtered cohomologies, as analogous notions of the concept of harmonic flexibility
introduced and studied in [16, 29] and motivated by a question raised by Khesin and McDuff. Furthermore,
we study their relations with the harmonic flexibility.

In what follows, M will refer to a closed smooth manifold admitting symplectic forms.

Definition 5.1. A 2n-dimensional M is said to be

(i) c-flexible, if M possesses a continuous family of symplectic forms ωt, where t ∈ [a, b], such that
ĉn−k+1(M,ωa) 6= ĉn−k+1(M,ωb) or c(k)

q (M,ωa) 6= c
(k)
q (M,ωb) for some 1 ≤ k ≤ n and n− k+ 2 ≤

q ≤ 2n;
(ii) f-flexible, ifM possesses a continuous family of symplectic forms ωt, t ∈ [a, b], such that č(k)

q (M,ωa) 6=
č
(k)
q (M,ωb) for some 1 ≤ k ≤ n and 0 ≤ q ≤ 2n+ 2k − 1;

(iii) h-flexible, ifM possesses a continuous family of symplectic forms ωt, t ∈ [a, b], such that hq(M,ωa) 6=
hq(M,ωb) for some 0 ≤ q ≤ 2n.

Notice that h-flexible manifolds are precisely the flexible manifolds in [16].

Since Hq
hr(M) = Hq(M) for q = 1, 2, we have h2n−q(M) = dim(Im {Ln−q : Hq(M) −→ H2n−q(M)}) for

q = 1, 2 by Theorem 4.2. Now, if ωt is a continuous family of symplectic structures on M , t ∈ [a, b], then
it is clear that

(13) h2n−1(M,ωt) ≥ h2n−1(M,ωa) and h2n−2(M,ωt) ≥ h2n−2(M,ωa),
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that is, these symplectically harmonic numbers satisfy a “lower-semicontinuous” property.
In the following result we observe that an “upper-semicontinuous” property holds for all the coeffective

and the filtered numbers.

Proposition 5.2. Let ωt be a continuous family of symplectic structures on M , for t ∈ [a, b]. Then, for
any 1 ≤ k ≤ n the following inequalities hold:

ĉn−k+1(M,ωt) ≤ ĉn−k+1(M,ωa),

c(k)
q (M,ωt) ≤ c(k)

q (M,ωa), for every n− k + 2 ≤ q ≤ 2n,

č
(k)
n+k(M,ωt) ≤ č(k)

n+k(M,ωa), for every 0 ≤ q ≤ 2n+ 2k − 1.

Proof. It follows directly from the long exact sequences (3) and (8). �

Next we study relations among the three different types of flexibility. We begin in dimension four.

Theorem 5.3. Let M be a 4-dimensional closed manifold. Then:

(i) M is never c-flexible;
(ii) M is f-flexible if and only if it is h-flexible.

Proof. Since n = 2, we need to study the coeffective numbers c(1)
q for q = 3, 4, c(2)

q for q = 2, 3, 4, ĉ1
and ĉ2. Proposition 4.7 (i), Proposition 4.8 (i) and Corollary 4.9 imply that c(2)

2 = b2, c(1)
3 = c

(2)
3 = b3,

c
(1)
4 = c

(2)
4 = b4, ĉ1 = b1 and ĉ2 = b2 − 1. Therefore, M cannot be c-flexible and (i) is proved.

By Proposition 4.7 (ii) we have č(k)
q = c

(k)
q−2k+1 for k = 1, 2 and for any 3 + k ≤ q ≤ 3 + 2k, so they are

topological invariants. By the duality given in Proposition 4.8 (ii), it remains to study č(1)
3 and č

(2)
4 .

Since hq = bq for q = 0, 1, 2 and 4, the first two equalities in Corollary 4.6 imply that č(2)
4 = b1 and

č
(1)
3 = b2 − b0 + b3 − h3, i.e.

č
(1)
3 = b1 + b2 − h3 − 1.

Therefore, M is f -flexible iff M is h -flexible, since č(1)
3 (M,ωt) varies along a family of symplectic forms ωt

iff h3(M,ωt) varies. �

The previous proof shows that the fundamental relation between flexibilities on a 4-dimensional mani-
fold M is

č
(1)
3 (M,ωt) = b1(M) + b2(M)− h3(M,ωt)− 1.

Corollary 5.4. Let M be a 4-dimensional closed manifold. If the first Betti number b1(M) ≤ 1 then M

is not f-flexible.

Proof. Proposition 4.8 (iii) implies that h3 is an even number for any symplectic form. Since h3 ≤ b3 then
h3 = 0 and therefore M cannot be flexible. �

In particular there do not exist simply-connected closed 4-manifolds which are f -flexible.
On the other hand, Yan [29] proved that there are no h -flexible 4-dimensional nilmanifolds. Even more,

one can see that the same holds in the bigger class of completely solvable solvmanifolds. For that, by
the classification given in [5, Table 2] it remains to check that a solvmanifold based on the Lie algebra
de1 = e13, de2 = −e23, de3 = de4 = 0 is not h -flexible. In fact, any invariant symplectic structure is of the
form ω = Ae12 +B e13 +C e23 +De34, with AD 6= 0, and the number h3 only depends on the element [[ω]]
in P(H2(M)) (see Remark 2.10), so we can suppose that A = 1 and B = C = 0 because [e13] = [e23] = 0.
Thus, it suffices to study the family ωt = e12 + t e34, with t 6= 0. A direct calculation shows

L[ωt](H
1(M)) = 〈[ωt ∧ e3], [ωt ∧ e4]〉 = 〈[e123], [e124]〉 = H3(M),

i.e. h3(ωt) = b3 for any t 6= 0, and therefore the solvmanifold is not h -flexible. Hence:
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Proposition 5.5. Any 4-dimensional completely solvable solvmanifold is not c-flexible, f-flexible or h-
flexible.

However, there exist 4-dimensional closed manifolds which are h -flexible, as it was proved in [29, Corol-
lary 4.2] and [16, Proposition 3.2]. In fact, if (M4, ω) is a closed symplectic manifold satisfying the
conditions

(i) the homomorphism L : H1(M) −→ H3(M) is trivial,
(ii) the cup product H1(M)⊗H2(M) −→ H3(M) is non-trivial,

then M is h -flexible. Since Gompf [13, Observation 7] proved the existence of 4-manifolds satisfying (i)
and (ii), from Theorem 5.3 it follows that there exists 4-dimensional closed manifolds which are f -flexible.
Moreover, taking symplectic products, we arrive at the following existence result:

Theorem 5.6. For each n ≥ 2, there exist 2n-dimensional f-flexible closed manifolds. More precisely,
there exists a 2n-dimensional closed manifold M with a continuous family of symplectic forms ωt such that
the dimensions of the primitive cohomology groups PH2

d+dΛ(M,ωt) and PH2
ddΛ(M,ωt) vary with respect

to t.

Proof. Notice first that č(n−1)
2n−1 (M) = dimPH2

d+dΛ(M) = dimPH2
ddΛ(M), and by Corollary 4.6 we have

č
(n−1)
2n−1 (M) = b2(M) + b1(M)− h2n−1(M)− 1.

On the other hand, by [16, Proposition 5.3] we have the following formula for h2n−1 of a product
(M = N1 ×N2, ω = ω1 + ω2) of two symplectic manifolds (N1, ω1) and (N2, ω2) of respective dimensions
n1 and n2:

h2n−1(M) = h2n1−1(N1) + h2n2−1(N2),

where n = n1 + n2.
Now, let N1 be a 4-dimensional closed manifold such that h3 varies along a continuous family of sym-

plectic forms and let N2 be, for instance, any compact Kähler manifold. Then, on the product manifold
M there is a continuous family of symplectic forms such that h2n−1(M), and so č(n−1)

2n−1 (M), varies. �

As we noticed above, there do not exist simply-connected closed 4-manifolds which are f -flexible. By
using a recent result by Cho [8], next we prove the existence of flexible simply-connected closed manifolds
in every dimension greater than or equal to six.

Theorem 5.7. For each n ≥ 3, there exist 2n-dimensional simply-connected closed manifolds which
are f-flexible. More precisely, there exists a 2n-dimensional simply-connected closed manifold M with
a continuous family of symplectic forms ωt such that the dimensions of the primitive cohomology groups
PH3

d+dΛ(M,ωt) and PH3
ddΛ(M,ωt) vary with respect to t. Moreover, the manifold M is homotopy equiva-

lent to some Kähler manifold.

Proof. Let us first recall that Cho proves in [8, Theorem 1.3] the existence of a compact Kähler manifold
(X,ω) with dimC X = 3 such that

(1) X is simply-connected,

(2) the odd Betti numbers vanish, i.e. b2k+1(X) = 0 for every integer k ≥ 0,

(3) X admits a symplectic form σ such that (X,σ) does not satisfy the HLC, and

(4) σ is deformation equivalent to the Kähler form ω, that is, there is a path {ωt}0≤t≤1 of symplectic
forms such that ω0 = ω and ω1 = σ.

These properties imply that h4(X,ωt) varies with t, and the manifold X is h -flexible. One can see that
ĉ3 = 0 and c

(1)
4 = b2 − 1 for any symplectic form on X, so it is not c -flexible, but X is f -flexible because

č
(1)
4 = b2−h4. Hence X provides an example in dimension 6. Next we consider this manifold to prove that

there are simply-connected closed manifolds in every higher dimension which are f -flexible.
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Let M be a closed symplectic manifold of dimension 2n. From Remark 3.7 and Proposition 4.8 (ii) for
k = n − 2 and q = 2n − 3, we notice that dimPH3

d+dΛ(M) = č
(n−2)
2n−2 (M) = č

(n−2)
2n−3 (M) = dimPH3

ddΛ(M).
On the other hand, by Corollary 4.6

(14) č
(n−2)
2n−2 (M) = b2n−2(M) + h3(M)− h2n−2(M)− h2n−1(M).

Suppose that M is a product of two symplectic manifolds (N1, ω1) and (N2, ω2) of respective dimensions
n1 and n2. By [16, Proposition 5.3] we have the following formulas for the harmonic numbers h2n−1 and
h2n−2 of the manifold (M = N1 ×N2, ω = ω1 + ω2):

(15)
h2n−1(M) = h2n1−1(N1) + h2n2−1(N2),

h2n−2(M) = h2n1−2(N1) + h2n1−1(N1)h2n2−1(N2) + h2n2−2(N2).

where n = n1 + n2.
Now, let N1 = X be the 6-dimensional simply-connected closed manifold described above, and let

N2 = CPn2 endowed with the standard Kähler structure defined by its natural complex structure and
the Fubini-Study metric. Hence, the manifold M is a simply-connected closed manifold of dimension
2n = 2(3 + n2) ≥ 8. Since all the odd Betti numbers of N1 and N2 vanish, the manifold M also has
all its odd Betti numbers equal to zero. This implies that h3(M) = 0, h2n−1(M) = 0 and h2n−2(M) =
h4(X) + 1 by (15), because h2n2−2(N2) = b2n2−2(CPn2) = 1. Moreover, by Künneth formula one arrives
at b2n−2(M) = b4(X) + 1. Therefore, the equality (14) reduces to

č
(n−2)
2n−2 (M) = b4(X)− h4(X).

By the properties of X described above, we conclude that on the product manifold M there is a continuous
family of symplectic forms such that č(n−2)

2n−2 (M) varies. �

From the proofs of Theorems 5.6 and 5.7, the resulting symplectic manifolds are also h -flexible. It is
unclear if f -flexibility is implied by h -flexibility in dimension higher than or equal to 8 (see Proposition 5.11
below for the general relation). In contrast, in six dimensions we have:

Theorem 5.8. Let M be a 6-dimensional closed manifold. Then:

(i) If M is c-flexible then M is f-flexible and h-flexible.
(ii) If M is not c-flexible then, M is f-flexible if and only if it is h-flexible.

Proof. Since n = 3, the coeffective numbers to be studied are: c(1)
q for q = 4, 5, 6, c(2)

q for q = 3, 4, 5, 6, c(3)
q

for q = 2, 3, 4, 5, 6, and ĉ1, ĉ2, ĉ3. Corollary 4.9 implies that ĉ1, ĉ2 and all c(k)
q for k = 2, 3 are topological

invariants. Moreover, by Proposition 4.8 (i) we have c(1)
q = bq for q = 5, 6. Now, the formula for χ(1) given

in Proposition 2.9 implies that

(16) ĉ3 = c
(1)
4 + b3 − b2 − b1 + 1.

Therefore, M is c-flexible if and only if M possesses a continuous family of symplectic forms ωt, t ∈ [a, b],
such that ĉ3(M,ωa) 6= ĉ3(M,ωb).

By Proposition 4.7 (ii) we have č(k)
q = c

(k)
q−2k+1 for k = 1, 2, 3 and for any 4 + k ≤ q ≤ 5 + 2k, so they

are topological invariants except possibly č(1)
5 , which satisfies

(17) č
(1)
5 = c

(1)
4 .

By the duality given in Proposition 4.8 (ii), it remains to study č(1)
4 and č

(2)
5 .

Since hq = bq for q = 0, 1, 2, 6, the equalities in Corollary 4.6 together with Theorem 4.4 imply the
following relations

(18) ĉ3 = h3 − h5, ĉ3 = č
(1)
4 + h4 − b2, č

(2)
5 = −h5 + b2 + b1 − 1.

Therefore, the fundamental equalities that relate the different cohomologies for closed 6-dimensional
manifolds are (16)–(18). Now, using these relations, a direct argument shows (i) and (ii). �
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Corollary 5.9. A 6-dimensional closed manifold is f-flexible if and only if it is h-flexible.

Remark 5.10. Notice that there exist closed 6-dimensional manifolds which are f -flexible and h -flexible,
but not c -flexible; that is to say, the converse to (i) in Theorem 5.8 does not hold in general. Explicit
examples of nilmanifolds satisfying this are given in Section 6.

In higher dimension we have the following result:

Proposition 5.11. Let M be a closed manifold of dimension 2n ≥ 8. If M is c-flexible then M is f-flexible
or h-flexible.

Proof. If M possesses a continuous family of symplectic forms ωt, t ∈ [a, b], such that c(k)
q (M,ωa) 6=

c
(k)
q (M,ωb) for some 1 ≤ k ≤ n and n − k + 2 ≤ q ≤ 2n, then it is clear that M is f -flexible by

Proposition 4.7 (ii).
If M possesses a continuous family of symplectic forms ωt, t ∈ [a, b], such that ĉn−k+1(M,ωa) 6=

ĉn−k+1(M,ωb) for some 1 ≤ k ≤ n, then Theorem 4.4 implies that hn−k+1(M,ωa) 6= hn−k+1(M,ωb) or
hn+k+1(M,ωa) 6= hn+k+1(M,ωb), therefore M is h -flexible. �

6. Symplectic 6-dimensional nilmanifolds

In this section we present a complete study of the dimensions of the harmonic, coeffective and filtered
cohomology groups of 6-dimensional symplectic nilmanifolds, see Table 1 below.

The symplectically harmonic numbers h4 and h5 were first computed in [16], whereas h3 was obtained
in [17] (see Remark 6.2 for corrections). As a consequence of our study, we describe all c -flexible, h -flexible
or f -flexible 6-dimensional nilmanifolds.

In the proof of Theorem 5.8 we found that for 6-dimensional closed symplectic manifolds the fundamental
equalities that relate the different cohomologies are (16)–(18). In addition, since the Euler characteristic of
a nilmanifold vanishes, we have that b3 = 2(b2 − b1 + 1). Therefore, relations (16)–(18) for 6-dimensional
symplectic nilmanifolds are

(19) ĉ3 = c
(1)
4 +b2−3b1+3, h3 = ĉ3+h5, č

(1)
4 = ĉ3−h4 + b2, č

(1)
5 = c

(1)
4 , č

(2)
5 = −h5+b2+b1−1.

Recall that c(1)
4 , č(1)

4 and č
(2)
5 are by Remark 3.7 dimensions of primitive cohomology groups; concretely,

c
(1)
4 = dimPH2

∂−
(= dimPH2

∂+
), č(1)

4 = dimPH3
d+dΛ(= dimPH3

ddΛ) and č(2)
5 = dimPH2

d+dΛ(= dimPH2
ddΛ).

It follows from Propositions 2.12 and 3.9 that the calculation of all the cohomology groups reduces
to the Lie algebra level. In Table 1 nilmanifolds of dimension 6 admitting symplectic structure appear
lexicographically with respect to the triple (b1, b2, 6− s), where b1 and b2 are the Betti numbers (first two
columns in the table) and s is the step length (third column). The fourth column contains the description
of the structure of the nilmanifold; for instance, the notation (0, 0, 12, 13, 14, 15) means that there exists a
basis {ei}6i=1 of (invariant) 1-forms such that

de1 = de2 = 0, de3 = e1 ∧ e2, de4 = e1 ∧ e3, de5 = e1 ∧ e4, de6 = e1 ∧ e5.

The next columns show the dimensions of the non-trivial harmonic, coeffective and filtered cohomology
groups, that is, hk (k = 3, 4, 5), ĉ3, c(1)

4 (= č
(1)
5 ), č(1)

4 and č
(2)
5 . Moreover, the columns contain all the

possible values when ω runs over the space S of all invariant symplectic structures on the nilmanifold.
The last column shows the dimension of the space S, however the cohomology groups only depend on

the cohomology class of the symplectic form. This fact allows to reduce calculations to a smaller number
of parameters, and furthermore by Remark 2.10 we can always normalize one of the non-zero coefficients
that parametrize the classes of the symplectic forms.

When there are variations in the dimensions of the cohomology groups, they appear in the table written
accordingly to the lower-semicontinuous property (13) of the harmonic numbers h4 and h5, or to the upper-
semicontinuous property of ĉ3, c(1)

4 , č(1)
4 and č(2)

5 (see Proposition 5.2). Notice that the harmonic number h3
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does not satisfy any lower or upper semicontinuous property. Moreover, the variations in the dimensions of
the cohomology groups are in correspondence (in the sense that we explain in Example 6.3 below), except
for the nilmanifolds (0, 0, 0, 12, 13, 23) and (0, 0, 0, 12, 13, 14+23) (see Example 6.4 for details on the latter).

b1 b2 6−s Structure h3 h4 h5 ĉ3 c
(1)
4 č

(1)
4 č

(2)
5 dimS

2 3 1 (0,0,12,13,14,15) 3 2 0 3 3 4 4 7

2 3 1 (0,0,12,13,14+23,24+15) 4,3 2 0 4,3 4,3 5,4 4 7

2 3 1 (0,0,12,13,14,23+15) 3 2 0 3 3 4 4 7

2 4 2 (0,0,12,13,23,14) 4 4 0 4 3 4 5 8

2 4 2 (0,0,12,13,23,14-25) 4 2,3,4 0 4 3 6,5,4 5 8

2 4 2 (0,0,12,13,23,14+25) 4 4 0 4 3 4 5 8

3 4 2 (0,0,0,12,14-23,15+34) 2 2 0 2 4 4 6 7

3 5 2 (0,0,0,12,14,15+23) 5 4 2 3 4 4 5 8

3 5 2 (0,0,0,12,14,15+23+24) 4,5 3,4 0,2 4,3 5,4 6,4 7,5 8

3 5 2 (0,0,0,12,14,15+24) 5 4 2 3 4 4 5 8

3 5 2 (0,0,0,12,14,15) 5 4 2 3 4 4 5 8

3 5 3 (0,0,0,12,13+42,14+23) 5 3 0 5 6 7 7 8

3 5 3 (0,0,0,12,14,13+42) 5 3 0 5 6 7 7 8

3 5 3 (0,0,0,12,13+14,24) 5 2,3 0 5 6 8,7 7 8

3 6 3 (0,0,0,12,13,14+23) 7,6,5 3,4 0 7,6,5 7,6,5 9,8,7 8 9

3 6 3 (0,0,0,12,13,24) 6,5 5 0 6,5 6,5 7,6 8 9

3 6 3 (0,0,0,12,13,14) 6,5 4 0 6,5 6,5 8,7 8 9

3 8 4 (0,0,0,12,13,23) 10,9 7,8 0 10,9 8,7 10 10 9

4 7 3 (0,0,0,0,12,15) 6 3 2 4 6 8 8 9

4 7 3 (0,0,0,0,12,14+25) 7,6 4 2 5,4 7,6 8,7 8 9

4 8 4 (0,0,0,0,13+42,14+23) 8 7 2 6 7 7 9 10

4 8 4 (0,0,0,0,12,14+23) 8 6 2 6 7 8 9 10

4 8 4 (0,0,0,0,12,34) 8 7 2 6 7 7 9 10

4 9 4 (0,0,0,0,12,13) 10 7,8 2 8 8 10,9 10 11

5 11 4 (0,0,0,0,0,12) 13 9 4 9 10 11 11 12

6 15 5 (0,0,0,0,0,0) 20 15 6 14 14 14 14 15

Table 1. Symplectic invariants of six-dimensional nilmanifolds

The following result is a direct consequence of Table 1.

Theorem 6.1.

(i) There exist seven nilmanifolds of dimension 6 that are c-flexible (and therefore f-flexible and
h-flexible).

(ii) There exist three nilmanifolds of dimension 6 that are f-flexible and h-flexible, but not c-flexible.

In conclusion, there exist ten 6-dimensional nilmanifolds that are f-flexible and h-flexible.

Notice that from (ii) it follows that the converse of Theorem 5.8 does not hold, that is, c -flexibility is
the strongest condition.

Remark 6.2. In [16, 17] the following symplectically harmonic numbers need correction:
• for (0, 0, 12, 13, 14, 15) the number h4 is equal to 2 (not 3);
• for (0, 0, 12, 13, 14, 23 + 15) the number h3 is equal to 3 (not 2);
• for (0, 0, 0, 12, 14, 15 + 23) the number h3 is equal to 5 (not 4);
• for (0, 0, 0, 0, 12, 14 + 25) the number h4 is equal to 4 (not 3).
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Example 6.3. Let us consider the 6-dimensional nilmanifold (0, 0, 0, 12, 14, 15 + 23 + 24). According to
Table 1, this manifold is c -flexible, f -flexible and h -flexible. In fact, consider the following continuous
family of symplectic structures

[ωt] = (1− cos t)[e13]− cos t [e16 + e25 − e34] + (1− cos t)[e26 − e45], t ∈ R.

This family was constructed first in [16, 17] to show h -flexibility, and the symplectic structures ωt=0 and
ωt=π

2
were considered in [27] concerning the dimension of the primitive group PH2

∂−
, i.e. c(1)

4 .
This 6-dimensional nilmanifold is the only one where all the non-trivial coeffective, harmonic and prim-

itive numbers vary. In Table 1 the variations are in correspondence as follows:

• h3(ω2πk) = 4, h4(ω2πk) = 3, h5(ω2πk) = 0, ĉ3(ω2πk) = 4, c(1)
4 (ω2πk) = č

(1)
5 (ω2πk) = 5, č(1)

4 (ω2πk) = 6,

č
(2)
5 (ω2πk) = 7, for any integer k;

• h3(ωt) = 5, h4(ωt) = 4, h5(ωt) = 2, ĉ3(ωt) = 3, c(1)
4 (ωt) = č

(1)
5 (ωt) = 4, č(1)

4 (ωt) = 4, č(2)
5 (ωt) = 5,

for t 6= 2πk.

Example 6.4. Let us consider the 6-dimensional nilmanifold (0, 0, 0, 12, 13, 14 + 23). The de Rham class
of any symplectic form is given by

[ω] = A [e14] +B [e15] + C [e24] +D [e35] + E [e16 + e25] + F [e16 − e34],

where (E + F )(CD + EF ) 6= 0. Direct computations show that ĉ3 and h4 vary as follows:

ĉ3 =


7, if D = E + 2F = 0,

6, if D = 0, E + 2F 6= 0,

5, if D 6= 0,

h4 =

{
3, if (E + F )2 = CD + EF,

4, if (E + F )2 6= CD + EF.

This nilmanifold satisfies b2 = 3b1 − 3, so (19) implies that č(1)
5 = c

(1)
4 = ĉ3. Moreover, h5 = 0 from which

we get that č(2)
5 = 8 and h3 = ĉ3. Hence, using that č(1)

4 = b2 − h4 + ĉ3 by (19), we arrive at

č
(1)
4 =


9, if D = E + 2F = 0,

8, if D = 0, E + 2F 6= 0, or D 6= 0, (E + F )2 = CD + EF,

7, if D 6= 0, (E + F )2 6= CD + EF.

As a consequence, concrete families can be constructed. Let us consider the two-parametric family

[ωt,s] = t [e35] + (s+ 2) [e16 + e25]− [e16 − e34],

where t, s ≥ 0. Then, the variations of the dimensions are:

• h3(ω0,0) = ĉ3(ω0,0) = c
(1)
4 (ω0,0) = č

(1)
5 (ω0,0) = 7 and č

(1)
4 (ω0,0) = 9;

• h3(ωt,0) = ĉ3(ωt,0) = c
(1)
4 (ωt,0) = č

(1)
5 (ωt,0) = 5 and č

(1)
4 (ωt,0) = 7, for t > 0;

• h3(ω0,s) = ĉ3(ω0,s) = c
(1)
4 (ω0,s) = č

(1)
5 (ω0,s) = 6 and č

(1)
4 (ω0,s) = 8, for s > 0.

On the other hand, if we consider the family

[ωt] = [e24] + [e35] + t [e16 + e25] + [e16 − e34],

where t ≥ 0, then the variations are:

• h4(ω0) = 3 and č
(1)
4 (ω0) = 8;

• h4(ωt) = 4 and č
(1)
4 (ωt) = 7, for t > 0.
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For compact Kähler manifolds (M2n, ω) and for every q ≥ n + 1, the coeffective cohomology group
Hq

(1)(M) is isomorphic to the [ω]-truncated q-th de Rham group H̃q
[ω](M) = {[α] ∈ Hq(M) | [α] ∪ [ω] = 0},

although Fernández, Ibáñez and de León showed that this is no longer true for arbitrary compact symplectic
manifolds [11]. Kasuya has studied in [18] certain symplectic aspherical (non-Kähler) manifolds for which

(20) Hq
(1)(M) ∼= H̃q

[ω](M) for every q ≥ n+ 1.

For 6-dimensional symplectic nilmanifolds one has the following result, which suggests that such isomor-
phism might be closely related to a low step of nilpotency:

Proposition 6.5. Let M be a symplectic s-step nilmanifold of dimension 6.

(i) If s ≤ 2, then there exists a symplectic form on M satisfying (20).
(ii) If s = 5 then (20) is never satisfied.

Proof. Since n = 3 we only need to consider q = 4. Thus, (20) holds if and only if c(1)
4 (M) = dim H̃4

[ω](M) =
b2(M)− 1, the latter equality coming from the fact that L(H4(M)) = H6(M). Now, the result is a direct
consequence of Table 1. �

Notice that there are several 3-step and several 4-step symplectic nilmanifolds of dimension 6 satisfy-
ing (20). In fact, all the cases in Table 1 where c(1)

4 = b2 − 1 have such property.

Remark 6.6. Concerning other (non primitive) cohomology groups, we recall that in [2, Table 3] the
dimensions of the symplectic Bott-Chern and Aeppli cohomologies for a particular choice of symplectic
structure on each 6-dimensional nilmanifold have been computed.

7. A symplectic 8-dimensional solvmanifold

In this section we show a closed manifold of dimension 8 that is c -flexible, f -flexible and h -flexible.
Let us consider the 8-dimensional compact solvmanifold M = S/Γ, where S is a simply connected

completely solvable Lie group of dimension 8 defined by left-invariant 1-forms {ei, 1 ≤ i ≤ 8} such that

de1 = de2 = de3 = 0, de4 = −e12, de5 = −e13, de6 = −e14, de7 = −e17, de8 = e18.

Using [15], the Betti numbers of M are b1(M) = 3, b2(M) = 7, b3(M) = 11 and b4(M) = 12 (see [11] for a
description of the de Rham cohomology groups of M).

The de Rham cohomology class of a generic symplectic 2-form ω on M is given by

[ω] = A [e15] +B [e16] + C [e23] +D [e24] + E [e25 + e34] + F [e35] +G [e78],

where the coefficients A, . . . , G ∈ R satisfy BG(E2−DF ) 6= 0. Notice that by Remark 2.10 we can suppose
without loss of generality that for instance G = 1. Also notice that Propositions 2.12 and 3.9 allow us to
reduce the computation of all the symplectic cohomology groups to the level of the Lie algebra s of S.

The generalized coeffective cohomology groups for k = 3, 4 provide no flexibility since they are topological
invariants. A direct calculation shows that the c -flexibility depends only on ĉ3 and, moreover, ĉ3 = 8 or 9
depending on F 6= 0 or F = 0, respectively.

Next we show that ĉ3 is also a key ingredient to obtain the other types of flexibility. Using Theorem 4.4,
we have that h3 − h7 = ĉ3. It turns out that the map L3 : H1 −→ H7 is identically zero, so h7 = 0
and therefore h3 = ĉ3. On the other hand, according to Corollary 4.6, č(2)

6 = b6 + h3 − h6 − h7, thus
č
(2)
6 = h3 + b2 − h6, or equivalently, č(2)

6 = ĉ3 + dim ker{L2 : H2 −→ H6}. A direct calculation shows that
the dimension of the kernel of the latter L2-map is independent of the symplectic form and it is equal to 2,
therefore č(2)

6 = ĉ3 + 2. Recall that č(2)
6 is by Remark 3.7 the dimension of the primitive cohomology group

PH3
d+dΛ

∼= PH3
ddΛ .
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From this general study one concludes that the closed manifold M is c -flexible, f -flexible and h -flexible.
For instance, if we consider the following family of symplectic forms

ωt = e15 + e16 + t e23 − t e24 + e25 + e34 + t e35 + e78, t ∈ R,

then:

• ĉ3(ω0) = h3(ω0) = 9, and č
(2)
6 (ω0) = 11;

• ĉ3(ωt) = h3(ωt) = 8, and č
(2)
6 (ωt) = 10, for any t 6= 0.

Remark 7.1. The symplectic manifold (M,ω0) is considered in [11] (see also [12, page 288]) as an example
of a compact symplectic manifold of dimension 8 for which (20) does not hold. However, the 1-coeffective
cohomology groups were wrongly obtained and the conclusion is not correct. In fact, one can prove that (20)
holds for any t ∈ R, in particular for t = 0.

On the other hand, by Remark 2.14, for any symplectic manifold (M2n, ω) satisfying the HLC (in
particular, for any compact Kähler manifold) the k-coeffective cohomology group Hq

(k)(M) is isomorphic

to the [ωk]-truncated de Rham group H̃q
[ωk]

(M) = {[α] ∈ Hq(M) | [α]∪ [ωk] = 0}, for any q ≥ n−k+2 and
1 ≤ k ≤ n. It is a natural question if such isomorphisms hold for any k for arbitrary symplectic manifolds.
A detailed study of the symplectic manifolds (M,ωt) above allows us to conclude that

• Hq
(k)(M,ωt) ∼= H̃q

[ωkt ]
(M) for k = 1, 3, 4 and for any q ≥ 6− k and t ∈ R;

• Hq
(2)(M,ωt) ∼= H̃q

[ω2
t ]

(M) for any q ≥ 4 if and only if t 6= 0.

Therefore, for the compact symplectic manifold (M,ω0) we have that the 2-coeffective cohomology is
not isomorphic to the [ω2]-truncated de Rham cohomology. More precisely, one has that H4

(2)(M,ω0) 6∼=
H̃4

[ω2
0 ]

(M).

8. Flexibility of symplectic 2-step nilmanifolds

In this section we find symplectic 2-step nilmanifolds of arbitrary high dimension which are c -flexible,
f -flexible and h -flexible.

Proposition 8.1. Let M = G/Γ be a 2-step nilmanifold of dimension 2n ≥ 6, endowed with a continuous
family of symplectic forms ωt. Then, the harmonic number h3(M,ωt) varies if and only if the coeffective
number ĉ3(M,ωt) varies, if and only if the filtered number č(n−2)

2n−1 (M,ωt) varies.

Proof. Let us denote by g the Lie algebra of the Lie group G. By [28, Theorem 3], for any symplectic
2-step nilmanifold

b1 − h2n−1 = dim[g, g],

which implies that the harmonic number h2n−1 does not depend on the symplectic form. From Theorem 4.4
we get h3 − h2n−1 = ĉ3. Therefore, h3 varies if and only if ĉ3 does.

On the other hand, by Definition 2.8 and Proposition 2.9 for k = n− 2 we have

(21) −ĉ3 +
2n∑
i=4

(−1)i c(n−2)
i = χ(n−2) =

2n−2∑
r=3

(−1)r br.

Now, from Proposition 4.7 (ii) and Proposition 4.8 (i) for k = n− 2 we get the following identities:

c
(n−2)
4 = č

(n−2)
2n−1 , and c

(n−2)
i = bi for every 5 ≤ i ≤ 2n.

Therefore, equation (21) reduces to

−ĉ3 + č
(n−2)
2n−1 +

2n−2∑
i=5

(−1)i bi − b2n−1 + b2n = −b3 + b4 +
2n−2∑
r=5

(−1)r br,
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which implies
č
(n−2)
2n−1 = ĉ3 − b3 + b4 + b2n−1 − b2n.

Consequently, the filtered number č(n−2)
2n−1 (M,ωt) varies if and only if the coeffective number ĉ3(M,ωt)

varies. �

We apply Proposition 8.1 to a family of examples found by Sakane and Yamada in [23]. The conclusion
is that for any k ≥ 2, there is a 6k-dimensional symplectic nilmanifold which is c -flexible, f -flexible and
h -flexible.

Example 8.2. Let k be an integer such that k ≥ 2. We consider the 6k-dimensional compact nilmanifold
M = G/Γ, where G is a simply connected 2-step nilpotent Lie group defined by left-invariant 1-forms
{αi, βi, 1 ≤ i ≤ 3k} satisfying

(22)



dα1 = · · · = dα3k = 0,

dβ1 = α1 ∧ α2,

dβ2 = α2 ∧ α3,
...

dβ3k−1 = α3k−1 ∧ α3k,

dβ3k = α3k ∧ α1.

We denote by g the Lie algebra of G. Let a0 be a complementary vector subspace of the derived
algebra [g, g] in g, and consider a1 = [g, g]. So, g = a0 ⊕ a1 as a vector space, and this decomposition
induces a bigraduation

∧r
g∗ = ⊕i0+i1=r

∧i0(a0)∗⊗
∧i1(a1)∗, for any r. For simplicity, we denote

∧i0,i1 =∧i0(a0)∗ ⊗
∧i1(a1)∗. Hence, for r = 3 we have∧

3 g∗ =
∧

3,0 ⊕
∧

2,1 ⊕
∧

1,2 ⊕
∧

0,3.

Let Z3(g) and B3(g) denote the subspaces of
∧3

g∗ consisting of closed and exact 3-forms, respectively.
For any invariant symplectic form ω on M , we denote by H3(g, ω) the space of invariant ω-harmonic

3-forms. Since M is 2-step, by [23, Theorem 3] we have that B3(g) ⊂ H3(g, ω). Hence, the harmonic
cohomology group H3

hr(M,ω) satisfies

H3
hr(M,ω) ∼=

H3(g, ω)
B3(g) ∩H3(g, ω)

∼=
H3(g, ω)
B3(g)

.

Moreover, it is easy to see that

H3(g, ω) =
∧

3,0 ⊕
(
Z3(g) ∩

∧
2,1
)
⊕
(
H3(g, ω) ∩

∧
1,2
)
,

and
B3(g) ⊂

∧
3,0 ⊕

(
Z3(g) ∩

∧
2,1
)
.

Hence, the harmonic number h3 only depends on the dimension of the space H3(g, ω) ∩
∧

1,2.
Now, let us consider the symplectic form τ = a1 α

1 ∧ β1 + · · ·+ a3k α
3k ∧ β3k, where a1, . . . , a3k 6= 0. A

direct calculation using (22) shows that

dim
(
H3(g, τ) ∩

∧
1,2
)

= 0.

Let σ = b1(α1∧β2−α3∧β1)+ · · ·+b3k−2(α3k−2∧β3k−1−α3k∧β3k−2)+b3k−1(α3k−1∧β3k−α1∧β3k−1).
One can choose b1, . . . , b3k−1 such that σ is non-degenerate (for more details see [23]) and, since it is closed,
σ defines another symplectic form on M . Using again the structure equations (22) one can prove that
H3(g, σ) ∩

∧
1,2 = 〈αj+1 ∧ βj ∧ βj+1 ; j = 1, . . . , 3k〉, which implies

dim
(
H3(g, σ) ∩

∧
1,2
)

= 3k.
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We take ε > 0 sufficiently small so that the closed 2-form ωt : = σ + t τ is non-degenerate for any
t ∈ [0, ε]. The space H3(g, ωt) ∩

∧
1,2 has dimension 3k for t = 0, and dimension 0 for t 6= 0. This proves

that the harmonic cohomology group H3
hr(M,ωt) varies with t. Furthermore, since the harmonic number

h3(M,ωt) varies, by Proposition 8.1 we get that the coeffective number ĉ3(M,ωt) and the filtered number
č
(n−2)
2n−1 (M,ωt) also vary with t.
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