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Abstract. The class of non-rigid registration methods proposed in the
framework of PDE-constrained Large Deformation Diffeomorphic Metric Mapping
is a particularly interesting family of physically meaningful diffeomorphic
registration methods. Inexact Gauss-Newton-Krylov optimization has shown
an excellent numerical accuracy and an extraordinarily fast convergence rate
in this framework. However, the Galerkin representation of the non-stationary
velocity fields does not provide proper geodesic paths. In this work, we propose
a method for PDE-constrained LDDMM parameterized in the space of initial
velocity fields under the EPDiff equation. The derivation of the gradient and the
Hessian-vector products are performed on the final velocity field and transported
backward using the adjoint and the incremental adjoint Jacobi equations. This
way, we avoid the complex dependence on the initial velocity field in the
computations. We also avoid the computation of the adjoint equation and its
incremental counterpart that has been recently identified as a subtle problem
in PDE-constrained LDDMM. The proposed method provides geodesics in the
framework of PDE-constrained LDDMM, and it shows performance competing
with benchmark PDE-constrained LDDMM and EPDiff-LDDMM methods.
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1. Introduction

In the last two decades, diffeomorphic image registration has arisen as a predominant
paradigm for deformable image registration (Sotiras et al. 2013). Diffeomorphic
registration methods compute transformations fundamental in Computational
Anatomy applications (Kobatake & Masutani 2017). Although the differentiability
and invertibility of a diffeomorphism constitute fundamental properties for its use in
Computational Anatomy, the diffeomorphic constraint does not necessarily guarantee
that a transformation computed with a given method is physically meaningful for the
clinical domain of interest. PDE-constrained Large Deformation Diffeomorphic Metric
Mapping (PDE-constrained LDDMM) methods constitute an appealing paradigm for
computing transformations under plausible physical models of interest.

The first class of PDE-constrained LDDMM methods arose with the work
of Younes et al. (Younes 2007), followed by the proposals in (Ashburner &
Friston 2011, Vialard et al. 2011, Zhang & Fletcher 2015). In these works, the
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transformations are parameterized by time-varying velocity fields that satisfy the
Euler-Poincare differential (EPDiff) equation (Holm et al. 1998), an evolution partial
differential equation deriving from an application of the Euler-Poincare principle.
The EPDiff equation can be found in the physical model of soliton dynamics driven
by the Camassa-Holm equation (Holm et al. 2004). This physical constraint allows
formulating the problem in the space of initial velocity fields. This guarantees that
the obtained transformations belong to geodesic paths of diffeomorphisms, which is
desirable in important Computational Anatomy applications (Miller et al. 2005). For
this class of methods, the dependence of the energy functional on the initial velocity
field is complex, and the optimization is usually implemented using gradient-descent.

The class of PDE-constrained LDDMM methods proposed in (Hart et al. 2009,
Vialard et al. 2011, Mang & Biros 2015, Mang & Biros 2016, Mang & Ruthotto 2017)
is especially interesting, where the physical PDEs are imposed using hard constraints.
These methods model the problem using a PDE-constrained variational formulation.
Numerical optimization is approached using gradient-descent (Hart et al. 2009, Vialard
et al. 2011, Mang & Biros 2015) and second-order optimization in the form of inexact
reduced Newton-Krylov methods (Mang & Biros 2015, Mang & Biros 2016, Mang
& Ruthotto 2017). The gradient and the Hessian-vector products are computed by
the differentiation of the augmented energy functional using optimal control theory
methods. The constrained optimization approach provides the versatility to impose
different physical models to the computed transformations by just adding the PDEs
associated to the problem as hard constraints. In particular, inexact Gauss-Newton-
Krylov optimization shows an excellent numerical accuracy and an extraordinarily fast
convergence rate (Mang & Biros 2015, Mang & Biros 2016, Mang & Ruthotto 2017).
However, the Galerkin representation of the non-stationary velocity fields used for
diffeomorphism parameterization does not provide proper geodesic paths.

The purpose of this article is to parameterize the compressible method
for PDE-constrained diffeomorphic registration with inexact Gauss-Newton-Krylov
optimization in (Mang & Biros 2015) in the space of initial velocity fields. Rather
than computing the gradient and the Hessian-vector products from the differentiation
of the augmented energy functional on the initial velocity field, we perform the
computations on the final velocity field and transport the computations backward
using the adjoint and the incremental adjoint Jacobi equations. This way, we avoid
the complex dependence on the initial velocity field in the computations. We also avoid
the computation of the adjoint equation and its incremental counterpart that has been
recently identified as problematic (Mang & Ruthotto 2017). The proposed method
provides geodesics in the framework of PDE-constrained LDDMM. The method has
been favorably compared and evaluated with the natural formulation and derivation of
the PDE-constrained LDDMM problem in (Mang & Biros 2015) in the space of initial
velocity fields, the benchmark PDE-constrained LDDMM (Mang & Biros 2015), and
the EPDiff-LDDMM methods in (Vialard et al. 2011, Zhang & Fletcher 2018). The
evaluation has been performed with the manual segmentations of the Non-Rigid Image
Registration Evaluation Project (NIREP) database (Song et al. 2010).

Methodologically, our formulation improves the existing state-of-the-art methods
that may be competitive with our proposal in the following ways:

• Mang et al. (Mang & Biros 2015). The original formulation of PDE-constrained
LDDMM is not a geodesic shooting method. Therefore, the solutions depart
slightly from belonging to geodesic paths due to numerical errors. We provide
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a parameterization for PDE-constrained LDDMM in the space of vector fields
satisfying the EPDiff equation. This constraint is a guarantee that the solutions
belong to geodesic paths. This property is of importance in many Computational
Anatomy applications.

• Zhang et al. (Zhang & Fletcher 2018). The spatial formulation is a geodesic
shooting method with gradient-descent optimization. The derivation of the
gradient is performed on the final velocity field and transported backward
using the adjoint Jacobi equation. The numerical implementation uses finite
differences and first-order methods for PDE integration. Our method is a PDE-
constrained geodesic shooting method with second-order optimization. We extend
the idea of backward transport to the Hessian-vector product. The numerical
implementation uses spectral differentiation with high-order methods for PDE
integration. Second-order optimization improves gradient-descent in terms of the
convergence rate and the computational time.

• Vialard et al. (Vialard et al. 2011). The formulation is a geodesic shooting method
with gradient-descent optimization. The update equation is written in terms
of the adjoint variable. The numerical implementation uses finite differences
and first-order methods for PDE integration. Our improvements with respect to
Zhang et al. method also apply to this method.

• Yang et al. (Yang & Niethammer 2015). The PDE-EPDiff LDDMM formulation
in Appendix A would be the natural option to extend the formulation of Mang
et al. to a geodesic shooting approach. The Hessian provided in Yang et
al. in the context of registration uncertainty estimation is obtained using a
similar derivation. However, the dependence on the initial velocity field in the
computations is complex. The method involves the computation of the adjoint
equation and its incremental counterpart that has been recently identified as a
subtle problem in PDE-constrained LDDMM. As a result, the method shows itself
numerically unstable. Our formulation results into a much simpler dependence of
the initial velocity field in the computations. In addition, the idea of backward
transport avoids the direct computation of the adjoint equation. As a result, our
method is numerically stable.

In the following, Section 2 revisits the methods more related to our work.
Section 3 presents our proposed method. Section 4 gathers the implementation details
of the benchmark and our proposed method. Section 5 shows the experiments for the
evaluation of our method. Finally, Section 6 gathers the most remarkable conclusions
of our work.

2. Background methods

2.1. Large Deformation Diffeomorphic Metric Mapping (LDDMM)

Let I0, and I1 be the source and the target images defined on the image domain
Ω ⊆ Rd. We denote the Riemannian manifold of diffeomorphisms on Ω by Diff(Ω).
V is the tangent space of the Riemannian structure at the identity diffeomorphism,
id. V is made of smooth vector fields on Ω. The Riemannian metric is defined from
the scalar product in V

〈v, w〉V = 〈Lv,w〉L2 =

∫
Ω

〈Lv(x), w(x)〉dΩ, (1)
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where L = (Id− α∆)s, α > 0, s ∈ N is the invertible self-adjoint differential operator
associated with the differential structure of Diff(Ω). We denote with K to the inverse
of L. The degree of smoothness in V depends on the smoothness of the differential
operator L.

The LDDMM variational problem is given by the minimization of the energy
functional

E(v) =

∫ 1

0

〈Lvt, vt〉L2dt+
1

σ2
‖I0 ◦ (φv1)−1 − I1‖2L2 . (2)

The problem is posed in the space of time-varying smooth flows of velocity fields in V ,
v ∈ L2([0, 1], V ). Given the flow v : [0, 1]→ V , vt : Ω→ Rd ∈ V , the diffeomorphism
φv1 is defined as the solution at time 1 to the transport equation

dtφ
v
t = vt ◦ φvt (3)

with initial condition φv0 = id. The transformation (φv1)−1 computed from the
minimum of E(v) is the diffeomorphism that solves the LDDMM registration problem
between I0 and I1. The optimization of Equation 2 was originally approached in (Beg
et al. 2005) using gradient-descent in L2([0, 1], V ), yielding the update equation

vn+1
t = vnt − ε(∇vE(v))nt . (4)

Gauss-Newton optimization was proposed in (Hernandez 2014), showing the efficiency
improvement expected with second-order optimization methods.

2.2. LDDMM in the space of initial velocity fields (EPDiff-LDDMM)

The geodesics of Diff(Ω) under the right-invariant Riemannian metric are uniquely
determined by the time-varying flows of velocity fields that satisfy the Euler-Poincaré
equation (EPDiff) (Holm et al. 1998)

∂tvt = −ad†vtvt = −Kad∗vtLvt = −K[(Dvt)
TLvt +D(Lvt)vt + Lvt∇ · vt] (5)

with initial condition v0 ∈ V . The operator ad†vw is the transpose of operator

advw = Dw · v −Dv · w. (6)

LDDMM can be posed in the space of initial velocity fields

E(v0) = 〈Lv0, v0〉L2 +
1

σ2
‖I0 ◦ (φv1)−1 − I1‖2L2 , (7)

where (φv1)−1 is the solution at time 1 to the transport equation of the flow vt that
satisfies the EPDiff equation for v0.

The optimization of Equation 7 was originally approached using gradient-descent
in V (Younes 2007), yielding the update equation

vn+1
0 = vn0 + ε∇v0E(v0)n. (8)

More recently, it has been proposed to compute the gradient of the image similarity
energy Eimg at t = 1 and to integrate backward the reduced adjoint Jacobi
equations (Bullo 1995, Hinkle et al. 2014)

∂tUt + ad†vtUt = 0 in Ω× [0, 1) (9)

∂twt + Ut − advtwt + ad†wt
vt = 0 in Ω× [0, 1) (10)
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with initial conditions U(1) = ∇v1Eimg(v0) and w(1) = 0, to get the gradient update
at t = 0 (Zhang & Fletcher 2015, Zhang et al. 2017, Zhang & Fletcher 2018),

∇v0E(v0)n = 2vn0 + w(0)n. (11)

2.3. PDE-constrained LDDMM (PDE-LDDMM)

The variational problem is given by a slight modification of Equation 2

E(v) =

∫ 1

0

〈Lvt, vt〉L2dt+
1

σ2
‖m(1)− I1‖2L2 , (12)

where m(t) = I0 ◦ (φvt )
−1 is computed from the solution of the state equation

∂tm(t) +∇m(t) · vt = 0 in Ω× (0, 1], (13)

with initial condition m(0) = I0 in Ω. The combination of Equations 12 and 13 leads
to a PDE-constrained optimization problem.

Optimization can be performed combining the method of Lagrange multipliers
with gradient-descent (Hart et al. 2009) or second-order inexact Newton-Krylov
methods (Mang & Biros 2015). The gradient is computed from

∂tm(t) +∇m(t) · vt = 0 in Ω× (0, 1] (14)

−∂tλ(t)−∇ · (λ(t) · vt) = 0 in Ω× [0, 1) (15)

(∇vE(v))t = Lvt + λ(t) · ∇m(t) in Ω× [0, 1] (16)

subject to the initial and final conditions m(0) = I0 and λ(1) = − 2
σ2 (m(1) − I1).

Equations 14 and 15 correspond with the state and adjoint equations, respectively.
The Hessian is computed from

∂tδm(t) +∇δm(t) · vt +∇m(t) · δv(t) = 0 in Ω× (0, 1] (17)

−∂tδλ(t)−∇ · (δλ(t) · vt)−∇ · (λ(t) · δv(t)) = 0 in Ω× [0, 1) (18)

(HvE(v)δv)t = Lδv(t) + δλ(t) · ∇m(t) + λ(t) · ∇δm(t) in Ω× [0, 1] (19)

subject to the initial and final conditions δm(0) = 0 and δλ(1) = − 2
σ2 δm(1).

Equations 17 and 18 correspond with the incremental state and incremental adjoint
equations, respectively.

The minimization using inexact Newton-Krylov optimization yields to the update
equation

vn+1
t = vnt + εδvnt , (20)

where δvn is computed from preconditioned conjugate gradient (PCG) on the reduced
system

HvE(vn)δvn = −∇vE(vn), (21)

with preconditioner K. Since the update equation is written on the reduced space V ,
the minimization is a reduced space optimization method.

By construction, the Hessian is positive definite in the proximity of a local
minimum. However, it can be indefinite or singular far away from the solution.
In this case, the search directions obtained with PCG are not guaranteed to be
descent directions. In order to overcome this problem, one can use a Gauss-Newton
approximation dropping expressions of HvE(v)δv to guarantee that the matrix is
definite positive. In particular, one can drop the terms in Equations 18 and 19
involving the adjoint variable λ.
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3. The proposed method (Jacobi PDE-EPDiff LDDMM)

As in PDE-LDDMM, the PDE-constrained problem is given by the minimization of
the energy functional

E(v0) = 〈Lv0, v0〉L2 +
1

σ2
‖m(1)− I1‖2L2 , (22)

subject to the EPDiff and the state equations

∂tvt + ad†vtvt = 0 in Ω× (0, 1] (23)

∂tm(t) +∇m(t) · vt = 0 in Ω× (0, 1], (24)

with initial conditions v(0) = v0 and m(0) = I0, respectively.
Optimization is performed combining the method of Lagrange multipliers with

inexact Gauss-Newton-Krylov methods in the following way. Let w : Ω× [0, 1]→ Rd
and λ : Ω× [0, 1]→ R be the Lagrange multipliers associated with the EPDiff and the
state equations. We build the augmented Lagrangian

Eaug(v0) = E(v0) +

∫ 1

0

〈w(t), ∂tv(t) + adv
†
tvt〉L2dt

+

∫ 1

0

〈λ(t), ∂tm(t) +∇m(t) · vt〉L2dt. (25)

The image similarity energy gradient is computed at t = 1 from

∇v1Eimg(v0) = K(λ(1) · ∇m(1)) (26)

integrated backward using the EPDiff and the reduced adjoint Jacobi equations

∂tvt + ad†vtvt = 0 in Ω× (0, 1] (27)

∂tm(t) +∇m(t) · vt = 0 in Ω× (0, 1] (28)

∂tUt + ad†vtUt = 0 in Ω× [0, 1) (29)

∂twt − advtwt + ad†wt
vt + Ut = 0 in Ω× [0, 1) (30)

to obtain ∇v0E(v0) = 2v0 + w(0). With this approach, the integration of the adjoint
equation is not needed.

The second-order variations of the augmented Lagrangian on w and λ yield the
incremental EPDiff and incremental state equations, needed for the computation of
the Hessian-vector product. Thus,

∂tδvt + ad†δvtvt + ad†vtδvt = 0 in Ω× (0, 1] (31)

∂tδm(t) +∇δm(t) · vt +∇m(t) · δvt = 0 in Ω× (0, 1] (32)

with initial conditions δv(0) = 0 and δm(0) = 0.
The Hessian-vector product Hv0E(v0)δv0 is computed from the Hessian-vector

product of Eimg at t = 1, which is integrated backward using the reduced incremental
adjoint Jacobi equations

∂tδUt + ad†δvtUt + ad†vtδUt = 0 in Ω× [0, 1) (33)

∂tδwt − adδvtwt − advtδwt + ad†δwt
vt + ad†wt

δvt+

δUt = 0 in Ω× [0, 1) (34)
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with initial conditions δU(1) = K(δλ(1) · ∇m(1)) +K(λ(1) · ∇δm(1)), and δw(1) = 0
yielding

Hv0E(v0)δv0 = 2δv0 + δw(0). (35)

The proposed Gauss-Newton approximation drops K(λ(1) · ∇δm(1)) from the
expression of δU(1), and the adv and adw terms from the incremental adjoint Jacobi
equation on δw.

The minimization using a second-order inexact Gauss-Newton-Krylov method
yields to the update equation

vn+1
0 = vn0 + εδvn0 , (36)

where δvn0 is computed from CG on the system

Hv0E(δv0
n) = −∇v0E(vn0 ). (37)

We also consider PCG with the gradient and the Hessian computed on L2 instead of
V as originally proposed in (Mang & Biros 2015).

4. Implementation details

In this section we gather the most critical implementation details of the methods
used in the experimental section: our Jacobi PDE-EPDiff LDDMM method, PDE-
EPDiff LDDMM (i.e., the natural formulation and derivation of the PDE-constrained
LDDMM problem in (Mang & Biros 2015) in the space of initial velocity fields), PDE-
LDDMM (Mang & Biros 2015), and Zhang EPDiff-LDDMM (Zhang & Fletcher 2018).
The implementation of Vialard EPDiff-LDDMM (Vialard et al. 2011) mimics their
publicly available C++ implementation. The derivation of PDE-EPDiff LDDMM
used in this work can be found in the Appendix.

4.1. Diffeomorphism parameterization

4.1.1. PDE-LDDMM. We use a parameterization of the steady and time-varying
velocity fields based on the Galerkin factorization

vt(x) =

R∑
r=1

br(t)vr(x), x ∈ Ω, (38)

where br(t) is the basis of Chebyshev polynomials, and R is the dimension of
the basis expansion. In consequence, the numerical optimization is performed in
the set of coefficients {v1, · · · , vR} instead of a dense time sampling of v. With
this representation, steady and time-varying velocity field flows can be manipulated
similarly, and the solutions of the state and the incremental state equations and their
respective adjoints can be solved in a dense sampling of [0, 1]. This parameterization
was proposed in (Mang & Biros 2015). In this work, we use R = 1 for the stationary,
and R = 5 for the non-stationary parameterization.

4.1.2. Zhang EPDiff-LDDMM, PDE-EPDiff-LDDMM, and Jacobi PDE-EPDiff
LDDMM. Diffeomorphisms are parameterized from time-varying velocity field flows
satisfying the EPDiff equation. With this representation, the whole sampling of v in
[0, 1] needs to be stored in memory.
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4.2. Regularization

In this work, we consider H2-regularization with L = (Id − α∆)s, α > 0, s ∈ N.
Regularization parameters were selected after performing the search of the optimal
parameters in the registration experiments conducted in this work. As a result,
we selected parameters α = 0.0025, and s = 2. The parameter σ, which weights
the contribution of the regularizer and the image similarity term, was selected equal
to one. This selection provided the minimum image similarity error while avoiding
the development of numerical problems due to weak regularization, yielding a fair
comparison of all the methods.

4.3. Optimization

4.3.1. Gradient-descent. Gradient-descent optimization was used for Zhang EPDiff-
LDDMM as initially proposed. Backtracking line-search was used for the selection
of the step size for the first iteration. We found that the selected value provided
an aceptable energy convergence rate for the remaining iterations, so we skipped the
extra computations required by line-search. We show results after 50 iterations since
the inner times the outer iterations in second-order methods were selected to reach
this value.

4.3.2. Gauss-Newton-Krylov optimization. Gauss-Newton-Krylov optimization was
used for the PDE-LDDMM methods. The step size was selected equal to 1 since it is
a reasonable choice for Newton-type optimization approaches. The number of PCG
and CG iterations was set equal to 5. For L2-optimization, the PCG tolerance was

selected from τ = min
(

0.5,
√
‖∇vE(vn)‖2
‖∇vE(v0)‖2

)
. For V -optimization, the CG tolerance was

selected from τ = min
(

0.1,
√
‖∇vE(vn)‖2
‖∇vE(v0)‖2

)
. The optimization was stopped after 10

iterations, enough to obtain acceptable MSE values for the second-order methods.

4.4. Differentiation

The computation of differentials is approached using Fourier spectral methods as
an alternative to commonly used finite difference approximations (Trefethen 2000).
The use of spectral differentiation and integration was introduced in diffeomorphic
registration literature in (Mang & Biros 2015). Spectral methods allow solving ODEs
and PDEs to high accuracy in simple domains for problems involving smooth data.
During the development phase of the algorithms, we noticed that the use of spectral
differentiation allowed to resolve several numerical difficulties. Spectral differentiation
provides a numerical scheme spectrally accurate in space. The scheme displays
minimal numerical diffusion and does not require flux limiters. In addition, spectral
differentiation allows using the same discretization models for solving the subsystems
of hyperbolic and elliptic mixed-type optimality conditions.

4.5. ODE solvers and time integrals

To integrate all the differential equations involved in the PDE-LDDMM methods we
used the Bogacki-Shampine Runge-Kutta method of order 3. The solutions were
computed at the Chebyshev-Gauss-Lobatto discretization of the temporal domain
[0, 1]. The number of time steps was selected sufficiently large to avoid violations



PDE-LDDMM via geodesic shooting using the incremental adjoint Jacobi equation 9

of the CFL condition, and do not observe stability problems. Once that stability is
achieved, RK methods provide accurate solutions to the equations.

For stationary PDE-LDDMM, Zhang EPDiff-LDDMM, PDE-EPDiff LDDMM,
and Jacobi PDE-EPDiff LDDMM, the temporal domain was discretized into 30
samples. For non-stationary PDE-LDDMM the temporal sampling needed to be
increased up to 60 to yield stable results.

Time integrals were computed using spectral methods. In particular, we used
Clenshaw-Curtis quadrature rule in a Chebyshev-Gauss-Lobatto discretization of the
interval [0, 1] to avoid Runge’s phenomenon. We used the same time sampling than
for the ODE solvers.

We found that RK significantly improved the convergence of Zhang EPDiff-
LDDMM with respect to Euler integration, that was the integration method originally
proposed in (Zhang & Fletcher 2015).

4.6. Software implementation

The experiments were run on a cluster equipped with four NVidia GeForce GTX
Titan X with 12 GBS of video memory installed on a machine with an Intel Core
i7-4820K working at 3.70 GHz and 64 GBS of DDR3 RAM. We developed a hybrid
Matlab 2015b CPU-GPU implementation of the methods using Cuda 7.0. Stationary
PDE-LDDMM and Zhang and Vialard EPDiff-LDDMM methods were computed
in the GPU. However, Non-stationary PDE-LDDMM, PDE-EPDiff LDDMM, and
Jacobi PDE-EPDiff LDDMM methods did not fit on the available GPU memory. We
circumvented this problem implementing a hybrid CPU-GPU version of the codes.
Our implementation performed the computations of the gradient and the Hessian
in the GPU. These computations were gathered in the RAM memory, and then the
corresponding CG or PCG iteration was computed on the CPU. We could not improve
the design of our implementation due to the poor behavior of Matlab when releasing
big chunks of GPU memory (for example, to clear one large variable from the GPU,
one should reset the gpuDevice losing all the information uploaded to the global GPU
memory, otherwise, the memory remains busy with the deallocated resource).

5. Results

The results section is divided in two. In the first part, we perform a first approximation
to the evaluation of the proposed method with the 2D monkey brain images of (Beg
et al. 2005). The special shape of the images to be registered allows showing interesting
insights of diffeomorphic registration algorithms. In the second part, we perform a
quantitative and qualitative evaluation of the proposed method with the 3D NIREP
database.

5.1. PDE-EPDiff LDDMM vs Jacobi PDE-EPDiff LDDMM

The purpose of this section is to compare PDE-EPDiff LDDMM with our proposed
Jacobi PDE-EPDiff LDDMM. We recall with PDE-EPDiff LDDMM to the natural
formulation and derivation of the PDE-LDDMM problem (Mang & Biros 2015) in
the space of initial velocity fields. The difference between both methods is on the
computation of the adjoint and the incremental adjoint equations leading to w(0) and
δw(0).
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The experiments have been performed in the 2D monkey brain experiment
of (Beg et al. 2005) (Figure 1). The images were acquired by Dr. David Van Essen
at Washington University. They can be downloaded from the Center for Imaging
Science site http://cis.jhu.edu/software/lddmm-volume/about.php These images are
very appropriate for the initial assessment of diffeomorphic registration methods.

The comparison between PDE-EPDiff LDDMM and Jacobi PDE-EPDiff
LDDMM has been performed for different sizes of temporal domain discretization
(nt = 25, 30, 50, 100) and the maximum number of CG or PCG iterations (nPCG =
5, 10, 15, 25). We know that the convergence of PDE-constrained LDDMM methods
is sensitive to the selection of both parameters. Optimization has been performed in
V and L2.

Figure 3 shows the image similarity error curves, MSErel = ‖m(1)− I1‖2L2/‖I0−
I1‖2L2 , for the different values of nt and nPCG. For optimization in V , both methods
showed a similar convergence behavior. Our proposed method converged to slightly
better energy values (closer to zero). For optimization in L2, the methods showed
a much worse convergence behavior. Our proposed method was able to converge to
acceptable energy values for nPCG = 5 and all the nt values. PDE-EPDiff LDDMM
was not able to converge to any acceptable energy value. The solutions blowed up for
nPCG = 10.

Figure 2 shows the warped sources for our Jacobi PDE-EPDiff LDDMM and
PDE-EPDiff LDDMM at nt = 25. For optimization in V , PDE-EPDiff LDDMM
shows an unrealistic behavior at the brain tip shown in the target image while our
method shows a plausible result. For optimization in L2, our method showed artifacts
in the solution except at nPCG = 5. PDE-EPDiff LDDMM showed artifacts and
low-quality registration results in all cases.

These experiments reveal that for PDE-EPDiff constrained LDDMM methods
optimization should be performed in V rather than in L2. PDE-EPDiff LDDMM is
more unstable than our Jacobi PDE-EPDiff LDDMM. Our method is able to show
plausible results in challenging locations for diffeomorphic registration. Finally, PDE-
EPDiff constrained LDDMM method shows a good convergence behavior for small
nPCG values.
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Figure 1: Source and target images of the 2D monkey brain experiment.

Jacobi PDE-EPDiff LDDMM, V optimization

PDE-EPDiff LDDMM, V optimization

Jacobi PDE-EPDiff LDDMM, L2 optimization

PDE-EPDiff LDDMM, L2 optimization

nPCG = 5 nPCG = 10 nPCG = 15 nPCG = 25

Figure 2: Warped sources for our Jacobi PDE-EPDiff LDDMM and PDE-EPDiff LDDMM
at nt = 25.
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Figure 3: Image similarity error curves for PDE-EPDiff and our Jacobi PDE-EPDiff
LDDMM for different temporal domain discretization sizes and maximum number of CG
or PCG iterations. Left, results with V optimization. Right, results with L2 optimization.

5.2. Evaluation of Jacobi PDE-EPDiff LDDMM

Next in this section, we evaluate the performance of our proposed method. As a
baseline for the evaluation, we include the results obtained by the methods most
related to our work: PDE-LDDMM with the stationary and the non-stationary
parameterizations (Mang & Biros 2015), Zhang EPDiff-LDDMM in the spatial
domain (Zhang & Fletcher 2018), and Vialard EPDiff-LDDMM (Vialard et al. 2011).

The experiments have been conducted on the Non-rigid Image Registration
Evaluation Project database (NIREP). In this work, images were resampled into
volumes of size 180 × 210 × 180. Registration was carried out from the first
subject to every other subject in the database, yielding 15 registrations for each
method. The preprocessing details for this dataset can be found in our previous
works (Hernandez 2014, Hernandez 2017).

5.2.1. Convergence analysis. Table 1 shows, averaged by the number of experiments,
the relative image similarity error MSErel = ‖m(1)− I1‖2L2/‖I0 − I1‖2L2 , the relative

gradient magnitude ‖g‖∞,rel = ‖∇vE(vn)‖∞
‖∇vE(v0)‖∞ , the extrema of the Jacobian determinant,

and the total number CG, PCG, or GD iterations. St. PDE-LDDMM showed
convergence problems for the ‖g‖∞,rel curve in one experiment and NSt. PDE-
LDDMM and PDE-EPDiff LDDMM in two experiments. These values were removed
in the computation of the mean and the standard deviation. Figure 4 shows the mean
and standard deviation of the MSErel and ‖g‖∞,rel convergence curves obtained in
the ten GN iterations and the fifty GD iterations.

The lowest mean MSErel value is reached by St. PDE-LDDMM (19.18)
followed by our proposed method (20.24) and NSt. PDE-LDDMM (21.11). Our
proposed method outperforms PDE-EPDiff LDDMM in terms of MSErel. The worst
performing method is Vialard EPDiff LDDMM. Zhang EPDiff LDDMM achieves
modest MSErel values after 50 iterations. From the ‖g‖∞,rel values, the most
remarkable result is the convergence problem shown by PDE-LDDMM and PDE-
EPDiff LDDMM in several experiments while our method shows an acceptable
convergence behavior in all the performed experiments even with L2 optimization.

5.2.2. Evaluation. Figure 5 shows the accuracy of the registration results for
template-based segmentation. We use the manual segmentations of the cortical
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Method Opt. MSErel ‖g‖∞,rel max(J(φv
1)−1) min(J(φv

1)−1) nits

St. PDE-LDDMM (Mang) GN, L2 19.18 ± 3.34 0.08 ± 0.05 3.71 ± 0.56 0.15 ± 0.04 41.00 ± 13.02
NSt. PDE-LDDMM (Mang) GN, L2 21.11 ± 5.18 0.20 ± 0.11 3.63 ± 0.83 0.14 ± 0.04 25.66 ± 14.86
EPDiff LDDMM (Vialard) GD, V 37.91 ± 2.40 0.29 ± 0.05 1.63 ± 0.15 0.27 ± 0.23 50.00 ± 0.00
EPDiff LDDMM (Zhang) GD, V 26.32 ± 2.23 0.07 ± 0.02 2.00 ± 0.17 0.28 ± 0.04 50.00 ± 0.00

PDE-EPDiff LDDMM GN, V 22.04 ± 5.81 0.16 ± 0.17 2.92 ± 0.69 0.13 ± 0.06 25.13 ± 6.60
Jacobi PDE-EPDiff LDDMM GN, V 20.24 ± 2.05 0.12 ± 0.08 3.30 ± 1.12 0.11 ± 0.04 24.53 ± 4.14
Jacboi PDE-EPDiff LDDMM GN, L2 21.69 ± 2.87 0.28 ± 0.11 3.52 ± 1.14 0.11 ± 0.05 16.87 ± 3.50

Table 1: Mean and standard deviation of the relative image similarity error, the
relative gradient magnitude, the Jacobian determinant extrema associated with the
transformation (φv1)−1, and the total number of iterations (namely, the number of
PCG/CG iterations times the total number of outer iterations for Krylov methods,
and the total number of iterations for gradient-descent methods). In Opt. column,
GN and GD stand for Gauss-Newton and gradient descent optimization, respectively.
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Figure 4: Top, overall MSErel convergence curves for Gauss-Newton and gradient descent
methods, respectively. Bottom, overall ‖g‖∞,rel convergence curves. The error bars have been
shifted from the GN iteration number to improve the readability of the plot. It should be
noticed that the PDE-LDDMM and PDE-EPDiff LDDMM ‖g‖∞,rel curves show the results
after removing the experiments with gradient curves not converging to zero.

anatomical structures provided with the NIREP database as a gold standard and Dice
Similarity Coefficient (DSC) is selected as the performance metric similarly to (Ou
et al. 2014). In addition, Figure 6 shows the DSC distribution in each of the brain
structures manually segmented in the NIREP database. The evaluation of non-rigid
registration with the segmentation of sufficiently locally labeled regions of interest
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Method VRAM (MBS) 1 iter time (s) total time (s)
St. PDE-LDDMM (Mang) 1543 58.61 ± 0.55 612.12

NSt. PDE-LDDMM (Mang) 3278 370.51 ± 7.38 3866.3
EPDiff LDDMM (Vialard) 4410 18.79 ± 6.19 940.00
EPDiff LDDMM (Zhang) 1632 16.03 ± 0.34 806.81

PDE-EPDiff LDDMM 2775 128.37 ± 10.70 1303.50
Jacobi PDE-EPDiff LDDMM 2192 180.70 ± 5.71 1825.50

Table 2: Computational complexity at the resolution level of 90 x 120 x 90.

has been recommended for obtaining reliable measurements of the performance of the
registration (Rohlfing 2012).

The evaluation reveals that all the PDE-EPDiff methods performed similarly for
the task of template-based segmentation with the exception of Vialard PDE-EPDiff
method. PDE-LDDMM methods slightly outperformed the PDE-EPDiff methods.
This may be due to the EPDiff-constraint slightly limits the ability of the PDE-EPDiff
methods to further fold out the transformations in the cortical structures for the
difficult task of inter-subject registration. However, the added value of our proposed
method lies in the ability to provide geodesics, of importance in Computational
Anatomy applications beyond the task of template-based segmentation.

5.2.3. Qualitative assessment. For a qualitative assessment of the proposed
registration method, we show the registration results in a selected experiment
representative of a difficult deformable registration problem. Figures 7 and 8 show
the warped images and the initial velocity fields obtained in the selected experiment
for all the methods considered in this experimental section.

5.2.4. Computational complexity. Finally, Table 2 shows the computational
complexity of the methods at the resolution level of 90 x 120 x 90. The image size
was selected to perform a fair comparison of the full GPU version of the algorithms.
Our proposed method was more memory demanding than PDE-LDDMM methods
and Zhang EPDiff-LDDMM but less memory demanding than PDE-EPDiff LDDMM
and Vialard EPDiff-LDDMM. The computation time was among the highest.

6. Discussion and Conclusions

In this work, we have proposed a method for PDE-constrained LDDMM parameterized
in the space of initial velocity fields. Our method can be regarded as an extension
of the method in (Mang & Biros 2015) that allows obtaining geodesics. Rather than
computing the gradient and the Hessian-vector products from the differentiation of the
augmented energy functional on the initial velocity field (PDE-EPDiff LDDMM), we
propose to perform the derivations of the gradient and Hessian-vector products on the
final velocity field and transport the computations backward using the adjoint and
the incremental adjoint Jacobi equations (Jacobi PDE-EPDiff LDDMM). This way
we avoid the computation of the adjoint equation and its incremental counterpart
that has been recently identified as a subtle problem in (Mang & Ruthotto 2017) and
corroborated by the experiments of this work.

The comparison of our Jacobi PDE-EPDiff method with PDE-EPDiff LDDMM
in the monkey brain dataset reported that our method was more stable. We found
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that both methods were sensitive to the space where the optimization was performed,
contrarily to PDE-LDDMM methods. We believe that CG optimization in V should
be used with Newton-Krylov PDE-EPDiff methods. In addition, the experiments
reported that a small number of PCG iterations should be used with PDE-EPDiff
LDDMM methods to yield stable results while our Jacobi PDE-EPDiff method was
stable regardless of the number of PCG iterations.

Our method has been evaluated with respect to benchmark PDE-constrained
LDDMM and EPDiff-LDDMM methods in the NIREP database. Gauss-Newton-
Krylov optimization provided a higher rate of convergence than gradient-descent as
expected. While PDE-LDDMM and PDE-EPDiff LDDMM showed problems with
the gradient energy convergence in a few cases, our method showed an acceptable
convergence in all cases. The evaluation in the NIREP database showed competitive
performance with respect to the EPDiff-LDDMM benchmark methods. The slight
differences between PDE-LDDMM and the EPDiff methods are due to the more
restrictive model imposed by the EPDiff equation on the velocity fields.

The major drawback of the proposed method is the large memory load
inherent to PDE-constrained LDDMM methods and the increased computational
time with respect to the benchmark methods. We will approach this problem
in future work using the band-limited vector field parameterization (Zhang &
Fletcher 2018, Hernandez 2018a, Hernandez Jul, 2018b). In addition, we will extend
this band-limited PDE-LDDMM formulation to more complex physical models such
as the incompressible and the nearly incompressible models proposed in (Mang &
Biros 2015, Mang & Biros 2016). We also will extend our formulation to a symmetric
formulation (Younes 2007, Avants et al. 2008, Hernandez 2014, Fleishman et al. 2017),
a feature very desirable in applications involving reversible motions. Another future
research direction will be to extend our formulation to different image similarity
metrics such as normalized cross-correlation, mutual information, or normalized
gradient fields (Modersitzki 2009) and more sophisticated metrics such as (Heinrich
et al. 2012). These extensions will make our formulation suitable for other clinical
applications such as cardiac, lung or abdominal registration, among others.
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Appendix A. Derivation of PDE-LDDMM in the space of initial velocity
fields (PDE-EPDiff LDDMM)

In this appendix, we show the equations of the gradient and the Hessian-vector
product of PDE-EPDiff LDDMM method. The Hessian provided in (Yang &
Niethammer 2015) in the context of registration uncertainty estimation is obtained
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using a similar derivation. The variational problem is given by

E(v0) = 〈Lv0, v0〉L2 +
1

σ2
‖m(1)− I1‖2L2 , (A.1)

subject to

∂tvt + ad†vtvt = 0 in Ω× (0, 1] (A.2)

∂tm(t) +∇m(t) · vt = 0 in Ω× (0, 1], (A.3)

with initial conditions v(0) = v0 and m(0) = I0 in Ω.
Following (Hart et al. 2009, Mang & Biros 2015), optimization is performed

combining the method of Lagrange multipliers with Newton-Krylov optimization. Let
w : Ω× [0, 1]→ Rd and λ : Ω× [0, 1]→ R be the Lagrange multipliers associated with
the EPDiff and the state equations. We build the augmented Lagrangian

Eaug(v0) = E(v0) +

∫ 1

0

〈w(t), ∂tv(t) + adv
†
tvt〉L2dt

+

∫ 1

0

〈λ(t), ∂tm(t) +∇m(t) · vt〉L2dt. (A.4)

The gradient is computed from

∇v0E(v0) = 2v0 − w(0), (A.5)

where the equations leading to w(0)

∂tvt + ad†vtvt = 0 in Ω× (0, 1] (A.6)

∂tm(t) +∇m(t) · vt = 0 in Ω× (0, 1] (A.7)

−∂tλ(t)−∇ · (vλ(t)) = 0 in Ω× [0, 1) (A.8)

−∂twt + advtwt − ad†wt
vt +K(λ(t)∇m(t)) = 0 in Ω× [0, 1) (A.9)

are computed from the first variation of the augmented Lagrangian.
The Hessian-vector product is computed from

Hv0E(v0)δv0 = 2δv0 − δw(0), (A.10)

where the equations leading to δw(0)

∂tδvt + ad†δvtvt + ad†vtδvt = 0 in Ω× (0, 1] (A.11)

∂tδm(t) +∇δm(t) · vt +∇m(t) · δvt = 0 in Ω× (0, 1] (A.12)

−∂tδλ(t)−∇ · (vδλ(t))−∇ · (δvλ(t)) = 0 in Ω× [0, 1) (A.13)

− ∂tδwt + adδvtwt + advtδwt − ad
†
δwt

vt − ad†wt
δvt+

K(δλ(t)∇m(t)) +K(λ(t)∇δm(t)) = 0 in Ω× [0, 1) (A.14)

are computed from the second variation of the augmented Lagrangian.
The Gauss-Newton approximation drops K(λ(t) · ∇δm(t)) and the adv and adw

terms from the incremental equation of δwt. It should be noticed that this method
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solves the adjoint and incremental adjoint equations for λ and δλ and computes
the body force K(λ(t)∇m(t)) and the incremental counterpart. In contrast, Zhang
EPDiff-LDDMM and Jacobi EPDiff-LDDMM approach the computation of the body
force equivalent by solving the adjoint Jacobi and the adjoint and incremental adjoint
Jacobi equations, respectively.
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Figure 5: Evaluation results. Volume overlap obtained by the registration methods measured
in terms of the DSC between the deformed and the corresponding manual segmentations. Box
and whisker plots represent the distribution of the DSC values averaged over the 32 regions
of interest.
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source target
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Jacobi PDE-EPDiff LDDMM, L2

PDE-EPDiff LDDMM, V
(a) (b) (c)

Figure 7: Image registration results. Sagittal view of (a) the warped sources, (b) the intensity
differences after registration, and the (c) initial velocity fields for our proposed method and
PDE-EPDiff LDDMM.
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Figure 8: Image registration results. Sagittal view of (a) the warped sources, (b) the intensity
differences after registration, and (c) the initial velocity fields for the benchmark methods
considered in the comparison.
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