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Abstract—Objective: The present study addresses the problem
of estimating the respiratory rate from the morphological ECG
variations in the presence of atrial fibrillatory waves (f-waves).
The significance of performing f-wave suppression before respi-
ratory rate estimation is investigated. Methods: The performance
of a novel approach to ECG-derived respiration, named “slope
range” (SR) and designed particularly for operation in atrial
fibrillation (AF), is compared to that of two well-known methods
based on either R-wave angle (RA) or QRS loop rotation angle
(LA). A novel rule is proposed for spectral peak selection
in respiratory rate estimation. The suppression of f-waves is
accomplished using signal- and noise-dependent QRS weighted
averaging. The performance evaluation embraces real as well as
simulated ECG signals acquired from patients with persistent
AF; the estimation error of the respiratory rate is determined
for both types of signals. Results: Using real ECG signals and
reference respiratory signals, rate estimation without f-wave
suppression resulted in a median error of 0.015±0.021 Hz and
0.019±0.025 Hz for SR and RA, respectively, whereas LA with
f-wave suppression resulted in 0.034±0.039 Hz. Using simulated
signals, the results also demonstrate that f-wave suppression
is superfluous for SR and RA, whereas it is essential for LA.
Conclusion: The results show that SR offers the best performance
as well as computational simplicity since f-wave suppression is
not needed. Significance: The respiratory rate can be robustly
estimated from the ECG in the presence of AF.

I. INTRODUCTION

RESPIRATORY dysfunction is associated with atrial fib-

rillation (AF) since reduced lung function, decreased

oxygenation, hypercapnia, pulmonary hypertension, chronic

obstructive pulmonary disease, and sleep-disordered breath-

ing (SDB) have been identified as independent predictors of

AF [1]–[4]. Alterations in respiratory physiology due to a

progressive decline in lung function may provoke alterations

in cardiac structure and function through changes in atrial
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electrophysiology, leading to increased incidence of cardiac

arrhythmia [5].

A variety of pathophysiological mechanisms, including

apnea-induced hypoxia and intrathoracic pressure shifts, have

been associated with AF in patients with SDB [6], where the

risk of new AF episodes is markedly increased shortly after

apneas and hypopneas during sleep [7], [8]. Moreover, patients

with SDB may be predisposed to arrhythmias because of an

increased sympathetic tone. Autonomic imbalance could alter

atrial electrophysiology and provoke AF [9]. These clinical

observations exemplify the complex interplay between the res-

piratory, cardiovascular, and autonomic nervous systems, and

highlight the need for tools to monitor respiration in patients

with AF [10]. In clinical practice, respiratory rate is currently

measured using techniques which either interfere with normal

breathing (nasal thermistors, carbon dioxide sensors) cause

discomfort (transthoracic inductance and plethysmography),

or do not offer acceptable quality (impedance pneumogra-

phy) [11], [12]. Since these techniques are impractical in moni-

toring, the ECG can be used to indirectly estimate a respiratory

signal, known as the ECG-derived respiration (EDR) signal.

The majority of published EDR methods explore beat

morphology or heart rate information [13], [14]. For example,

the respiratory rate was obtained as the dominant frequency

of the estimated rotation angles of the electrical axis of the

heart, accomplished by spatiotemporal alignment of successive

vectorcardiographic loops of the QRS complex relative to a

reference loop [15], [16]. The QRS amplitude is another char-

acteristic which has been explored, especially in the context

of SDB monitoring [17], [18]. Principal component analysis

(PCA) and kernel PCA have been used for extracting the res-

piratory rate from beat-to-beat changes in morphology [19]–

[21]. The up- or downslope of the QRS complex [22] and the

amplitude difference between the R and the S waves [23] are

other characteristics which reflect respiration-induced changes.

The above-mentioned EDR methods have explored the idea

of retrieving respiratory information from the ECG during

sinus rhythm, whereas EDR methods in arrhythmia remains

largely unexplored. One of the very few EDR studies involving

AF patients reported on low detection sensitivity of SDB [24].

The performance of techniques exploring morphology may

deteriorate due to the presence of atrial fibrillatory waves (f-

waves) which can mask the respiratory information. Therefore,

f-wave suppression may have to be performed before respira-

tory rate estimation. It should be noted that methods exploring

heart rate information cannot be used in AF since the rhythm

is not controlled by the autonomic nervous system and thus,

respiratory sinus arrhythmia is not present.

The novelty of the present study consists in the estimation

of respiratory rate in the presence of f-waves, using either the
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QRS loop rotation angle (LA) [16], the R-wave angle (RA)

[22], which have been reported to be robust in noisy situations,

or the novel slope range (SR) approach to computing the

EDR power spectrum. The performance is also compared to

the QRS area (A) method, originally proposed in [25] and

used in the SDB study presented in [24]. Moreover, a novel

technique for selecting the spectral peak related to respiration

is proposed, being particularly robust to spurious spectral

components caused by f-waves.

Performance is studied on a database of AF patients consist-

ing of simultaneously recorded ECG and respiration signals

as well as on simulated signals, accounting for different

morphologies, rhythms, induced respiratory modulation, f-

waves, and the presence of noise at different signal-to-noise

ratios (SNRs).

The paper is organized as follows. Section II describes the

signal processing involved with the rate estimation. The data

sets and the setup of the performance evaluation are described

in Section III and IV, respectively. Section V presents the

results, which are then subject to discussion in Section VI.

II. METHODS

A. Preprocessing

The ECG is subjected to band-pass filtering in the band

[0.5, 45] Hz, and, the beats for each lead are detected. The

length of the QRS interval is set to 140 ms, starting 110 ms

before the end of the QRS complex and ending 30 ms after.

1) Noisy beat identification: Noisy beats are identified by

the method in [16] and discarded from further analysis. More-

over, beats whose cross-correlation coefficient to a reference

QRS is lower than 0.8 are discarded; thus, only beats with

dominant morphology are analyzed. The reference QRS is

taken as the average of the first 10 beats of the recording

having similar morphology.

2) Suppression of f-waves: In contrast to AF signal pro-

cessing, where the objective is to extract and analyze the f-

waves, the objective is here to suppress the f-waves, while

preserving respiratory related QRS variability, before respira-

tory rate estimation is performed. Signal- and noise-dependent

weighted QRS averaging is used for this objective [26], see

also [27], being based on the same principle as average beat

subtraction (ABS). The i:th observed beat xi(n) is modeled as:

xi(n) = xQRS,i(n) + xf,i(n), i = 1, . . . ,M, (1)

where xQRS,i(n) and xf,i(n) are the QRS complex and the

f-waves, respectively, and M is the number of beats with

dominant morphology. The QRS complex is characterized by

the time-dependent variance σ2
QRS(n) and the f-waves by the

constant variance σ2
f . The f-wave suppressed QRS complex of

the i:th beat is obtained as a linear combination of M beats:

x̂QRS,i(n) =

M
∑

m=1

wi,m(n)xm(n), (2)

where the weights wi,m(n) are given by [27]:

wi,m(n) =
1

M

σ2
f

σ2
f + σ2

QRS(n)
+

σ2
QRS(n)

σ2
f + σ2

QRS(n)
δ(i −m). (3)

The f-wave variance σ2
f is estimated from the observed signal

by computing the sample variance of the concatenated TQ

intervals of all beats, following bandpass filtering in the band

[0.5, 30] Hz to preserve f-wave related frequency components

and reduce the influence of noise [27]. The QRS variance

σ2
QRS(n) is estimated by

σ̂2
QRS(n)=max

{

1

M − 1

M
∑

m=1

(xm(n)− x̄(n))2− σ2
f , 0

}

, (4)

where x̄(n) denotes the ensemble average

of x1(n), . . . , xM(n).
This approach uses weights wi,m(n) which not only change

from sample-to-sample within each beat given the time-

dependent QRS variance σ2
QRS(n), but also from beat-to-beat

since more weight is assigned to the i:th beat (m = i), thereby

accounting for variation in the morphology of the current beat.

In this study, M was empirically set to 60.

The derived respiratory signal is computed from the QRS

complexes yi(n) obtained either without or with f-wave sup-

pression:

yi(n) =

{

xi(n), w/o suppression,
x̂QRS,i(n), with suppression.

(5)

B. Derived respiratory signals

1) QRS loop rotation angle dLA: Spatiotemporal alignment

between successive, observed QRS loops Yi and a reference

QRS loop YR is used to estimate a rotation angle reflecting

respiratory information [16], see also [28]. For two leads,

considered in this study, the reference loop YR contains a two-

lead reference QRS complex and the i:th loop Yi contains the

QRS complexes yi(n) of two leads. The loop Yi is assumed

to be a version of YR but rotated, scaled, and shifted in time.

For each beat, the estimated rotation matrix Q̂i (2×2) is used

to extract an angle which forms the EDR signal dLA(i):

dLA(i) = arcsin(Q̂i(2, 1)). (6)

2) R-wave angle dRA: The R-wave angle reflects respiratory

information in individual leads. First, using the least squares

technique, a straight line is fitted to each side of the QRS

complex in 8 ms intervals centered at the points of maximum

absolute slope, see [22] for details. The R-wave angle is

defined as the angle formed by two straight lines fitted to

the up- and downslope of the QRS complex:

dRA(i) = arctan

(∣

∣

∣

∣

IUS,i − IDS,i

1 + IUS,iIDS,i

∣

∣

∣

∣

)

, (7)

where IUS,i and IDS,i denote the up- and downslope of the

two fitted lines, respectively.
3) Slope range dSR: The slope range is a novel parameter

which reflects respiratory information in individual leads. It

is defined by the difference between the maximum up-slope

and minimum down-slope values within the QRS interval,

irrespectively of their relative time occurrence:

dSR(i) = max
n

{y′i(n)} − min
n

{y′i(n)} , (8)

where y′i(n) = yi(n)−yi(n−1). This definition of the slopes

avoids the line fitting used in Sec. II-B2.

The three EDR signals are illustrated in Fig. 1.
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Fig. 1. Derived respiratory signals. (a) rotation angle dLA of the observed loop
Y relative to the reference loop YR, (b) R-wave angle dRA between the lines
fitted to the upslope (red) and downslope (purple) of the QRS complex yi(n),
and (c) slope range dSR between the absolute maximum (red) and minimum
(purple) of the first derivative y′i(n) of the QRS complex.

C. Outlier rejection and resampling

Outliers in an EDR signal are rejected using a standard

deviation (SD)-based rule [16]; the threshold is defined as

5 times the running SD. Since an EDR signal is irregularly

sampled, cubic spline interpolation is performed followed by

resampling at Fs = 4 Hz, where gaps longer than 2 s are

excluded from rate estimation. The resampled EDR signal is

indexed with n instead of i and f-wave suppression is indicated

with an “s”, i.e., dLA,s(n), dRA,s(n), and dSR,s(n).

D. Respiratory rate estimation

An estimate f̂r(k) of the respiratory rate is obtained from

a smoothed version of the running power spectrum Sk,l(f)
of the EDR signal, where k and l index the running interval

and the analyzed lead1, respectively. A block diagram of the

respiratory rate estimation is shown in Fig. 2.

Each power spectrum is obtained using the Welch method

and computed every ∆T s in intervals of length Ts s, divided

into subintervals of length Tm s with 50% overlap [16].

Before computing the averaged power spectrum of the Welch

method, the power spectrum of each subinterval is normalized

with respect to power to reduce the influence of spurious

spectral peaks due to artifacts and to compensate for lead-

to-lead differences in signal power. The power at frequencies

exceeding half the mean heart rate is set to zero.

Assuming that respiration is stationary in an interval of Ts s,

a smoothed version of f̂r(k) is obtained by

f̄r(k) = βf̄r(k − 1) + (1 − β)f̂r(k), (9)

where β denotes the forgetting factor; the details on how to

obtain f̂r(k) are presented below.

1) Spectral peakedness: A measure of spectral concentra-

tion (“peakedness”) is introduced to exclude flat spectra and

spectra with low power around f̄r(k − 1), defined by

Pk,l =

∫

Ωp(k)
Sk,l(f)df

∫

Ω(k) Sk,l(f)df
· 100%, (10)

1Note that l refers to the EDR signal(s), not necessarily to the recorded
leads. For two leads, two EDR signals can be derived for dRA , and dSR, while
only one EDR signal for dLA .

smoothing

running Welch

spectrum

EDR

signal spectral peak

selection

spectral

peakedness

peak-conditioned

spectral averaging 

Fig. 2. Block diagram of respiratory rate estimation. The intermediate steps
include computation of the running Welch spectrum, the peakedness measure,
the peak-conditioned averaging, and spectral peak selection in the averaged
spectrum.

where both Ωp(k) and Ω(k) are centered around f̄r(k − 1)
such that:

Ωp(k) = [f̄r(k − 1)− δp, f̄r(k − 1) + δp], (11)

Ω(k) = [f̄r(k − 1)− δ, f̄r(k − 1) + δ], (12)

where Ωp(k) is contained in Ω(k) (δp < δ). Figure 3 shows

examples of EDR spectra Sk,l(f) with different percentages

of power concentration Pk,l around f̄r(k − 1).
The width parameter δ should be selected according to the

half-width of the expected respiratory band. It should be noted

that while Ωp(k) was centered around the local maximum

inside Ω(k) closest to f̄r(k) in [22], Ωp(k) is centered around

f̄r(k) in this study. A search for the local maxima is avoided

since the position of local maxima is highly variable across

spectra when f-waves are present.
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Fig. 3. Examples of spectral peakedness computed using (10). EDR spectrum
having a large percentage of its power in Ω(k) mainly concentrated (a) within
Ωp(k), (b) outside Ωp(k), (c) within Ωp(k) although the peak in Ω(k) is
not the absolute maximum of Sk(f). For simplicity, the dependence of l in
Sk,l(f) and Pk,l is omitted.

2) Peak-conditioned spectral averaging: The variance re-

duction provided by the Welch method is complemented

with peak-conditioned spectral averaging of K successive

running spectra Sk,l(f) to further reduce the variance, and

thus enhances the frequency component corresponding to

the respiratory rate [16]. In addition, averaging is performed

across available leads. The spectrum used for respiratory rate

estimation is given by

S̄k(f) =
∑

l

K−1
∑

o=0

Xk−o,l · Sk−o,l(f), (13)

where Xk,l is a binary variable indicating the peakedness of

Sk,l(f), set to 1 when Pk,l exceeds the threshold ξ:

Xk,l =

{

1, Pk,l ≥ ξp ∧ Ak,l ≥ ξa,

0, otherwise,
(14)



JOURNAL OF CLASS FILES, VOL. X, NO. X, DATE XXXX 4

0.1 0.2 0.3 0.4 0.5 0.6
0

0.25

0.5

0.75

1

S̄
k
(f

)
(n
.u
.)

(a)
Cf =0.33
Cp=0.00

f1

Cf =0.12
Cp=0.03

f2

f̄r(k−1)

=fjc

0.1 0.2 0.3 0.4 0.5 0.6

f · Fs (Hz)

0

0.25

0.5

0.75

1

S̄
k
(f

)
(n
.u
.)

(b)
Cf =0.33
Cp=0.00

f1

Cf =0.17
Cp=0.19

f2

f̄r(k−1)

=fjc

0.1 0.2 0.3 0.4 0.5 0.6
0

0.25

0.5

0.75

1

S̄
k
(f

)
(n
.u
.)

(c)

Cf =0.11
Cp=0.20

f1

Cf =0.27
Cp=0.10

f2

Cf =0.46
Cp=0.00

f3

f̄r(k−1)

=fjc

0.1 0.2 0.3 0.4 0.5 0.6

f · Fs (Hz)

0

0.25

0.5

0.75

1

S̄
k
(f

)
(n
.u
.)

(d)

Cf =0.09
Cp=0.36

f1

Cf =0.28
Cp=0.03

f2

Cf =0.45
Cp=0.00

f3

f̄r(k−1)

=fjc

Fig. 4. Cost assignment in respiratory rate estimation and the reinitialization of f̄r(k). (a)–(b) Costs used in peak search within Ω(k) (red solid lines).
(c)–(d) Costs used in peak search within Ωr (red solid lines). The S̄k,MAX is marked with a purple circle while the estimated respiratory rate with a purple
line. The dependence of j or/and k in fjc(k), Cp(k, j), and Cf (k, j) is for simplicity omitted.

where

Ak,l =

max
f∈Ω(k)

{Sk,l(f)}

max
f∈Ωr

{Sk,l(f)}
· 100%. (15)

As shown in Fig. 3(c), this restriction is necessary since a

large Pk,l does not ensure that the spectral peak in Ω(k) is the

largest peak across the whole range of respiratory rates. The

range Ωr is fixed and chosen so that it covers the respiratory

rates observed in AF patients.

3) Spectral peak selection: The respiratory rate is selected

among the J local maxima f1(k), . . . , fJ(k) in S̄k(f) inside

Ω(k), using minimization of a cost function that quantifies,

for each spectral peak, the power deviation from the largest

peak and the frequency deviation from f̄r(k). Assuming that

the respiratory rate in the k:th interval corresponds to a

peak whose power is similar to the global maximum S̄k,MAX,

defined by

S̄k,MAX=max
j

{S̄k(fj(k))}, j=1, . . . , J, (16)

and near f̄r(k − 1), the power deviation from S̄k,MAX is

penalized by the cost Cp(k, j) and the deviation from f̄r(k−1)
by Cf (k, j):

Cp(k, j) = 1− S̄k(fj(k))/S̄k,MAX, (17)

Cf (k, j) =
∣

∣fj(k)− f̄r(k−1)
∣

∣ /2δ, (18)

jc(k) = arg min
j

{apCp(k, j)+afCf (k, j)} , (19)

where ap and af are cost weights. The desired estimate of the

respiratory rate is given by

f̂r(k) = fjc(k) ≡ fjc(k). (20)

The cost assignment and the reinitialization of f̄r(k) (see

Appendix for details) for different peak configurations are

illustrated in Fig. 4. For the computation of f̂r(k) (Figs. 4 (a)–

(b)), the cost evaluation is performed for all peaks inside Ω(k),
while, for the reinitialization of f̄r(k) (Figs. 4 (c)–(d)), the cost

evaluation is performed inside Ωr. As observed from Fig. 4,

rate estimation does not always correspond to the largest peak

or the peak closest to f̄r(k−1), but it combines the information

of both peak.

The following parameter values are used when evaluating

the performance [22]: K=5, ∆T =5 s, Tm=12 s, Ts=42 s,

δ = 0.1/Fs. The parameters δp = 0.4δ, β = 0.8, ξp = 45%,

ξa = 85%, Ωr = [0.08, 0.6]/Fs, and ap = af = 1 are set

empirically.

III. DATA SETS

A. Real data

Estimation performance is evaluated using a database con-

taining recordings from 30 patients with persistent AF (69±15
years, 17 females) acquired at the Department of Cardiology

at San Paolo Hospital in Milan, Italy. The patients underwent

electrical cardioversion after having had an AF episode lasting

longer than 7 days. The morning before electrical cardiover-

sion, recordings were acquired at rest supine position about

15 min. The ECG was recorded using two non-orthogonal

leads (Fs,ECG=1000 Hz) and the reference respiratory signal

using a belt sampled at 50 Hz, both signals acquired with a

Task Force R© Monitor (CNSystem; Graz, Austria) recording

system.

B. Simulated data

To shed light on performance, a model for simulating

12-lead ECG signals in AF is employed [30]. Briefly, the

signals are generated by simulating QRST complexes whose

morphological variability accounts for respiratory influence

(angular variation around each lead), real, extracted f-waves,

and various types of noise, see Appendix for further details.

The SNR between the QRS complex and the f-waves is defined

by

SNR = 20 · log10(AQRS/Af ) , (21)
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Fig. 5. Simulated ECGs for Fr = 0.15 Hz in lead (a)–(d) V1. (e)–(h) V2, and (i)–(l) V5. In V1, the SNR increases from 12 to 21 dB in steps of 3 dB (left
to right). Note that a larger f-wave amplitude implies a lower SNR.

where AQRS is the peak-to-peak amplitude of the ensemble

averaged QRS and Af is the peak-to-peak f-wave amplitude

computed as the mean of the difference between the upper and

the lower envelope of the f-wave signal [31]. Using (21), a

lower SNR implies a larger f-wave amplitude. For multi-lead

ECGs, the SNR is given by the lead with the lowest SNR.

The minimum and maximum SNRs across leads are denoted

SNRMIN and SNRMAX, respectively.

IV. PERFORMANCE EVALUATION SETUP

The reference respiratory rate fr(k) is obtained from the

reference respiratory signal by applying the same approach as

that used in the EDR signals. To evaluate performance, the

mean µ and SD σ of the absolute error ∆f(k) between fr(k)
and f̂r(k) and the relative error ∆f(k)/fr(k) are considered,

provided that both fr(k) and f̂r(k) are available. The time

during which f̂r(k) cannot be estimated is denoted T and is

expressed as a percentage of the overall length of the analyzed

signal.

When real ECGs are analyzed, the only method previously

applied to derive respiratory information in AF patients is stud-

ied for comparative purposes [24]. The method, namely QRS

area dA(n), is computed using the trapezoidal method [25].

Five-minute simulated ECGs are used for estimating the

respiratory rate at different SNRs (12, 15, 18, and 21 dB). Two

different lead combinations are investigated for simulation,

namely (V1, V2) and (V1, V5). For a maximum respiratory

induced angular variation ζr = 5o, three fixed respiratory rates

Fr (0.15, 0.25, and 0.35 Hz) are chosen for inducing beat-

to-beat changes similar to the respiratory patterns observed

in subjects at rest supine position. The peak-to-peak f-wave

amplitude in the analyzed leads is presented in Table I.

Figure 5 illustrates simulated ECGs at different SNRs. For

each combination of Fr and SNR, 200 different simulated

signals are analyzed and the gross median error metrics (µ, σ)

of rate estimation are computed.

TABLE I
PEAK-TO-PEAK AMPLITUDE Af (MEAN±STD) OF THE f -WAVES IN

SIMULATED SIGNALS

Af (µV )

SNR V1 V2 V5

12 206 ± 60 160± 68 45± 24
15 146 ± 42 113± 48 32± 17
18 103 ± 30 80± 34 23± 12
21 73 ± 21 56± 24 16± 8

V. RESULTS

A. Simulated Data

Figure 6 illustrates respiratory rate estimation on simulated

ECGs: f-wave suppression together with dLA(n) results in

cleaner time–frequency (TF) spectra since spurious compo-

nents in dLA,s(n) are suppressed (Figs. 6(a)–(b)). A similar

TF pattern is achieved using dRA(n) (Fig. 6(c)) and dSR(n)
(Fig. 6(e)) without f-wave suppression. On the contrary, the

extraction of respiratory information after f-wave suppression

does not improve performance (Figs. 6(d)–(f)) since the EDR

signal, in certain intervals, is almost completely suppressed.

Figure 7 shows the results for the lead combinations (V1, V2)

and (V1, V5). It is obvious that f-wave suppression deteriorates

the performance of dRA(n) and dSR(n), while it significantly

improves the performance of dLA(n). For all considered respi-

ratory rates, the median errors (µ, σ) Hz across all respiratory

rates are below 0.01±0.01 Hz for SNR> 12 dB without f-

wave suppression for SR and RA, while f-wave suppression

is required for LA to achieve this particular limit. The median

of the percentage of time T during which the respiratory rate

could not be estimated was below 10% in all cases.

Regarding lead combinations, the performance does not

improve when V5, having the lowest Af (cf. Table I), is

analyzed instead of V2. The SNRMAX was found to be 3±2 dB

higher than SNRMIN for (V1, V2), while it was 17±4 dB for

(V1, V5). The QRS amplitude AQRS is equal to 872±208 µV,

908±357 µV, 1195±345 µV in V1, V2, and V5, respectively.
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Fig. 6. Respiratory rate estimation in simulated ECGs for Fr =0.15 Hz, SNR =12 dB and (V1,V2). Time–frequency spectrum obtained by (a) dLA(n),
(b) dLA,s(n), (c) dRA(n), (d) dRA,s(n), (e) dSR(n), and (f) dSR,s(n). The estimated respiratory rate is displayed with a red line. An excerpt of the EDR
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Hence, large differences between SNRMIN and SNRMAX for

(V1, V5), are associated with low f-wave amplitude and large

QRS amplitude.

B. Real data

The percentage of noisy beats excluded from the analysis

is 5%±7%, while SNRMIN and SNRMAX are 21±7 dB and

26±3 dB, respectively. The rates extracted from the reference

respiration signal are characterized by 0.259±0.083 Hz.

Figure 8 shows that of the four EDR signals dA(n) per-

forms inferior, regardless of the rate estimation technique.

The rate estimation technique proposed in [16] yield larger

errors than do the present technique and the one in [22].

While the latter two techniques have similar performance,

the present rate estimation technique achieves the lowest

error when dSR(n) is used, resulting in a median error of

0.015±0.021 Hz (9.5±10.2%), as well as improves signif-

icantly the performance of dA,s(n) resulting in a median

error of 0.034±0.033 Hz (13.5±17.9%). The median of T
for dA(n), dA,s(n), dLA(n), dLA,s(n), dRA(n), and dSR(n) is

9.4%, 3.4%, 11.0%, 5.3%, 3.0%, and 1.9%, respectively. Thus,

dSR(n) is the least affected by the presence of f-waves.

Figure 9 shows an example of the respiratory rate estimation

in real ECGs. Figure 10 shows an example of peak selection

using different methods.
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VI. DISCUSSION

The present paper addresses the lack of methods for estimat-

ing the respiratory rate in AF. The estimation is compounded

by beat-to-beat morphological variations induced by respira-

tion which are blurred by the presence of f-waves.

The results obtained on simulated ECGs (Fig. 7) show that f-

wave suppression improves respiratory rate estimation only for

dLA(n). In the same figure, the worse performance of dRA,s(n)
and dSR,s(n) is largely due to that the weighted averaging

operation in (2) leads to smoothing of QRS complexes which

in turn attenuates the respiratory information. As demonstrated

in Fig. 6, the respiratory information in both dRA,s(n) and

dSR,s(n) is sometimes completely attenuated because σ̂2
QRS(n)

is much lower than σ̂2
f , leading to that σ̂2

QRS(n) is 0 in (4). For

σ̂2
QRS(n)= 0, i.e., the weights in (3) are identical to those of

ABS, i.e., wi,m(n)=1/M , the averaged QRS complexes lose

their morphological variability due to respiration since the rela-

tionship between σ̂2
QRS(n) and σ̂2

f determines, through (3), the

balance between QRS variability preservation (σ̂2
f ≪ σ̂2

QRS(n))
and f-wave suppression (σ̂2

f ≫ σ̂2
QRS(n)). Indeed, the estimation

of σ2
f is a critical part since, at higher heart rates, the TQ

intervals may be too short to contain the needed number of

samples for reliable estimation. In addition, it is well-known

that the f-wave amplitude changes considerably over time, thus

questioning the assumption in [26] of a fixed σ2
f .

The suppression of respiratory information appears to de-

pend on the way in which the methods combine the avail-

able leads. While dRA(n) and dSR(n) consider respiratory

information contained in individual leads, dLA(n) combines

spatial information from two leads. This implies that LA will

retrieve respiratory information if it is still present or dominant

in one of the leads, whereas, for RA and SR, the posterior

combination of TF–spectra (one spectrum per lead), where the

respiratory information is suppressed, can introduce spurious

peaks (Fig. 6(d) and Fig. 6(f)).

The results obtained from real ECGs (Fig. 8) show that the

QRS area dA(n) results in the highest error, thus corroborating

the poor performance reported in [24]. More interestingly,

using the peakedness proposed in this study, dRA(n) and

dSR(n) exhibit robust performance without the need for f-

wave suppression, yielding median errors of 0.019±0.025 Hz

(10.8±12.3%) and 0.015±0.021 Hz (9.5±10.2%), respec-

tively, which are considerably smaller than those of dLA(n)
and dLA,s(n), i.e., 0.046±0.047 Hz (24.9±20.1%) and

0.034±0.039 Hz (16.2±17.6%), respectively. The suppression

of f-waves improves the performance of dLA(n), since varia-

tions in the location of the QRS interval, complicating the time

alignment between the observed and the reference loop, are

reduced. The worse performance of dLA(n) is mostly attributed

to the fact that loop alignment is more difficult to perform in

the presence of f-waves, but also to the use of non-orthogonal

leads and the way leads are combined.

Since the respiratory rate is known to fluctuate on a short-

term basis, it is of interest to judge whether the estimation error

∆f(k) is comparable to the variability of fr(k), computed

from the reference respiratory signal, and thus acceptable for

use in clinical applications. In [16], in stress test recordings,

the short-term variability was found to be 0.019±0.007 Hz

from analysis intervals of 60 seconds. Using the approach in

[16], the short-term variability in fr(k) is in the present study

found to be 0.012±0.01 Hz. Since this short-term variability is

of the same order of magnitude as the error of the SR method,

i.e., 0.015±0.021 Hz, see Fig. 8, it can be concluded that SR

is suitable for use in clinical applications.

The use of simulated ECGs is of great value as it can

demonstrate whether f-wave suppression improves the per-

formance since the reference respiratory rate fr(n) can be

modified in a controlled manner. This stands in contrast to real

ECGs where fr(n) needs to be estimated from the reference

respiratory signal. Moreover, the performance can be tested at

different SNRs which not only facilitates the interpretation

of the results obtained from real ECGs but also provides

complementary information. For example, it is shown that

the contribution of f-wave suppression is insignificant at high

SNRs, whereas, it is essential for LA at low SNRs.

The slope-based methods dRA(n) and dSR(n) are less

affected by the presence of f-waves since the differencing

operation attenuates lower frequencies where most of the f-

wave power is located. Both SR and RA combine estimates

of QRS slopes; the combination can be either linear (8) or

nonlinear (7). The use of the first difference is equivalent to

use linear fitting with two samples. Computed results evidence

that SR obtained either using the first difference or line fitting

(8 ms) give equivalent results (not shown). Thus, the slightly

worse performance of dRA(n) relative to dSR(n) (Fig. 8 and

Fig. 7) should be a consequence of the different ways the slope

estimates are combined in (7) and (8).

The combination of TF–spectra from more than one EDR

signal is advantageous when one of the leads is more in-

fluenced by respiration than f-waves. The reason is that the

peakedness criteria lead to the selection of the TF–spectra

with the most dominant frequency component, not necessarily

corresponding to the lead with the lowest f-wave amplitude.

An ECG lead with large f-waves may be more adequate for

respiratory rate estimation if the morphological changes due

to respiration dominate over f-waves. Obviously, the peak-to-



JOURNAL OF CLASS FILES, VOL. X, NO. X, DATE XXXX 8

0 100 200 300 400

time (s)

0.1

0.2

0.3

0.4

0.5

0.6
F
(H

z)
(a)

0 100 200 300 400

time (s)

(b)

0 100 200 300 400

time (s)

(c)

0 100 200 300 400

time (s)

(d)

0 100 200 300 400

time (s)

(e)

150 160 170 180 190 200

time (s)

150 160 170 180 190 200

time (s)

150 160 170 180 190 200

time (s)

150 160 170 180 190 200

time (s)

150 160 170 180 190 200

time (s)
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0.1

0.2

0.3

0.4

0.5

0.6

F
(H

z)

(a) (b)

0.1

0.2

0.3

0.4

0.5

0.6

F
(H

z)

(c) (d)

0 100 200 300 400 500

time (s)

0.1

0.2

0.3

0.4

0.5

0.6

F
(H

z)

(e)

0 100 200 300 400 500

time (s)

(f)

Fig. 10. Respiratory rate estimation in real ECGs using different methods.
The left column presents TF spectra obtained from the reference respiratory
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corresponds to the rate estimation procedure in (a)–(b) [16], (c)–(d) [22],
(e)–(f) this study. The resulting intra-subject errors are 0.062±0.063 Hz,
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peak f-wave amplitude is more prominent in V1 and V2 than in

V5 (Table I). However, V5 is less influenced by respiration than

V2 since the performance does not improve when analyzing

(V1, V2) instead of (V1, V5), suggesting that the influence of

both respiration and f-waves vary from lead to lead.

In the EDR signals, morphological changes in the QRS

complexes due to the f-waves are manifested by additional

spectral components complicating the estimation of a time-

varying respiratory rate. Moreover, the intrinsic sampling rate

of the EDR signal is determined by the heart rate and thus

aliasing will occur for components whose frequencies exceed

half the mean heart rate. The alias of the first harmonic of the

f-waves may lie in the frequency range of respiratory rates and

therefore introduce spurious peaks.

To address this problem, a novel definition of peakedness

is introduced as well as novel criteria for the selection of

a spectral peak defining the respiratory rate. In [16], the

respiratory rate is determined by the location of the peak with

the largest spectral power, while, in [22], by the location of

the peak closest to a smoothed respiratory rate estimate f̄r(k).
In this study, respiratory rate estimation is performed through

minimization of a cost function which, for each spectral peak,

quantifies the power deviation from the largest peak and the

frequency deviation from f̄r(k). The peak selection procedures

in [16] and [22] are special cases of the proposed method,

obtained by either setting af =0 or ap=0.

The significance of the peak selection criteria on perfor-

mance is evaluated on real ECGs. Analyzing dSR(n), the

results in Fig. 8 show that the peakedness measure in (10)

achieves the lowest error, while similar errors are obtained

for dLA,s(n) and dRA(n) using the peakedness measure in

[22]. The peakedness measure in [16] yields a larger error

than do the other two measures since its design parameters

were chosen to account for the dynamics of a stress test.

The results suggest that the technique for respiratory rate

estimation proposed in this study perform well in the presence

of spectral components caused by f-waves. The technique may

provide better tracking of respiratory rate in patients with SDB

when the spectral components are caused by either amplitude

or frequency modulation in the respiratory signal.

This work has focused on evaluating single EDR method-

ologies with and without f-wave cancellation. Further studies

can be done by fusing information from different EDR sig-

nals to further improve the accuracy of the respiratory rate

estimation, as proposed in [22].

A limitation of the present study is that the performance

was studied on only one respiratory rate pattern in simulated

signals. Another limitation is that only one f-wave suppres-

sion method was investigated. Other methods which better

preserve the respiratory information than does signal- and

noise-dependent weighted averaging should be investigated. It

should also be pointed out that the real ECGs were recorded

during rest and therefore further investigations should be

undertaken to establish the performance on ECGs recorded

in ambulatory conditions. Nonetheless, the results based on

simulated ECGs give an idea of performance under such

conditions.
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VII. CONCLUSIONS

Based on real and simulated ECGs, the results show that the

slope range method offers the best performance in respiratory

rate estimation. Moreover, this method is computationally

simple since f-wave suppression is not needed. The R-wave

angle method also offers robust performance without needing

f-wave suppression, and, therefore, it can be concluded that

the slope-based methods are less affected by the presence of

f-waves.

APPENDIX

A. Computation of f̄r(k)

The computation of f̄r(k) involves a number of special

cases. At initialization, S̄0(f) is constructed using 2K spectra

and Ωp and Ω are centered around the global maximum of

S̄0(f). Then, f̄r(0) is determined by finding the highest local

maximum in Ωr.

If no spectrum is peaked enough, S̄k(f) is not defined; thus,

f̂r(k) is not computed and, accordingly, f̄r(k)= f̄r(k −1). If

no estimate has been produced for the last 15 s, either due to an

abrupt change in fr(k) or incorrect estimation of fr(k), f̄r(k)
is reinitialized. The reinitialization is performed by finding the

local maximum in Ωr associated with the minimum cost in

(19), leading to

f̄r(k)=fjc(k), (22)

where the bandwidth of the analyzed frequency band in

Cf (k, j) is based on Ωr.

B. Simulated ECGs

1) QRST Complexes: The multi-lead ECG model in [32]

is used for simulating QRST complexes with different mor-

phologies, see [30] for further details. A synthesized orthog-

onal three-lead VCG signal uQRS(n) (3x1) is constructed by

concatenating a single QRST complex for each lead (X,Y, Z)

until the desired length is attained. The Physionet Long Term

Atrial Fibrillation Database is used for creating a set of AF

rhythms.

2) f-waves: A set of 20 segments with real, multi-lead f-

waves uf (n) (12 × 1) is extracted from a database with 12-

lead ECGs acquired from patients clinically diagnosed with

persistent AF [33].

3) Noise: A noise component un(n) (12× 1) is composed

of two types of noise frequently encountered in ambulatory

recordings, muscle noise and electrode movement artifacts

extracted from the MIT BIH Noise Stress Test Database. Noise

with 20 µV RMS is included to better mimic real ECGs [30].

4) Respiratory Influence: In [34], see also [35], it was

proposed that the angular variation around each axis (lead l) is

proportional to the amount of air in the lungs during the p:th

respiratory cycle. The time-varying angles are modeled by the

product of two sigmoidal functions reflecting inhalation and

exhalation:

φl(n)=

∞
∑

p=1

ζr
ζ0

(

1

1+eλIN(p)(n−nIN(p))

)(

1

1+eλEX(p)(n−nEX(p))

)

,

(23)

λIN(p) = −20
Fr(p)

Fs,ECG

, (24)

nIN(p) = nd(p)+0.35
Fs,ECG

Fr(p)
, (25)

λEX(p) = 15
Fr(p)

Fs,ECG

, (26)

nEX(p) = nd(p)+0.6
Fs,ECG

Fr(p)
, (27)

nd(p) =

p
∑

j=1

Fs,ECG

Fr(j)
−

Fs,ECG

Fr(1)
, (28)

where 1/λIN(p) and 1/λEX(p) are the duration of inhalation

and exhalation, respectively, nIN(p) and nEX(p) are the respec-

tive time delays of the sigmoidal functions based on the delay

of the previous cycles nd(p), Fr(p) is the respiratory rate, and

ζR is the maximum angular variation. The maximum value of

the product of the two sigmoidal functions, located at the time

instant
λIN(p)nIN(p)−λEX(p)nEX(p)

λIN(p)−λEX(p)
(intersection point), consists in

the normalization term ζ0:

ζ0 =

(

1

1 + e
−

nIN(p)−nEX(p)

1/λIN(p)−1/λEX(p)

)2

≈ 0.8. (29)

Taking into account that nIN(p) and nEX(p), as well as

1/λIN(p) and 1/λEX(p), are analogous to Fs,ECG/Fr(p), ζ0

becomes fixed and independent of the p:th respiratory cycle.

Finally, the simulated standard 12-lead ECG results from a

linear transformation of the three orthogonal leads X , Y , Z
[36]:

y(n) = DQ(n)uQRS(n) + uf (n) + un(n), (30)

where D (12×3) is the Dower matrix, and Q(n) is the rotation

matrix defined as the product of planar rotations with time-

varying angles φl(n).
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