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Abstract 

A theoretical model for interferometric autocorrelation with long nonlinear crystal 
(input depleted) has been developed and applied to the measurement of the duration of 
ultrashort pulses. The phase-matching condition is assumed throughout pulse spectrum. The 
interferometric autocorrelation trace of a mode-locked fibre laser (20 nJ energy, 100 kW peak 
power, centred at 1595 nm) has been measured by employing a fibre interferometer to avoid 
misalignment effects and a BBO nonlinear crystal as long as 2 mm, in order to generate 
higher second-harmonic power. BBO crystal was used because it can keep the phase-
matching condition throughout a wide spectrum around 1600 nm. By fitting the experimental 
measurements and computing according to the theoretical model exposed, it has been 
demonstrated that the autocorrelator sensitivity is clearly enhanced by increasing the 
nonlinear crystal length. A temporal duration of 0.18 ps has been obtained by fitting 
theoretical and experimental values. 
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1. Introduction 
Accurate measure methods of ultrashort laser pulses in the time domain are essential 

tools in the development of new laser sources with shorter pulses, in the understanding of 
light-matter experiments and applications, in the advancement of our knowledge about pulsed 
lasers, etc. Although both energy and duration describe the main features of the pulse, the 
second one deserves more attention because the energy of each pulse can be easily raised by 
optical amplifiers, whereas more complicated techniques are necessary to shorten its temporal 
width. 

There are several methods that can be employed to measure the duration of laser pulses 
[1]: intensity autocorrelation (non-collinear scheme), interferometric autocorrelation 
(collinear scheme), frequency-resolved optical gating applied to second-harmonic generation 
(“SHG FROG” technique) and other similar methods. All of them are mainly based on the 
second-harmonic generation by means of a nonlinear crystal (KTP, BBO, etc.) and, therefore, 
the pulse should have a high peak power. This limitation could be very restrictive in order to 
measure an only pulse by single-shot autocorrelation techniques. 

Nevertheless it is also possible to measure low-power pulses provided that the pulsed 
laser emits a high-repetition-rate train of pulses, since the mean value of the second-harmonic 
power will be appreciable. Measurements of very weak pulses have been recently reported for 
different kinds of mode-locked lasers by means of intensity autocorrelation [2-5], 
interferometric autocorrelation [6-8] and SHG FROG [9-11]. Typically, the reported pulses 
have energies lower than 1 nJ, although peak powers exceed 4 kW because their temporal 
widths vary from a few tens to a few hundreds of femtoseconds. It is important to notice that 
all of these lasers emit trains of pulses with a very high modulation frequency around 100 
MHz, typically. Thus, enhancements in experimental techniques are always useful to measure 
the duration of low-power pulses with low repetition rates or even to measure the duration of 
individual pulses (single-shot techniques). 

These improvements can be obtained by enhancing detection sensitivity, but also by 
means of lengthening of the nonlinear crystal in order to increase the second-harmonic power. 
Usually, very thin crystals (15 m [12]) are employed to keep the phase-matching broadband. 
Thus, as the input power is not depleted, the interferometric autocorrelation trace will have a 
contrast 1:8. However, this condition is not mandatory and if a suitable theoretical model 
were applied, it would be possible to work with longer crystals. Nevertheless, the nonlinear 
crystal must be suitably selected to keep the phase matching condition throughout the pulse 
spectrum. 

In this paper the interferometric autocorrelation of a train of pulses emitted by a mode-
locked erbium-doped fibre laser (1595 nm, 20 nJ energy, 100 kW peak power [13]) is 
measured. A custom-made fibre interferometer (Michelson type) is employed in order to 
suppress misalignment effects and a BBO (Beta Barium Borate, -BaB2O4) crystal is selected 
to keep the phase-matching broadband along the nonlinear crystal (2 mm length), since its 
phase-matching angle (PMA) is practically constant around 1600 nm (as opposed to 800 nm). 
A duration of 0.18 ps is obtained by means of fitting the autocorrelation trace to a suitable 
theoretical model, which is developed by assuming conditions of input depleted and of phase 
matching. 

Thus, we demonstrate in this work that the sensitivity of an autocorrelator can be clearly 
improved by using a long nonlinear crystal. In our particular case, by considering the energy 
and the duration of each pulse aforementioned, our autocorrelator would need a sensitivity, 
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defined by S = Pmean Ppeak, lower than 2 x 10-3 W2 in order to obtain a right measurement of 
the duration of our pulses. By including a 2 mm length BBO crystal in our autocorrelator, its 
sensitivity reaches 10-5 W2 and therefore our pulses can be measured. However, the sensitivity 
increases as the length of the nonlinear crystal diminishes. In fact, if the length is shorter than 
125 m, the sensitivity is higher than 2 x 10-3 W2 and it is not possible to measure the pulse-
width. In conclusion, the long length of our BBO crystal is a key feature, since the energy of 
our pulses is too low to employ very thin nonlinear crystals, as it is usually done in standard 
autocorrelators. It is necessary to point out that our autocorrelator has been specially 
implemented in order to demonstrate that the measurement sensitivity is improved by several 
orders of magnitude by means of increasing the length of the nonlinear crystal. Although it 
does not hope to compete against commercial autocorrelators (in our operating conditions, 
basic models of APE-Angewandte Physik & Elektronik GmbH, Minioptic Technology Inc. or 
Femtochrome Research Inc. would provide sensitivities around 10-6 W2), the proposed 
method can be applied within any second-order autocorrelator to enhance its sensitivity, with 
clear advantages in measurements of very low energy pulses or in single-shot techniques. 

 
2. Theoretical description 

The temporal width of ultrashort laser pulses is usually measured by means of an all-
optical method based on the autocorrelation function [1]. To measure this function, the 
common procedure consists in splitting the pulse under measurement into two replicas by 
means of an interferometer (Michelson, Mach-Zehnder, etc.), which adds a delay in one of 
them. Later, both replicas travel through a nonlinear crystal (BBO, KTP, etc.) and they 
generate power in the second harmonic. Finally, the second harmonic power is filtered and 
detected by a slow photodetector, whose response will depend on the delay added by the 
interferometer. 

If a depleted input is considered, the second-harmonic intensity 𝐼  generated can be 
expressed [14] in the form 
 

𝐼 𝐼 𝑡𝑎𝑛ℎ  𝐿 𝐼 ,                                                                                                            1  
 
being 𝐼  the input intensity, 𝐿 the length of the nonlinear crystal and  a parameter that 
depends on the type of crystal and on the condition of phase-matching. On the other hand, if 
the instantaneous electromagnetic field 𝐸 𝑡  of the pulse is known, then the field in the input 
of the nonlinear crystal will be proportional to 𝐸 𝑡 𝐸 𝑡 𝜏 , where 𝜏 is the delay adds by 
the interferometer. Therefore, the response of the photodetector can be expressed as follows 
 

𝑉 𝜏 ~ 𝑑𝑡 |𝐸 𝑡 𝐸 𝑡 𝜏 | 𝑡𝑎𝑛ℎ 𝛽|𝐸 𝑡 𝐸 𝑡 𝜏 | ,                                                   2  

 
where the second-harmonic generation depends on the dimensionless parameter , and 𝐸 𝑡  is 
considered dimensionless for convenience sake. This function is usually normalized as 
 

𝐺 𝜏
𝑉 𝜏

𝑉 𝜏 → ∞
  ; 𝐺 𝜏 → ∞ 1.                                                                                                3  
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If 𝜏 → ∞, both pulses are not overlapped and the response must be twice the response due to a 
single pulse and therefore 
 

𝑉 𝜏 → ∞ ~ 2 𝑑𝑡 |𝐸 𝑡 | 𝑡𝑎𝑛ℎ 𝛽|𝐸 𝑡 | ,                                                                                4  

 
and substituting in Eq. (3) is obtained that 
 

𝐺 𝜏
1
2

𝑑𝑡 |𝐸 𝑡 𝐸 𝑡 𝜏 | 𝑡𝑎𝑛ℎ 𝛽|𝐸 𝑡 𝐸 𝑡 𝜏 |

𝑑𝑡 |𝐸 𝑡 | 𝑡𝑎𝑛ℎ 𝛽|𝐸 𝑡 |
.                                            5  

 
The normalized correlation is an even oscillating function, whose envelope tends 
asymptotically to the unity. Its values are comprised between 0 and a maximum value 𝐺 , 
which is only reached for  = 0. Therefore, 𝐺  can be expressed in the form 
 

𝐺 𝐺 0 2
𝑑𝑡 |𝐸 𝑡 | 𝑡𝑎𝑛ℎ 2𝛽|𝐸 𝑡 |

𝑑𝑡 |𝐸 𝑡 | 𝑡𝑎𝑛ℎ 𝛽|𝐸 𝑡 |
.                                                                     6  

 
As 𝛽 increases, the 𝐺  value diminishes. In consequence, the 𝐺  value is limited 
between 2 and 8. If 𝛽 → 0, then 𝐺 8, since tanh 𝑥

→
⎯ 𝑥. If 𝛽 → ∞, then 𝐺 2, 

since tanh 𝑥
→
⎯ 1, and 𝐺 𝜏  approaches to the first-order autocorrelation function, which 

can be measured with a photodetector placed in the output of the interferometer (without 
second-harmonic generation), that is to say, 
 

𝐺 𝜏 → 𝐺 𝜏
1
2

𝑑𝑡 |𝐸 𝑡 𝐸 𝑡 𝜏 |

𝑑𝑡 |𝐸 𝑡 |
.                                                                              7  

 
In consequence it will only be possible to obtain information about the coherence length of 
the pulse. In order to obtain a contrast of 8:1 in the 𝐺 𝜏  function, the 𝛽 value must be very 
low. Thus, a very short interaction length should be arranged, by means of a very thin 
nonlinear crystal or by using noncollinear interferometric correlation. The two-photon process 
which takes place in a semiconductor detector has a very low efficiency (𝛽 ≪) and it could 
also be used to reach this high contrast. In any case, as 𝛽 is very low, Eq. (5) can be 
approximated as 
 

𝐺 𝜏 → 𝐺 𝜏
1
2

𝑑𝑡 |𝐸 𝑡 𝐸 𝑡 𝜏 |

𝑑𝑡 |𝐸 𝑡 |
,                                                                              8  

 
which is the second-order autocorrelation function usually employed [1]. However, if it were 
necessary to measure very weak pulses regarding the sensitivity of the autocorrelator, all of 
these methods provide a very lacking signal. In order to improve it, despite the contrast is 
lower, collinear method with a long nonlinear crystal results preferable, since a higher value 
of 𝛽 implies a higher signal at the photodetector. 



5 

Moreover, as the instantaneous electromagnetic field 𝐸 𝑡  of the pulse must include a 
factor exp 𝑖𝜔 𝑡 , being 𝜔  its optical frequency, then |𝐸 𝑡 𝐸 𝑡 𝜏 | has a strong 
dependence on cos 𝜔 𝜏  and therefore G 𝜏  values exhibit an oscillating behaviour. In fact, 
very near of the origin (𝜏 ~ 3 𝑓𝑠), cos 𝜔 𝜏 ≅ 1 and G 𝜏  diminishes to 0 because then 
𝐸 𝑡 𝜏 ≅ 𝐸 𝑡 . 

Henceforth, the term “full width” of a function (as temporal as spectral) will always 
refer to its width when it equals its maximum value divided by e. By assuming a pulse with a 
Gaussian shape, the behaviour of the autocorrelation functions can be realistically illustrated. 
If the pulse intensity has a full width ∆𝜏 , its electromagnetic field can be described in the 
following form 
 

𝐸 𝑡 𝑒𝑥𝑝 2 𝑡 ∆𝜏⁄ 𝑒𝑥𝑝 𝑖 𝜔 𝑡 2𝛿 𝑡 ∆𝜏⁄ ,                                                            9  
 
where 𝛿 is defined as 
 

𝛿 ∆𝜏 ∆𝜏⁄ 1 ,                                                                                                                    10  

 
being ∆𝜏  the original width of the pulse (that is to say, without dispersion). Thus, if the 
pulse is chirped due to the chromatic dispersion, then ∆𝜏 ∆𝜏  𝛿 0 . The more chirped 
the pulse, the higher the  value. 

In general, 𝐺 𝜏  values can be computed by substituting Eq. (9) and Eq. (10) in Eq. (5) 
and later by applying standard numerical models. Nevertheless, Eq. (5) can be algebraically 
solved for the two limit cases aforementioned, 𝐺 𝜏  (Eq. (7)) and 𝐺 𝜏  (Eq. (8)). Thus, the 
first-order autocorrelation function can be expressed as follows 
 

𝐺 𝜏 1 𝑒𝑥𝑝 𝜏 ∆𝜏⁄ 𝑐𝑜𝑠 𝜔 𝜏 .                                                                                    11  
 
This function does not depend on ∆𝜏  and therefore it is not useful to determine the actual 
width of the pulse. Nevertheless, ∆𝜏  can be determined by measuring the output of the 
interferometer (without second-harmonic generation) since its envelope has a full width 
2∆𝜏 . The second-order autocorrelation function can be expressed in the form 
 

𝐺 𝜏 1 2 𝑒𝑥𝑝 2 𝜏 ∆𝜏⁄ 𝑒𝑥𝑝 2 𝜏 ∆𝜏⁄ 𝑐𝑜𝑠 2𝜔 𝜏  

4 𝑒𝑥𝑝 𝜏 ∆𝜏⁄ 𝑒𝑥𝑝 𝜏 ∆𝜏⁄ 𝑐𝑜𝑠
𝛿𝜏

∆𝜏
𝑐𝑜𝑠 𝜔 𝜏 ,                                           12  

 
which provides information about the actual width of the pulse, since it depends on ∆𝜏 . 

In Fig.1 autocorrelation function 𝐺 𝜏  computed by Eq. (5) by assuming Gaussian 
pulses is shown. Its qualitative behaviour is not affected by the  value, but its contrast is 
clearly reduced as  is increased. The maximum contrast (1:8) is found for  = 0 and it 
diminishes to 1:3 for  = 1.25. This change does not depend on the pulse width. Therefore, if 
𝐺 0  is known, then  can be determined, since the dispersion have a negligible influence on 
𝐺 0 . The relationship between both magnitudes is gathered in Fig. 2. As the second-
harmonic generation raises, 𝐺 0  diminishes and tends asymptotically to 2, that is to say, 
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𝐺 0  tends to 𝐺 0 . Therefore, if  reaches too high values, the autocorrelation function 
loses information about pulse dispersion. To avoid it, it is convenient that  < 2. 

Once that  is known, the temporal width of the pulse can be obtained considering the 
half-width of the autocorrelation function, which is represented in Fig. 3 assuming a pulse 
without dispersion (0.2 ps), since this condition is usually the most interesting. As it can be 
appreciated, the most suitable  values are comprised between 1.25 and 1.5, approximately. In 
Fig. 3 the half-width of the autocorrelation function is also shown for chirped pulses with full 
widths of 0.4 ps and 1 ps. 

 
3. Experimental setup 

The experimental setup is arranged to measure the pulse duration of a 5.2 MHz train of 
passive mode-locked pulses emitted by a ring-cavity erbium-doped fibre laser, which is 
reported in Ref. 13. It consists of a commercial erbium-doped fibre amplifier operating in the 
C-band and a modulator based on the nonlinear polarization rotation effect. This modulator is 
formed by a linear polarizer placed between two polarization controllers. The spectrum of the 
pulses is centred at 1566 nm and its spectral width is around 35 nm. Later, the laser pulses are 
amplified by a second commercial erbium-doped fibre amplifier operating in the L-band. The 
spectrum of the amplified pulses is shifted to 1595 nm and broadened up to 44 nm. Although 
the energy of the amplified pulses is only around 20 nJ, nonlinear effects are easily induced in 
highly nonlinear fibres, as it is reported in Ref. 15. Thus, it is expected that these pulses are 
very short, with a temporal duration lower than a few picoseconds. 

In order to facilitate collinear autocorrelation and to avoid alignment problems, a 
Michelson interferometer with input and output by optical fibre has been employed. Its 
scheme is shown in Fig. 4. The input pulses are divided by means of a 50/50 coupler in the 
two arms of the interferometer. The optical paths of both arms are balanced by placing a fibre 
collimator and a flat mirror, which can be moved in a controlled way (Thorlabs servo-
actuator, model Z825B). The delay between both arms depends on the distance between the 
collimator and the mirror. If the mirror is displaced from the order-zero position, transmission 
losses are only increased by 0.07 dB/mm. However, transmission losses are practically 
unchanged since displacements during autocorrelation measurements are shorter than 0.3 mm. 
The other arm employs an all-fibre mirror (50/50 coupler) and includes a variable optical 
attenuator and a polarization controller (General Photonics, model Polarite PLC-003-M-25) in 
order to equalize losses and polarization states between both arms. Transmission losses of the 
interferometer are 4.4 dB at 1600 nm, slightly higher than expected losses of an ideal 
interferometer (3 dB), although the spectral variation of transmission losses is lower than 3% 
(over a spectral range of 44 nm). Moreover, as it will be shown later, transmitted powers by 
both arms are correctly balanced, with a spectral variation lower than 4%. Finally, it is 
necessary to point out that this interferometer has a weakness in comparison with other 
interferometers since air and silica optical fibre have a different chromatic dispersion. This 
handicap could be decisive to measure extremely short pulses. 

To measure autocorrelation function, output pulses of the interferometer are overlapped 
along a 2 mm length BBO crystal, which generates second-harmonic power around 800 nm. 
Residual power at 1600 nm is eliminated by an optical filter (Thorlabs, model FGB25). 
Although BBO is a nonlinear crystal with a large effective second-harmonic generation 
coefficient and a broad phase-matching range, it is necessary to check if the phase-matching 
condition is fulfilled over our spectral range (44 nm centred at 1595 nm). Our crystal (Eksma 
Optics, model BBO-0608-16*,  = 19.9 deg,  = 90 deg) is tailored to type I (ooe) generation 
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at 1600 nm. By applying second-harmonic generation theory [14] and considering ordinary 
and extraordinary refraction indexes determined by its Sellmeier coefficients, the phase-
matching angle in function of wavelength can be computed, as it is shown in Fig. 5. This 
angle only changes 0.1 deg from 1550 nm to 1650 nm. Therefore, the phase-matching factor, 
abs(sinc(k L / 2)) [14], should be near unity along our spectral range. As it is seen in Fig. 5, 
for L = 2 mm, if  = 19.867 deg (computed value at 1600 nm), the spectral variation is lower 
than 1%. Even if  = 19.9 deg (specified value by Eksma Optics), the spectral variation is 
lower than 3%. Obviously, by using shorter crystals, these values could be strongly 
diminished. In any case, these variations should not have significant influence on 
autocorrelation measurements. 

 
4. Results and discussion 

Interferometric autocorrelation traces are gathered in Figs. 6 and 7. In Fig. 6, the 
autocorrelation trace is measured by means of an InGaAs photodiode, but the nonlinear 
crystal is not placed in the experimental setup. Thus, it should correspond to the first-order 
autocorrelation function and by fitting to Eq. (11), the temporal width of the pulse without 
dispersion is found, being ∆𝜏  = 0.17 ps. On the other hand, Fig. 7 shows the measurement 
by employing the nonlinear crystal to generate second-harmonic power, which is detected by 
a Si photodiode. Now, the trace is due to the G correlation function and, by fitting to Eq. (5), 
the actual temporal width of the pulse ∆𝜏  is 0.18 ps and the -parameter value results 1.25 
(𝐺 0  = 3.1). As it was expected, this value is lower than 1 ps and the peak power of each 
pulse slightly exceeds 100 kW. Although there are two fitting parameters, the procedure is 
simplified because they can be separately determined. First,  parameter is obtained taking 
into account G(0). Next, the function envelope allows to fit ∆𝜏 . 

Measured and theoretical values are in good agreement. In fact, ∆𝜏  value corresponds 
with a gain-profile width of 31 nm, in concordance with the spectral width of the pulse (35 
nm) emitted by the master laser. Therefore, although the second amplifier widens the spectral 
profile, it does not shorten the pulse duration. Nevertheless, it is necessary to point out that a 
Gaussian profile has been always assumed and, in consequence, the actual duration of the 
pulse could be slightly different. 

It has been demonstrated that the experimental procedure is proper and that 
autocorrelation traces with/without BBO are clearly distinguishable. Moreover, both traces 
have not background in the origin (the two arms of the Michelson are well balanced), as it can 
be seen in Fig. 8. Although autocorrelation function has a contrast around 3:1 instead of 8:1, it 
is due to the length of the nonlinear crystal (second-harmonic generation with a depleted 
input), but it is possible to obtain right values for the pulse width whenever a suitable 
theoretical model is applied, as it has been exposed in Section 2. 

Finally, once  and p are known, it is possible to determine the sensitivity of the 
autocorrelator as a function of the nonlinear crystal length by means of Eq. (5) and 
considering the time response of the photodiode and the detection noise. As it is shown in Fig. 
9, the autocorrelator sensitivity always improves as the crystal length is increased, although 
the sensitivity enhancement grows also with the modulation frequency of the train of pulses. 
By raising the crystal length from 10 m to 3 mm, sensitivity values are diminished by 5 
orders of magnitude if the modulation frequency is higher than 1 MHz. In Fig. 9 it can be also 
appreciated as the time width of our pulses can be rightly measured by including a 2 mm 
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nonlinear crystal in the autocorrelator, but it could not be employed crystals shorter than 125 
m. 

 
5. Conclusion 

In order to improve the measurement of the duration of pulses, it is possible to employ 
the interferometric autocorrelation method by means of long nonlinear crystals (higher 
second-harmonic power). Although the trace contrast is lower, the final result will be right 
provided that the trace is analysed by a suitable theoretical model, which must assume that the 
input is depleted. Thus, autocorrelation measurements can be fitted by means of two 
parameters,  and ∆𝜏 . The fitting procedure is not complicated, because both parameters are 
practically independent. Thus,  is determined by the contrast of the interferometric trace and 
later ∆𝜏  is fitted by its envelope. 

Nevertheless, it is necessary to choose carefully the type of nonlinear crystal, since the 
phase-matching condition must be kept along the crystal throughout pulse spectrum. In 
particular, BBO crystals are especially suitable for pulse wavelengths around 1500-1600 nm. 
In fact, a temporal duration of 0.18 ps have been measured for a train of pulses by means of a 
BBO crystal of 2 mm length and a good agreement have been found between theory 
(assuming input depleted) and experiment. By fitting the experimental measurements and by 
computing according to the theoretical model exposed, it has been demonstrated that the 
autocorrelator sensitivity is clearly diminished by increasing the nonlinear crystal length. This 
method can be applied in any second-order interferometric autocorrelator to improve its 
sensitivity. Finally, it is necessary to point out as a limitation of this work that a Gaussian 
profile has been always assumed and, in consequence, the actual duration of the pulse could 
be slightly different, although the conclusions should remain unaltered. 
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Figure captions 
 
Figure 1. Autocorrelation function 𝐺 𝜏  computed by Eq. (5) for Gaussian pulses with a full 
width of 0.2 ps (without dispersion) with different parameters: (a) 0.2 ps full width and  = 0; 
(b) 0.4 ps full width (chirped pulse) and  = 0; (c) 1 ps full width (chirped pulse) and  = 0; 
(d) 0.2 ps full width and  = 1.25; (e) 0.4 ps full width and  = 1.25; (f) 1 ps full width and  
= 1.25. 

 
Figure 2. Maximum values of the autocorrelation function 𝐺 0  in function of  for a pulse 
duration of 0.2 ps. As the second-harmonic generation raises, 𝐺 0  diminishes and tends 
asymptotically to 2 (grey line), that is to say, 𝐺 0  tends to 𝐺 0 . 

 
Figure 3. Autocorrelation function half-width in function of  for a pulse with a full width of: 
0.2 ps (without dispersion; red line), 0.4 ps (chirped pulse; green line), and 1 ps (more chirped 
pulse; blue line). 

 
Figure 4. Scheme of the autocorrelator: S = servo-actuator; M = aluminium flat mirror; C = 
collimator (gradient-index lens); PC = polarization controller; A = variable attenuator; L = 30 
mm focal length lens; F = bandpass filter (715-1095 nm); BBO = nonlinear crystal of b-
barium borate (2 mm length); PD = photodiode (Si or InGaAs). 

 
Figure 5. Phase-matching angle (PMA; grey line) and phase-matching factor as a function of 
the wavelength. BBO length is 2 mm. To compute phase-matching factor, two angles have 
been considered:  = 19.867 deg (computed value at 1600 nm; dotted line) and  = 19.9 deg 
(specified value by Eksma Optics; solid line). Dot-dashes lines delimit the spectral range of 
our pulses. 

 
Figure 6. First-order autocorrelation trace (red line) and fitted theoretical function (green 
line). The temporal width of the Fourier-limited pulse is fitted to 0.17 ps. 

 
Figure 7. Autocorrelation trace (red line) and fitted theoretical function (green line). The 
temporal width of the pulse is fitted to 0.18 ps. The -parameter value results 1.25. The 
contrast is around 3:1 instead of 8:1. 

 
Figure 8. Detail of the autocorrelation traces measured: first-order autocorrelation (grey line) 
and G autocorrelation (black line). 

 
Figure 9. Autocorrelator sensitivity in function of the nonlinear crystal length for several 
modulation frequencies. 

 
  



11 

 

 

 

 

 

 

 
 
 
 
Fig 1. Autocorrelation function 𝐺 𝜏  computed by Eq. (5) for Gaussian pulses 
with a full width of 0.2 ps (without dispersion) with different parameters: (a) 0.2 
ps full width and  = 0; (b) 0.4 ps full width (chirped pulse) and  = 0; (c) 1 ps 
full width (chirped pulse) and  = 0; (d) 0.2 ps full width and  = 1.25; (e) 0.4 ps 
full width and  = 1.25; (f) 1 ps full width and  = 1.25. 
 

  

0

2

4

6

8

0.0 0.1 0.2 0.3 0.4
Delay  ( ps )

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
, G

( a )

0

2

4

6

8

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Delay  ( ps )

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
, G

( b )

0

2

4

6

8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Delay  ( ps )

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
, G

( c )

0

1

2

3

0.0 0.1 0.2 0.3 0.4
Delay  ( ps )

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
, G

( d )

0

1

2

3

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Delay  ( ps )

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
, G

( e )

0

1

2

3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Delay  ( ps )

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
, G

( f )



12 

 

 
 
 
 

Fig 2. Maximum values of the autocorrelation function 𝐺 0  in function of  for a 
pulse duration of 0.2 ps. As the second-harmonic generation raises, 𝐺 0  
diminishes and tends asymptotically to 2 (grey line), that is to say, 𝐺 0  tends to 
𝐺 0 . 
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Fig 3. Autocorrelation function half-width in function of  for a pulse with a full 
width of: 0.2 ps (without dispersion; red line), 0.4 ps (chirped pulse; green line), 
and 1 ps (more chirped pulse; blue line). 
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Fig 4. Scheme of the autocorrelator: S = servo-actuator; M = aluminium flat 
mirror; C = collimator (gradient-index lens); PC = polarization controller; A = 
variable attenuator; L = 30 mm focal length lens; F = bandpass filter (715-1095 
nm); BBO = nonlinear crystal of -barium borate (2 mm length); PD = 
photodiode (Si or InGaAs). 
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Fig 5. Phase-matching angle (PMA; grey line) and phase-matching factor as a 
function of the wavelength. BBO length is 2 mm. To compute phase-matching 
factor, two angles have been considered:  = 19.867 deg (computed value at 1600 
nm; dotted line) and  = 19.9 deg (specified value by Eksma Optics; solid line). 
Dot-dashes lines delimit the spectral range of our pulses. 
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Fig 6. First-order autocorrelation trace (red line) and fitted theoretical function 
(green line). The temporal width of the Fourier-limited pulse is fitted to 0.17 ps. 
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Fig 7. Autocorrelation trace (red line) and fitted theoretical function (green line). 
The temporal width of the pulse is fitted to 0.18 ps. The -parameter value results 
1.25. The contrast is around 3:1 instead of 8:1. 
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Fig 8. Detail of the autocorrelation traces measured: first-order autocorrelation 
(grey line) and G autocorrelation (black line). 
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Fig 9. Autocorrelator sensitivity in function of the nonlinear crystal length for 
several modulation frequencies. 
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