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a b s t r a c t 

Background and objective: Although traumatic loading has been associated with periodontal ligament 

(PDL) damage and therefore with several oral disorders, the damage phenomena and the traumatic loads 

involved are still unclear. The complex composition and extremely thin size of the PDL make experimen- 

tation difficult, requiring computational studies that consider the macroscopic loading conditions, the 

microscopic composition and fine detailed geometry of the tissue. In this study, a new methodology to 

analyse the damage phenomena in the collagen network and the extracellular matrix of the PDL caused 

by parafunctional and traumatic occlusal forces was proposed. 

Methods: The entire human mandible and a portion thereof containing a full cuspid tooth were sepa- 

rately modelled using finite element analysis based on computed tomography and micro-computed to- 

mography images, respectively. The first model was experimentally validated by occlusion analysis and 

subjected to the muscle loads produced during hard and soft chewing, traumatic cuspid occlusion, grind- 

ing, clenching, and simultaneous grinding and clenching. The occlusal forces computed by the first model 

were subsequently applied to the single tooth model to evaluate damage to the collagen network and the 

extracellular matrix of the PDL. 

Results: Early occlusal contact on the left cuspid tooth guided the mandible to the more occluded side 

(16.5% greater in the right side) and absorbed most of the lateral load. The intrusive occlusal loads on 

the posterior teeth were 0.77–13.3% greater than those on the cuspid. According to our findings, damage 

to the collagen network and the extracellular matrix of the PDL could occur in traumatic and grinding 

conditions, mainly due to fibre overstretching ( > 60%) and interstitial fluid overpressure ( > 4.7 kPa), re- 

spectively. 

Conclusions: Our findings provide important biomechanical insights into the determination of damage 

mechanisms which are caused by mechanical loading and the key role of the porous-fibrous behaviour 

of the PDL in parafunctional and traumatic loading scenarios. Besides, the 3D loading conditions com- 

puted from occlusal contacts will help future studies in the design of new orthodontics appliances and 

encourage the application of computing methods in medical practice. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The stomatognathic system provides the complex function of

hewing by the synergic activity of the elevator and depressor
∗ Corresponding author at: Aragon Institute of Engineering Research (I3A), School 

f Engineering and Architecture, University of Zaragoza, Calle María de Luna 3, 

aragoza 50018, Spain. 

E-mail address: javierortun@unizar.es (J. Ortún-Terrazas). 

p  

H  

f  

t  

T  

ttps://doi.org/10.1016/j.cmpb.2019.105107 

169-2607/© 2019 The Authors. Published by Elsevier B.V. This is an open access article u
uscles that moves the mandible along the contact surfaces of the

emporomandibular joints (TMJs) and that is limited by the oc-

lusal surfaces of the teeth [1] . The occlusal reaction forces are

eanwhile absorbed by the periodontal ligaments (PDLs) which

lay a key role in transferring them to the surrounding bone.

ence, PDL damage can result in a variety of disorders ranging

rom lesser to greater severity, including loss of the connective ma-

rix, pathologic tooth movement, bone resorption, malocclusions,

MJ disorders, and myalgia [2,3] . Understanding the biomechanical
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Top grey box: tissue sample in relaxed state with crimped collagen fibres and scheme of the PDL composition. Below: an schematic showing an axial tensile- 

compressive test of a PDL until rupture with the representation of the fibres and the interstitial fluid of the tissue at different stages of the tension/compression test: a) 

tissue compressed with significant interstitial fluid contribution to the loading support; b) tissue partially stretched with fewer fibre entanglements and a high ECM solid 

phase contribution to the loading support; c) tissue overstretched and fibrous network almost completely ruptured; d) overcompression resulting in complete fluid extrusion 

and damage to the PDL’s dry ECM. (This damage phenomenon was not considered in this study). 
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response of the PDL is crucial in order to elucidate its role in

the development of these disorders [4–7] . Although several ex-

perimental [8,9] and computational [9–11] studies have attempted

to describe the processes involved in PDL damage, it is still un-

clear how mechanical loading under traumatic and parafunctional

conditions affects the health of the PDL. Moreover, study of the

PDL is complicated by its complex mechanical and anatomical

composition. 

Anatomically, the PDL is a soft connective tissue composed of

an extracellular matrix (ECM) in which a fibrous collagen net-

work is embedded [12] and elastin fibrils are randomly distributed

[13] ( Fig. 1 ). The collagen network is mainly composed of colla-

gen types I (approximately 80%) and III (about 15%), but also of

types IV, V, VI, XII and XIV in small quantities [14] . The non-fibrous

component of ECM is composed by lymph vessels, blood vessels

and the ground substance which includes proteoglycans, glycopro-

teins, hyaluronan and mainly, the interstitial fluid (about 70% of
he ground substance) [14,15] . Biomechanically, the fibrous net-

ork architecture has a key role in the transversally isotropic ten-

ile behaviour of the PDL [9,16] , while the rest of the ECM com-

onents cause an almost viscous-hyperelastic isotropic behaviour.

lastin fibrils contribute to ECM consistency and the fluid phase

f the ECM generates a viscoelastic response to compression, ab-

orbing most of the compressive load [15–17] . The viscoelastic be-

aviour confers the ligament with an almost incompressible re-

ponse at fast strain rates and a highly compressible behaviour

t slow strain rates [16,18] . Furthermore, excessive compression or

ast strain-rates can hinder interstitial fluid flow, leading to dam-

ge of the ECM ( Fig. 1 a) [19] . In the unloaded state, the collagen fi-

res are wavy and partially disorganized [9,11,20] ( Fig. 1 b). Stretch-

ng of the tissue results in progressive uncrimping and alignment

f the fibres, leading to a stiffer PDL response when the fibres

re geometrically aligned ( Fig. 1 b) [9,16] . Thus, if the tissue is

nloaded and immediately loaded again, the fibre entanglements
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ecome disentangled [10,21] and some fibres are ruptured [22] ,

oftening the tissue mainly at the toe region. The network’s archi-

ecture plays, therefore, a key role in the fatigue behaviour of the

etwork, as it was recently demonstrated in Dhume et al. multi-

cale study [22] . When fibres are uncrimped and the tissue con-

inues being stretched under its stretching limit, the tissue stiff-

ess become almost linear due to fibre are already aligned and

ncrimped. Any further stretching causes complete rupture of the

issue ( Fig. 1 c). In summary, fast compressive strain rates and cyclic

oads/overstretching of the PDL can lead to progressive damage of

he ECM and the collagen network, respectively. 

These complex damage phenomena significantly complicate at-

empts to perform in vivo and non-destructive experimental anal-

ses [23] . Fortunately, computational methods such as finite ele-

ent (FE) analysis enable non-destructive evaluation of PDL dam-

ge. However, most FE models are simplified by assuming that

ooth’s occlusal forces are almost oriented along tooth’s long axis;

implified PDL geometry; and homogeneous or non-time depen-

ent behaviour of the PDL. 

The assumption of tooth’s occlusal forces almost aligned with

he tooth axis is mainly due to that fact that current devices do

ot enable measurement of the direction of occlusal forces in 3

imensions [24] . FE models that include accurate definitions of

ooth surfaces and of PDL damping behaviour would allow suc-

essful computation of occlusal loads on the dentition of a spe-

ific patient. Some authors [25–27] have used micro-computed to-

ography (μCT) scanning to avoid simplifying the occlusal surfaces

nd to take into account the irregular thickness of the PDL. Al-

hough some computational studies have characterized the viscous

4,10,28,29] , fibrous [5,9] or porous-fibrous [16] behaviour of the

DL, few have considered the softening caused by the disentan-

led of the fibres entanglements, the alignment of the fibres and

he damage of the chemical crosslinks at low strains or the dam-

ge caused by the rupture of the tissue at higher strains [9,10,21] .

onsequently, the relationship between PDL damage and mechani-

al overload in realistic traumatic conditions remains unknown. No

revious in silico study has analysed the PDL damage response un-

er different 3D loading scenarios, taking into account the non-

niform thickness, the porous-fibrous structure of the PDL and the

amage phenomena to which it was subjected. 

In this study, we evaluated the mechanical response of the PDL

nd the damage it sustains when subjected to normal, parafunc-

ional, and traumatic occlusal forces using an in silico approach

hat considers the 3D loading conditions, micromorphology, and

orous-fibrous biological composition of the PDL through models

f different scales. To this end, a FE model of a full dentition was

ubjected to various combinations of muscular forces that pro-

uced different occlusal conditions. Next, the occlusal responses

athered from the full dentition model were applied to a single

ooth model of the left cuspid with fine detail that took into ac-

ount the non-uniform thickness and porous-fibrous structure of

he PDL and the damage phenomena to which it is subjected. 

. Material and methods 

.1. FE model of the full dentition 

A 3D model of a complete dentition was developed from data

f a 44-year-old male with a functional crossbite but with no pe-

iodontal diseases and with no facial asymmetry (chin deviation

 4 mm from the facial midline). The data was obtained as a

art of an orthodontic treatment planning for the correction of

he malocclusion and to push forward the left lateral incisor of

he superior arch. It was digitalized by cone beam computed to-

ography (CBCT) (Vatech PaX-i 3D Green, Vatech Spain) using a

0-kVp tube voltage, tube current of 4 mA, field of view (FOV)
f 20 cm × 19 cm, an acquisition time of 24 s and a voxel size

f 0.6 mm. The images were output in a 14-bit grey scale and

6,384 shades of grey. The cylindrical reconstruction of the dataset

onsisted of 210 images with an interscan distance of 0.60 mm.

he hard tissues were automatically segmented by Mimics soft-

are (Mimics, v.19.; Materialise, Leuven, Belgium) using threshold

evels of 226 [30] and 1688 [31] Hounsfield unit (HU) for osseous

nd dental regions respectively .The PDL was defined as a 0.2-mm-

hick layer around each tooth [32,33] ( Fig. 2 a). Next, the model was

eshed via a mesh convergence process using 1,120,179 elements

n Abaqus software (Abaqus 6.14, Simulia, Rhode Island, USA). 

Linear elastic properties were assigned to all tissues, except for

he PDLs of this model, to which non-linear hyperelastic proper-

ies [34] were assigned ( Table A.2 ). In the full dentition model,

he porous fibrous properties were not considered for the defini-

ion of PDLs’ behaviour in order to avoid excessively increasing the

omputational cost in Abaqus. Whereas in the single tooth model

hich will be later explained, porous and fibrous properties were

onsidered. 

The upper nodes of the maxilla were fixed, and the nodes of

he condyles were linked to the point at which both condylar long

xes are intersected (point P in Fig. 2 a) by rigid beam elements.

lthough the displacements of this point were fixed, the beam el-

ments could rotate, allowing the rotation of the mandible along

he condylar axes, following the TMJ fulcrum theory [35] . By con-

rast, the condylar paths were neglected since the slight transla-

ion of the condyles from the initial position of the mandible (rest-

ng position) to its position in centric occlusion (CO). The occlusal

ontacts were defined using a friction coefficient of 0.2 [25,36] ,

nd a penalty contact formulation. The PDLs were attached to

he surrounding hard tissues by tied connections. Multiple load-

ng conditions were simulated: hard and soft normal chewing by

he right side (chewing side in Fig. 2 a), traumatic cuspid-cuspid

cclusion, and parafunctional conditions (grinding, clenching, and

 combination of both). For each loading condition, the mastica-

ory muscles were mimicked by connector elements that simulate

he passive, active, and dampening responses of the muscles. To

imulate hard and soft chewing tasks the muscles activation data

f the study of Farella and coworkers [37] was used, when a piece

1 × 1 × 1 cm) of dried meat and a commercially available gum

Spearmint, Migros, Zurich, Switzerland) were respectively chewed.

n the occlusal trauma simulation, only cuspid-cuspid contact was

llowed. 

To compare the simulation with a real voluntary clenching

cenario, the patient’s occlusion was experimentally recorded by

iezoelectric film sensor using a T-Scan III system (Tek-Scan South

oston, MA, USA) and visualized in T-Scan v10 software. The oc-

lusal contacts of the simulation were then compared with the ex-

erimental measurements in a common visualization environment.

dditional information on the mesh, material properties, muscle

orces, and occlusal analysis is provided in Appendix A . 

.2. FE model of the single cuspid tooth 

A portion of a human mandible with the entire left cuspid was

canned ex vivo using a μCT scanner (Skyscan 1172, Bruker μCT

.V., Kontich, Belgium). The resulting tomographic images were re-

uilt using a modified Feldkamp algorithm in NRecon 1.6.1.7, ap-

lying reduced artifact. The model was meshed in Abaqus using

67,913 elements ( Fig. 2 b). 

In contrast to the FE model of the full dentition, the porous-

brous component of the PDL [16] was accounted for by means of

 porous transversally isotropic hyperelastic material model, which

lso incorporated damage phenomena caused by fibre uncrimp-

ng and rupture [21] . The fibres were distributed cylindrically us-

ng a cylindrical coordinate system with the Z-axis running along
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Fig. 2. a) Left: mesh of the full dentition model obtained by CBCT scan with mandible, maxilla, teeth, and PDLs. Right: schematic showing the boundary conditions applied 

to the model and the muscle system modelled. SM, superficial masseter; DM, deep masseter; ILP, inferior lateral pterygoid; AT, anterior temporalis; PT, posterior temporalis; 

MP, medial pterygoid. b) Left to right: mesh of the portion of a human mandible obtained by μCT; section of the model with color-coded components; schematic showing 

of the cylindrical coordinate system used to describe the orientation of the fibres bundles, and boundary conditions applied to the model. 
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the length of each tooth ( Fig. 2 b). For each fibre bundles, apical,

oblique, horizontal, and alveolar crest, the preferential direction of

the fibres ( α vector in Fig. 2 b) was defined varying α along Z-axis

between 0 to −20, −20 to 55, 55 to 0, and 0 to 60 ° for each fibre

bundles respectively, in accordance to a previous study of the lit-

erature [38] . Porous behaviour was also considered in the dentin

and trabecular bone regions. The remaining tissues were defined

using only elastic or hyperelastic properties, without considering

viscoelastic effects. Additional information on the model, the va-

lidity of which has been previously demonstrated [16] , is provided

in the Appendix C . 

To mimic the boundary conditions of the full mandible, the

nodes located in the cutting planes of the mandible were fixed,

and the movement of the cut surfaces of the lateral teeth was con-

strained to the mesial-distal direction ( Fig. 2 a). The properties of

the occlusal contacts and the occlusal forces of the full dentition

model were mirrored in this model. To establish the loading condi-

tions, the occlusal reaction forces on the lower left cuspid tooth of

the full dentition model were deconstructed into intrusive, labial-

lingual, and mesial-distal components. The single tooth model was

then loaded two times with these reaction forces with an unload-

ing period of 1.12 s (sec) between each loading (show “opening”

interval in Fig. 3 b). Based on T-Scan measurements, normal chew-

ing cycles were simulated for 1.58 s and maintained for 2.76 s to

simulate parafunctional clenching ( Fig. 3 b). Grinding cycles lasted

0.95 s ( Fig. 3 c). To simulate spontaneous trauma, load was ap-

plied 25% faster than in hard and soft chewing tasks (2.70 s),

in which the load was applied in 1.58 s and was removed in

1.12 s [39] . 
. Results 

.1. Occlusal contacts 

The occlusal analysis yielded quantifiable contact pressures for

ach tooth when the patient clenched with maximum voluntary

orce. Initially, the contacts predominantly centred on the left

ower cuspid, guiding the mandible to the right ( Fig. 3 b). Pos-

erior occlusion mainly occurred in teeth 16–17 and 26–27 ( Fig.

 a). The full occlusion cycle ended with slightly greater loading

n the right than the left side (58.2 and 41.7% of the total reac-

ion forces, respectively) ( Fig. 3 a). The FE simulation yielded a sim-

lar occlusal pattern ( Fig. 3 a), with early contact on the left cuspid

ooth ( Fig. 4 e) that guided the mandible slightly to the right. 

.2. Occlusal forces 

Fig. 4 shows the reaction loads on the lower left cuspid and the

remolars and molars of the right-hand side for different loading

onditions. All simulations revealed an early cuspid-cuspid contact

hat decreased when the posterior teeth occluded, expect in oc-

lusal trauma where posterior teeth did not contact. In hard and

oft clenching tasks, the tangential friction on the cuspid tooth

as maximum at the beginning of loading and decreased when

he mandible was guided to the chewing side and posterior teeth

egan to occlude. Thus, the tangential friction forces on the poste-

ior teeth were more uniform than on the cuspid tooth due to the

xcursive movement decreased and the occlusion is more stable at

he end of the chewing cycle. 
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Fig. 3. a) Occlusal contacts at maximum intercuspation (MI) clenching measured by T-scan occlusal analysis sensor (top) and in a computational simulation (bottom), with 

maximum occlusal loads in teeth 16–17 and 26–27. Evolution of the relative percentage of the total occlusal force (black line) produced by the contacts on the teeth of the 

right (red line) or left (green line) dentition halves during clenching (b) and grinding (c). 
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In the 2 normal chewing scenarios ( Fig. 4 a and b), the nor-

al reaction forces on the cuspid tooth were lower than 9 N and

anged from 17 to 120 N for the posterior teeth. The low tangen-

ial friction between posterior teeth may have been due to the fact

hat the lateral movements were mainly supported by the cuspid. 

Maximum reaction force in the cuspid was obtained when trau-

atic loads were applied ( Fig. 4 c). In this loading scenario, 2 dif-

erent slopes were observed: the first was caused by sliding of the

pper canine along the mesiolingual fossa of the lower cuspid. The

econd slope occurred when the mesial cusp ridge of the lower

uspid contacted with the cingulum of the upper cuspid. 
c  
During grinding movement, the reaction forces on the cuspid

ooth were more than 3 times greater than normal occlusal reac-

ion forces ( Fig. 4 d), but were similar to those observed for clench-

ng ( Fig. 4 e), during which most of the occlusion was supported by

he posterior teeth. 

.3. PDL reactions 

Occlusal forces (black lines in Fig. 5 ) were applied twice to

he single tooth model to induce a reaction movement (grey dis-

ontinuous lines in Fig. 5 ) of the cuspid tooth for each loading.
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Fig. 4. Normal (black lines) and tangential (grey discontinuous lines) occlusal forces on the left cuspid, both right premolars, and the 3 right molars during a) soft chewing; 

b) hard chewing; c) traumatic cuspid-cuspid occlusion; d) grinding; e) involuntary clenching; and f) combined grinding and clenching. 
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Fig. 5. Deconstructed vectors (black lines) of the occlusal force gathered from the cuspid tooth in the full dentition model and resulting displacement (grey discontinuous 

lines) of the cuspid tooth in intrusive, labial-lingual, and mesial-distal directions during a) soft chewing; b) hard chewing; c) traumatic cuspid-cuspid occlusion; d) grinding; 

e) involuntary clenching; and f) combined grinding and clenching. 
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Remarkably, the residual displacements observed after the first cy-

cle due to the combination of the viscous effect of the fluid phase

with the softening phenomena of the fibre uncrimping. 

Normal chewing forces ( Fig. 5 a and b) cause the cuspid tooth

to rotate, leading to compressive loads in the alveolar-crest and in

the apical regions of the bone in distal and mesial directions, re-

spectively ( Fig. 6 a and b). These compressive loads resulted in en-

ergy dissipation (third column in Fig. 6 a and b) and therefore an

increase in hydrostatic pressure ( Fig. 7 a and b) due to fluid flow

in these areas. Nonetheless, overstretching of the fibrous network

only occurred when traumatic loads were applied ( Fig. 5 c). Damage

of the fibrous network ( Fig. 6 c) resulted in an abrupt increase in

fluid overpressure ( Fig. 7 c) at the 80–100% of the first loading cy-

cle which correspond to the 0.32–0.40 s time period. On the other

hand, excessive tooth rotation in response to grinding ( Fig. 5 d) re-

sulted in local stress distribution on the alveolar bone ( Fig. 6 d) and

an interstitial fluid pressure ( Fig. 7 d) that was greater than the cap-

illary blood pressure σ̄h = 4 . 7 kPa ( 35 mm Hg ) , which is considered

by some authors [19,40] as the limit of the non-damage state. Curi-

ously, no damage or overpressure phenomena occurred in the PDL

when clenching loads were applied ( Figs. 5 d and 6 e). Support of

most of the occlusal forces by the posterior teeth likely explains

the low stress state observed in these scenarios. 

4. Discussion 

PDL damage plays a key role in the development of many oral

diseases, occlusal disorders, and the loss of bone and teeth [41] .

Despite great effort by researchers studying the biomechanical re-

sponses of the PDL [9,15,21,23] , the mechanisms underlying PDL

damage remain unclear. Most previous studies have failed to ad-

equately simulate the biomechanical response of the PDL by ne-

glecting its irregular thickness and porous fibrous structure, or

the variable direction of the tooth’s occlusal forces during the

mandibular movement. 

In this in silico study, we studied porous-fibrous damage phe-

nomena in the PDL using a fine detail model of a single tooth that

was subjected to 3D normal, traumatic, and parafunctional loads

that were first evaluated in a larger sized FE model of a full denti-

tion. 

The literature reveals several discrepancies regarding the

magnitude of occlusal forces to which the PDL is subjected,

with reported values ranging from 1 N [6,42,43] to over 100 N

[44–46] for the same tooth. This lack of consistency is mainly

due to patient-specific variations in number of contacts and the

type of chewing activity analysed. Moreover, most studies do

not consider viscoelastic phenomena. In the present study, we

computed the magnitude and duration of occlusal forces using

a macroscale model of a full dentition of a specific patient. The

results of the occlusal analysis revealed a close correspondence

between the computational findings and the contacts measured

experimentally during clenching, with slight differences observed

for the occlusion of premolar teeth on the right side ( Fig. 3 a)

which could be caused by variations in the film’ position or by

tongue movements. Additionally, the gaps in the T-Scan measure-

ments could be the result of a coarse adjustment of the device

sensitivity since they coincide with the less occluded regions, or

because an excessively soft material was used to simulate the film

in the computational analysis. A previous study in which occlusion

was analysed using T-Scan measurements [47] reported reliability

errors of 2.8%. Possible explanations for the differences between

our T-Scan measurements and the results produced by the model

include the activation of different muscles in physiological versus

modelled scenarios and deviations that may arise during image

segmentation and modelling. Despite these differences, our simu-

lations successfully mimicked the occlusal pattern, with an early
ontact on the left lower cuspid ( Fig. 4 ) that partially guided the

andible to the right ( Fig. 3 b). This occlusal pattern is a key fea-

ure of canine protected occlusion (CPO) [48] , the main premise of

hich is that only cuspid-cuspid contact occurs during excursive

ovements of the mandible, and therefore that cuspid occlusion

rotects the posterior teeth from lateral loads. The T-Scan data

 Fig. 3 b) showed that the cuspid tooth plays a key role in orienting

he mandible towards maximum intercuspation position at the

eginning of the chewing cycle (0.8 s). When the occlusal reac-

ion force was decomposed into the intrusive, labial-lingual, and

esial-distal directions ( Fig. 5 ), it was noted that the occlusal force

n the cuspid tooth was mainly applied laterally (labial-lingual

nd mesial-distal), promoting the tooth rotation around its centre

f rotation (CR) [49] . The PDL stress values produced by our model

ere significantly higher than those reported in previous studies

50–52] , in which the lateral directions of the tooth’s occlusion

orce vector were not considered. 

As expected, no signs of collagen network damage or ECM over-

ressure were observed in normal chewing conditions. However,

n traumatic occlusion conditions damage of the fibrous network

as caused by the high occlusal load in the intrusive direction ( >

0 N), resulting in partial rupture of the collagen fibres and inter-

titial fluid overpressure in the apical region of the PDL. Although

ome biological studies have empirically analysed fibrous network

amage [7,53] and ECM loss [19,54] caused by overstretching of

he PDL or interstitial fluid overpressure, our study is the first

o provide numerical evidence of these phenomena using a ma-

erial model that consider fluid and solid phase of the PDL. One

nexpected result was the low reaction forces on the cuspid ob-

erved in response to parafunctional occlusal forces such as clench-

ng or clenching/grinding. In these scenarios, the posterior teeth

upported most of the chewing load, resulting in force reactions

f over 300 N, in agreement with previously reported values [24] .

eanwhile, the stress state of the bone adjacent to the cuspid was

lightly higher than that observed in normal chewing conditions.

uture studies should consider the damage caused to the PDLs of

he posterior teeth in these loading conditions. In the grinding con-

ition, the lateral occlusal forces on the cuspid were similar to

hose observed for traumatic occlusion (around 20 N). Although

hese loads did not cause damage to the fibrous matrix, there were

ertain areas in which the hydrostatic pressure of the interstitial

uid was higher than that of capillary blood, indicating the po-

ential for ECM damage. This state of overpressure could account

or PDL attachment and bone loss in patients with teeth grinding

abits [55] . 

In summary, in this in silico study we evaluated biological dam-

ge phenomena in a cuspid PDL under normal, traumatic, and

arafunctional 3D loading conditions, using a model that took into

ccount the non-uniform thickness and fluid-fibrous composition

f the PDL. Based on our findings we hypothesize that the me-

hanical stimuli produced during grinding and traumatic occlusion

f the cuspid lead to damage of the fibrous network and ECM of

he cuspid PDL caused by fibre overstretching and high hydrostatic

ressures, respectively. Our data also point to PDL damage in the

osterior teeth during clenching as an emerging issue that should

e investigated further in future studies. 

.1. Limitations 

Our results should be interpreted bearing in mind four main

imitations. First, the occlusal loads computed in this study are

alid only for the specific patient studied and cannot be di-

ectly extrapolated to occlusal models corresponding to other clin-

cal cases. Second, although PDL properties were based on ex-

erimental data from animals with chewing systems similar to

hose of humans, the mechanical properties of the respective
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Fig. 6. Minimum (3rd principal stress) and maximum (1st principal stress) principal stresses in bone regions (first column) and in the PDL of the cuspid tooth (second 

column) and void ratio in the PDL (third column) at maximum loading time during a) soft chewing; b) hard chewing; c) traumatic cuspid-cuspid occlusion; d) grinding; e) 

involuntary clenching; and f) combined grinding and clenching. 
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Fig. 7. Evolution (expressed as percentage of the total duration of the 1st loading-unloading cycle) of the interstitial fluid hydrostatic pressure (left) and of the pressure in 

the solid matrix (right) under the following load conditions: a) soft chewing; b) hard chewing; c) traumatic cuspid-cuspid occlusion; d) grinding; e) involuntary clenching; 

and f) combined grinding and clenching. ( Note: PDL images show axial views). 
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systems may differ. Thirdly, as other studies of the literature

[56–58] , our model did not allow the condylar translation which

is a key factor for the simulation of anteroposterior and medio-

lateral movements of the mandible. Finally, owing to the scarcity

of data on the magnitude and sequence of muscle forces in

deep muscles, we were obliged to estimate the contractile forces

for each activity based on the anatomical relationships between
muscles. m
Bearing these limitations in mind, our results nonetheless could

erve to demonstrate a role of the PDL in the origin of oral

isorders and serve as a useful basis for the future design and

valuation of dental prostheses and implants. Moreover, our find-

ngs highlight several issues that could be addressed in future

tudies, including the relationship between the mechanobiologi-

al responses of the PDL, PDL damage, and the evolution of tooth
ovement. 
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Table A.1 

Types of elements, number of elements, and number of nodes used in each part of 

the FE model of the full dentition. 

FE model of the full dentition 

Region Element type No. of elements No. of nodes 

Maxillary cortical bone C3D10 3,434 15,753 

Maxillary trabecular bone C3D10 67,715 104,042 

Mandibular cortical bone C3D10 28,334 117,933 

Mandibular trabecular bone C3D10 265,566 418,354 

PDLs C3D20H 390,160 2,117,913 

Teeth C3D10 364,970 241,338 
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. Conclusion 

Within the limitations of this study, we can draw the following

onclusions: 

1. Early contact of the cuspid tooth could be the main respon-

sible for absorbing lateral occlusal forces, which may serve

to validate the basic premise of canine protected occlusion. 

2. The response of the PDL to occlusal forces seems to be

highly dependent on time and it could be characterised by a

persisting stress state between cycles of occlusal forces and

residual displacement. 

3. In grinding conditions, the PDL of the cuspid tooth seems

to be subjected to high lateral compressive loads that could

cause ECM damage. 

4. Traumatic cuspid-cuspid occlusion could result in deteriora-

tion of the fibrous network and the ECM of the PDL which

could be caused by fibre overstretching and interstitial fluid

overpressure, respectively. 

unding 

This work was supported by the Spanish Ministry of Economy

nd Competitiveness (project DPI 2016–79302-R ), the European So-

ial Funds and Regional Government of Aragon (grant 2016/20 ) and

bercaja- Cai Fundation (grant IT 4/18 ). 

eclaration of Competing Interest 

The authors have no conflicts of interest. 

ppendix A. Details of the FE model of the full dentition 

The 3D model of the full dentition consisted of a portion of

he superior maxilla, the mandible, and the 16 teeth of each arch

ith their respective periodontal ligaments (PDLs) ( Fig. 2 a). Hard

issues were segmented by Mimics software (Mimics, v.19.; Ma-

erialise, Leuven, Belgium). Firstly, osseous and dental regions of

he model were separated through the respective segmentation of

he database with threshold levels of 226 HU [1] and 1688 HU [2].

hen, the trabecular bone and the enamel of each tooth were re-

pectively segmented by Mimics default threshold levels of 148 HU

nd 1553 HU. The results of enamel and trabecular bone segmen-

ation was subtracted from the original segmentation mask to dif-

erentiate the cortical and dentin regions. Finally, the pulp of each

ooth was defined by the gap inside each tooth. 

esh 

The finite element (FE) mesh was generated using a free mesh-

ng technique of 3D solid elements and was refined until further

efinement resulted in differences of less than 7%. Except for the

DL, all tissues were meshed using second order tetrahedral el-

ments with mean dimensions of 0.20 mm in all directions and

 maximum deviation factor of 0.1. Each PDL was meshed using

 second order hexahedral hybrid element along its thickness to

void excessively increasing the computational cost ( Table A.1 ). Hy-

rid formulation was required to simulate the incompressible be-

aviour of the PDL. 

echanical behaviour of the PDL 

The behaviour of the PDL was defined by a nonlinear hyper-

lastic material model using the fifth order Ogden strain energy

unction [3], as follows: 

 = 

5 ∑ 

i =1 

2 μi 

αi 
2 

(
λ̄αi 

1 
+ ̄λαi 

2 
+ ̄λαi 

3 
− 3 

)
+ 

5 ∑ 

i =1 

1 

D i 
( J el − 1 ) 

2 i (A.1) 
here J el is the elastic volume strain, μ and α are material pa-

ameters, λj is the stretch ratio at principal direction j (related to

he strain, εj , by λi = εj + 1), and D is related to the bulk modu-

us. For almost incompressible materials ( D � 0 and J el � 1), the

esolution of Eq. (A.1) leads a numerical problem which is solved

n Abaqus using hybrid elements formulation. Material parameters

ere computed by non-linear fitting in MATLAB commercial soft-

are (MATLAB 6.0 R12 The MathWorks Inc., Natick, MA, 20 0 0) of

he analytical solution ( Eq. (A.1) ) to experimental compression [4]

nd stretch [5] data from the literature. Material parameters and

he fitted curve for the characterized material model are shown in

able A.2 and Fig. A.1 a, respectively. 

odelling of the muscle system 

The active ( F a ), passive ( F p ), and damping ( F d ) responses of each

hewing muscle were defined through the actuator, spring, and

amper components of the connector elements (CONN3D2-type el-

ment in Abaqus), respectively. The active force ( F a = MVC · F max )

f each muscle depended on the activity studied and was deter-

ined by multiplying the maximum voluntary clench (MVC) per-

entage by the maximum force of each muscle ( F max ) ( Table A.3 ).

ue to the lack of available data on the responses of deep muscles,

e were obliged to estimate their MVC percentages for each activ-

ty based on available values for superficial muscles. For instance,

or occlusal trauma the MVC percentages for deep muscles were

omputed by multiplying MVC values in normal chewing condi-

ions (MVC 

HC ) by c OT , a coefficient of 1.44, which was calculated as

he ratio of the MVC percentages for the left superficial masseter

n each condition (56.0/38.8). Likewise, the MVC percentages for

rinding and involuntary clenching activities were respectively cal-

ulated by multiplying by the coefficients c Gr (0.30 [11.6/38.8]) and

 Cl (1.72 [67/38.8]). For the grinding condition, only the activity of

he muscles of the working side [6] were considered. 

Passive muscle stiffness was related to muscle elongation ( ε)

y F p = k ε/(1 − ε/ a ) · PCSA , where k is the estimated force-length

tiffness of the muscles ( k = 40 N / cm 

2 ) [7], a is the passive force-

ength asymptote ( a = 0.7) [8], and PCSA is the cross-sectional area

f the muscle. 

Finally, the damping reaction ( F d = C · ˙ �l ) was defined as a

unction of the critical damping coefficient ( C ) and the stretch ve-

ocity in the longitudinal direction, ˙ �l = 

d( l F −l 0 ) 
dt 

where l F and l 0 
ere the instant and initial lengths of the connector respectively.

ll the parameters for each connector are summarized in Table A.3 .

ppendix B. Occlusal analysis by T-scan 

The same patient who underwent computed tomography scan-

ing was seated in an upright position to record occlusal contacts

sing a piezoelectric film sensor. The sensor was inserted into a

lastic U-shaped device that was previously selected to match the

atient’s dentition arch and shape. The U-shaped device was posi-

ioned parallel to the upper occlusal plane and was centred along
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Table A.2 

Mechanical properties assigned to each region of the FE model of the full dentition. E, elastic 

modulus; v , Poisson coefficient. 

Elastic material properties 

Region E ( MPa ) ν ( − ) 

Cortical bone 20000 a 0.30 a 

Dentin 15000 b 0.31 b 

Enamel 80000 c 0.31 d 

Pulp 2 e 0.45 d 

Trabecular bone 345 b 0.31 b 

Hyperelastic material properties 

PDL μ1 ( MPa ) μ2 ( MPa ) μ3 ( MPa ) μ4 ( MPa ) μ5 ( MPa ) 

−3420.83 1434.35 −5.56E-04 3345.65 −1365.88 

α1 ( − ) α2 ( − ) α3 ( − ) α4 ( − ) α5 ( − ) 

−0.506 −0.134 13.708 −1.029 −1.397 

D 1 ( MPa −1 ) D 2 ( MPa −1 ) D 3 ( MPa −1 ) D 4 ( MPa −1 ) D 5 ( MPa −1 ) 

0 0 0 0 0 

a Lacroix and Prendergast, 2002 [9]. 
b Bergomi et al., 2011 [4]. 
c Nikolaus et al., 2016 [10]. 
d Belli et al., 2017 [11]. 
e Lin et al., 2014 [12]. 
f Ortún-Terrazas et al., 2018 [13]. 
g Ortún-Terrazas et al., 2019 [14]. 

Table A.3 

Parameters used to compute F a , F p , and F d values for each muscle on the right (R) and left (L) sides during hard (HC) and soft (SC) 

chewing, occlusal trauma (OT), grinding (Gr), and involuntary clenching (Cl). SM, superficial masseter; AT, anterior temporalis; DM, 

deep masseter; PT, posterior temporalis; IHLP, inferior head of lateral pterygoid; MP, medial pterygoid; R, right side; L, left side. 

Muscle ID F max ( N ) PCSA ( cm 

2 ) C ( N / μm ) Side L 0 ( mm ) 

MVC (%) 

HC SC OT Gr Cl 

SM 272.8 a 4.76 b 0.053 c 
L 52.8 38.8 d 35.9 d 56.0 e 11.6 d 67.0 f 

R 54.5 31.6 d 20.3 d 46.8 e 6.9 d 66.0 f 

AT 308.0 a 3.95 b 0.035 c 
L 57.9 34.5 d 29.4 d 46.3 e 12.9 d 84.0 f 

R 74.1 25.2 d 22.5 d 32.2 e 8.3 d 83.0 f 

DM 73.8 a 2.04 b 0.038 c 
L 55.0 23.4 g 33.8 h 7.0 i 40.5 j 

R 74.1 12.9 g 18.6 h – 22.2 j 

PT 222.0 a 1.89 b 0.023 c 
L 70.1 8.4 g 12.1 h 2.5 i 14.5 j 

R 85.8 9.7 g 14.0 h – 16.8 j 

ILP 112.8 a 1.67 b 0.021 c 
L 32.0 1.9 g 2.7 h – 3.2 j 

R 46.0 1.9 g 2.8 h 0.6 i 3.4 j 

MP 240 a 4.37 b 0.060 c 
L 46.3 11.8 g 17.1 h – 20.4 j 

R 47.8 13.5 g 19.5 h 4.1 i 23.4 j 

a Koolstra and van Eijden [15]. 
b Peck et al. [7]. 
c Langenbach and Hannam [16]. 
d Farella et al. [17]. 
e Pérez del Palomar et al. [18]. 
f Cecílio et al. [19]. 
g Computed based on the muscles forces reported by Langenbach and Hannam [16] and the F max of the muscle. 
h Computed using MVC HC • c OT . 
i Computed using MVC HC • c Gr . 
j Computed using MVC HC • c Cl . 
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the midline between the central incisor teeth by a dentist with ex-

pertise in the occlusal analysis. The film consisted of a 100-μm-

thick mylar-encased recording sensor with 1500 compressible sen-

sitive receptor points. The sensitivity range of the film was estab-

lished before recording. 

The patient was instructed to chew the pressure-sensitive film,

applying maximum voluntary force. The analysis was repeated 3

times and the analysis with the most balanced occlusion ( Fig.

3 b) was selected for comparison with the occlusal contacts pro-

duced by the FE model ( Fig. 3 a). The patient was also instructed

to grind their teeth to record the relative percentage of the total

bite force, and its distribution across both halves of the dentition

( Fig. 3 c). 

The contact pressures in our simulations were recorded using

a virtual square-shape film with a thickness of 0.1 mm. The vir-

tual film body was manually centred along the central incisor teeth
idpoint. The film was composed of 11,200 s-order quadrilateral

embrane elements (M3D8-type element in Abaqus) and its be-

aviour was defined based on the linear elastic properties of My-

ar840 (DuPont; E = 5 GPa and ν = 0.3). To plot the contact results

hown in Fig. 3 a, the contact reaction forces of the centroid node

f each element were extracted using a Python script (“Python

.5.2, Python Software Foundation”) and the values plotted on a

D bars graph in MATLAB. 

ppendix C. Details of the single tooth FE model 

A portion of a human mandible was extracted from a cadaver

ithin 4 h after death and stored frozen ( −20 °C) until it was

canned. Prior to scanning, the sample was taken from the freezer

nd allowed to thaw at room temperature (17 °C). The soft tissues

ttached to the mandible were carefully removed and the cleaned
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Fig. A.1. Fitted curve obtained by approximation to the experimental data published by Natali et al. (2008) and Bergomi et al. (2011) using a) fifth order Ogden hyperelastic 

model and b) a porous-fibrous hyperelastic damage model previously characterized by our group [14] . 
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Table C.1 

Types of elements, number of elements, and number of nodes used in 

each region of the FE model of a single tooth. 

FE model of the single tooth 

Region Element type No. elements No. nodes 

Cortical bone C3D4 4,118 2,315 

Cuspid tooth C3D4P 48,499 27,267 

Cuspid PDL C3D8RP 40,716 22,892 

Lateral incisor PDL C3D20 3,157 1,776 

Lateral incisor tooth C3D4P 52,547 29,543 

Premolar PDL C3D20 3,360 1,889 

Premolar tooth C3D4P 52,819 29,696 

Trabecular bone C3D4P 62,697 35,250 

t  

t  

d  

w

η  

w  

p  

v  

m  

t

 

R




 

ψ  

c

a  

w  

i  

i 4 
pecimen was scanned by μCT scan (Skyscan 1172, Bruker μCT

.V., Kontich, Bélgica). μCT data was collected using 13-μm cross-

ections to ensure resolution. Next, the tomographic images gen-

rated after scanning were rebuilt, the noise was reduced, and

he point cloud was converted into Non-Uniform Rational Bases

plines (NURBS) using Rhinoceros software (Rhinoceros v.5, Robert

cNeel & Associates, Seattle, USA). Because PDLs could not be de-

ected by μCT, they were defined within the free space between

he trabecular bone and the teeth. The model was composed of an

ntire cuspid tooth and 2 partial teeth (a premolar and a lateral in-

isal) with their respective PDLs embedded in the mandibular bone

 Fig. 2 b). Further information on the development of this model is

rovided in a previous publication by our group [13]. 

esh 

Mesh refinement was performed until further refinement re-

ulted in differences of 5% or less. The PDL of the cuspid tooth was

eshed throughout its thickness using 3 first-order hexahedral el-

ments. The other 2 PDLs were meshed along their thickness us-

ng a quadratic element; while the incomplete shape of these liga-

ents complicated the mesh refinement process, the data obtained

rom these ligaments were not the main goal of this study. Regard-

ess, the effect of the mesh size on these PDLs was negligible given

he low stress/strain values to which they were subjected. The re-

aining regions were meshed by tetrahedral linear elements with

ean dimensions of 0.2 mm in all directions and a maximum de-

iation factor of 0.15. Further information on the meshing process

s provided in Table C.1 . 

echanical behaviour of the PDL 

According to previous findings [5,13,14,20,21], the PDL under-

oes 2 types of softening phenomena caused by fibre uncrimp-

ng and rupture, and displays 2 different behaviours owing to its

orous-fibrous structure. Therefore, energy density function ( ψ)

f the porous transversely-isotropic-hyperelastic-damage material 

odel was formulated as follows: 

 = η ·
[
ψ m 

(˜ I 1 
)

+ 

(
1 − D f 

)
· ψ f 

(˜ I 4 
)]

+ 
( η) + ψ v ol ( J el ) (C.1) 

here ψ m 

and ψ f are the ground matrix and fibrous terms of the

eviatoric component ( ψ dev ), D f ∈ [0,1] is the damage parameter
hat explains the evolution of damage due to fibre rupture, 
 is

he energy dissipated, ψ vol is the volumetric term and η is the

amage variable for softening due to fibre uncrimping which varies

ith deformation, as follows: 

= 1 − 1 

r 
er r f 

(
ψ 

m 

de v − ψ de v 

m + βm 

ψ 

m 

de v 

)
(C.2)

here r and βm 

are dimensionless material parameters, m is a

arameter with the dimensions of energy, ψ 

m 

de v is the maximum

alue of the deviatoric strain energy density experienced by the

aterial during its deformation history, and errf is the error func-

ion defined by er r f (x ) = 

2 √ 

π

∫ x 
0 exp ( −ω 

2 ) dω. 

The energy dissipation term 
 was defined by the Ogden-

oxburgh model as follows: 

( η) = 

(
m + βm 

ψ 

m 

de v 

)
r 
√ 

π

{ 

exp 

[
−
(

ψ 

m 

de v − ψ de v 

m + βm 

ψ 

m 

de v 

)]2 

− 1 

} 

+ ( 1 − η) ψ 

m 

de v (C.3) 

To consider porous-fibrous different contributions, the terms

 dev and ψ vol were described by 2 different material models ac-

ording to the direction of fibre stretch. Therefore, ψ dev and ψ vol 

re described by a porous hyperfoam material formulation [22]

hen PDL was compressed ( ̃  I 4 ≤ 1) , and by a porous transversely

sotropic hyperelastic damage material model [23] when the tissue

s stretched ( ̃  I > 1 ). 
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The dilatational ( ̃  I 1 ) and deviatoric ( ̃  I 4 ) invariants are defined as

follows: 

˜ I 1 = tr ̃  C ; ˜ I 4 = a 

0 · ˜ C · a 

0 (C.4)

where a 

0 is a unitary vector defining the orientation of the col-

lagen fibres and 

˜ C is the modified Green tensor in the reference

configuration, defined by the deformation gradient ˜ F , as ˜ C ( ̂ λi ) =
˜ F T ˜ F . The stretch ( ̂ λi ) is determined as the ratio between fibre

lengths in deformed ( X ) and reference ( x ) configurations in direc-

tion i . The deformation gradient is therefore expressed by the Ja-

cobian elastic tensor as ˜ F = J el 
− 1 

3 F . The terms ψ vol and ψ dev of

the energy density function are written as follows: 

ψ v ol = 

⎧ ⎨ ⎩ 

1 
β

[
( J el ) 

−αβ − 1 

]
i f 

(˜ I 4 < 1 

)
( C . 5 )

1 
D 

[ 
( J el ) 

2 −1 
2 

− ln J el 

] 
i f 

(˜ I 4 ≥ 1 

)
( C . 6 )

ψ de v = 

⎧ ⎪ ⎨ ⎪ ⎩ 

2 μ
α2 

[ 
ˆ λα

1 + ̂

 λα
2 + ̂

 λα
3 

] 
i f 

(˜ I 4 < 1 
)

( C . 7 )

C 1 ·
(

˜ I 1 − 3 
)

+ 

(
1 − D f 

)
· k 1 

2 ·k 2 

{ 
exp 

[ 
k 2 ·

(
˜ I 4 − 1 

)2 
] 

− 1 

} 
i f 

(˜ I 4 ≥ 1 
)

( C . 8 )

In Eq. C.5, α is a dimensionless material parameter of the

porous hyperfoam material, and β determines the degree of com-

pressibility related to the Poisson ratio by β = ν/(1 − 2 ν). The pa-

rameter D of Eq. C.6 is related to the bulk modulus, K , by K = 2/ D .
Table C.2 

Mechanical properties assigned to each region of the FE model of a single tooth. E, ela

Elastic material model 

Region E ( M

Pulp a 3 

Enamel b 800

Cortical bone c 200

Porous elastic material model 

Region E ( MPa ) ν ( − ) k 0 · 10 −15 (

Trabecular bone d 345 0.31 52.9 

Dentin d 15000 0.31 0.038 

Transversally isotropic material model 

Region C 1 ( MPa ) D ( M

Premolar PDL e 0.01 9.07

Incisor PDL e 0.01 9.07

Porous transversally isotropic material model 

Region C 1 ( MPa ) D ( MPa −1 ) k 1 ( MPa ) k 2 ( − )

Cuspid PDL ( ̃  I 4 ≥ 1 ) 0.01 e 9.078 e 0.298 e 1.525 

Porous hyperfoam material model 

Region μ ( MPa ) α ( − ) ν ( − ) 

Cuspid PDL ( ̃  I 4 < 1 ) d 0.03 20.9 0.257 

Fibre uncrimping 

Region r ( − ) 

Cuspid PDL g 1.492 

Fibres rupture 

Region αf ( − ) 

Cuspid PDL g 1.0 

a Belli et al., 2017 [11]. 
b Nikolaus et al., 2016 [10]. 
c Lacroix and Prendergast, 2002 [9]. 
d Bergomi et al., 2011 [4]. 
e Ortún-Terrazas et al., 2018 [13]. 
g Ortún-Terrazas et al., 2019 [14]. 
h Wei et al. 2014 [28]. 
and α are material parameters of the deviatoric term of the hy-

erfoam material model (Eq. C.7). In Eq. C.8, C 1 is a material con-

tant related to the ground substance of the transversely isotropic

aterial model, k 1 > 0 and k 2 > 0 are the parameters that iden-

ify the exponential behaviour due to the presence of the collagen

bres, and the damage parameter, D f , explains the evolution of

amage due to fibre rupture as follows: 

 f ( �
m 

t ) = 

1 

2 

{ 

1 + 

α f �
m 

t e 2 α f [ ( 2�m 
t / β f ) −1 ] − 1 

α f �
m 

t e 2 α f [ ( 2�m 
t / β f ) −1 ] + 1 

} 

(C.9)

here αf and β f are 2 material parameters and �m 

t is the max-

mum value of �s over past history up to the current time s.

s is the equivalent strain [24] at any time s defined by �s ( ̃  C ) =
 

2 · ψ f ( ̃
 I 4 ) · ˜ C (s ) where the fibrous term ψ f corresponds to the

econd term of Eq. C.8. 

To account for the biphasic behaviour of the PDL a porous con-

ribution was added to the model. In the fully saturated tissue, to-

al stress at a given point σ is defined [25] as follows: 

= ( 1 − e ) · σ̄ − e · p̄ t · I − ζ · p̄ t · I (C.10)

here e is the void ratio related to the porosity of a tissue ( n ) by

 = n /(1 − n ), being n defined by the volume of the fluid phase V f

n the total volume of the tissue V t , ζ is a factor that depends on
stic modulus; v , Poisson coefficient; ϒw , specific weight of interstitial fluid. 

Pa ) ν ( − ) 

0.45 

00 0.31 

00 0.30 

 m 

2 ) M ( − ) e 0 ( − ) ϒw · 10 −6 ( N / mm 

3 ) 

– 4 9.8 

– 4 9.8 

Pa −1 ) k 1 ( MPa ) k 2 ( − ) 

8 0.298 1.525 

8 0.298 1.525 

 k 0 · 10 −15 ( m 

2 ) M ( − ) e 0 ( − ) ϒw · 10 −6 ( N / mm 

3 ) 

e 6.5 e 9.5 e 2.33 d 9.8 

k 0 · 10 −15 ( m 

2 ) M ( − ) e 0 ( − ) ϒw · 10 −6 ( N / mm 

3 ) 

8.81 14.2 2.33 9.8 

m ( m J) βm ( − ) 

0.064 0.1 

β f ( − ) �max 
s (−) 

0.25 0.28 
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aturation, σ̄ is the effective stress of the solid matrix, and p̄ t is the

verage pressure stress related to tissue permeability by the non-

inear Forchheimer flow law and implemented in Abaqus. To relate

ermeability to deformation, the exponential function described by

rgoubi and Shirazi-Adl [26] was used as follows: 

¯
 = k 0 

[
e ( 1 + e 0 ) 

e 0 ( 1 + e ) 

]2 

exp 

[ 
M 

(
1 + e 

1 + e 0 
− 1 

)] 
(C.11) 

here k 0 and e 0 are the permeability and void ratio at zero strain,

nd M is a dimensionless material parameter. 

The damage parameters m, r and βm 

of Eq. (C.2) were defined

ased on the experimental data of Natali et al. [27]. Material pa-

ameters C 1 , k 1 , k 2 , D , αf and β f were defined based on later

xperimental data published by Natali et al. [5]. Finally, param-

ters μ, α, β , and M were defined based on experimental com-

ression test data from Bergomi et al. [4]. The material formula-

ion and the characterization of aforementioned parameters have

een fully described in our previous publications [13,14]. The ma-

erial parameters and the material response mimicked are shown

n Table C.2 and Fig. A.1 b, respectively. 
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