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• Four algorithms to get GT3X+ activity 
counts from accelerometer signals are 
compared.

• The area under the rectified curve shows 
a strong linear relation with counts.

• Other algorithms with more elaborate fil-
tering do not achieve better results.

• Obtaining the area under the rectified 
curve leads to the lower power consump-
tion.

• Smartphones could be used to test ful-
fillment of physical activity recommenda-
tions.
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Background: Dedicated devices like GT3X+, Actical or ActivPal have been widely used to measure physical 
activity (PA) levels by using cut-points on activity counts. However, the calculation of activity counts relies 
on proprietary software. Since smartphones incorporate accelerometers they are suitable candidates to 
determine PA levels in a wider population.
Objective: Our aim was to compare several algorithms so that smartphones can reproduce the results 
obtained with GT3X+. The influence of smartphone location was also investigated.
Methods: Volunteers participated in the experiment performing several activities carrying two smartphones 
(hip and pocket) and one GT3X+ (hip). Four algorithms (A1–A4) were considered to obtain GT3X+ counts 
from smartphone accelerometer signals. A1 was based on a traditional filtering on temporal domain 
and a posterior calculation of the area under the curve. A2 was based on computing histograms of 
acceleration values, which were used as independent variables in a standard linear regression procedure. 
A3 also used a linear regression, but in this case the independent variables were power spectrum bands, 
leading to a kind of filtering in the frequency domain. A4 was based on a direct measure of area under 
the rectified curve of the raw accelerometer signal. Performance was measured in terms of raw activity 
counts or the corresponding PA level classification. The influence of the algorithm was tested with a 
Quade test. Multiple comparisons were performed with Wilcoxon test with Bonferroni’s correction. Besides, 
battery consumption was also measured as a secondary parameter. The output of the selected algorithm 
was compared with GT3X+ counts using correlation (pearson and spearman) and agreement (Intra-Class 
Coefficient, ICC and Bland–Altmann plots for raw counts, and weighted kappa for activity levels). Several 
experimental conditions regarding smartphone location were compared with Wilcoxon tests.
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Results: Thirty-two volunteers participated in the experiment. More refined algorithms based on filtering 
techniques did not prove to achieve better performance than A2 or A4. In terms of classification of 
PA level, A4 got the lowest error rate, although in some cases the differences with other algorithms 
were not statistically significant (p-value > 0.05). A4 is also the simplest and the one that implies 
less battery depletion. The comparison of A4 with GT3X+ gave good agreement (ICC = 0.937) and 
correlation (spearman = 0.927) for raw counts and good agreement when classifying four or two PA levels 
(weighted kappa = 0.874 or 0.923 respectively). Besides, in real situations, activity classification into four 
levels was significantly improved (p-value < 0.05) if data from several body locations were used to find 
model parameters.
Conclusions: Simple algorithms can reproduce the results of GT3X+. Thus, smartphones could be used to 
control the fulfillment of PA recommendations previously validated with cut-points. However, it must be 
acknowledged that accelerometers are not the gold standard to measure PA.

© 2018 AGBM. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

The appearance of cardiovascular diseases and other diseases 
such as diabetes, colon cancer, obesity, hypertension, osteoporo-
sis and depression has been related to the level of physical activity 
(PA) [1]. Thus, measuring PA in real life is a relevant research topic. 
Ideally, methods for evaluating PA should measure energy expen-
diture (EE) during PA, as well as the type, duration and intensity 
of these activities. Usually EE is determined by the consumption 
of oxygen and exhaled carbon dioxide. However, the equipment 
required for this method is usually very costly and it is found 
only in specialized areas [2]. Considering everyday environments, 
researchers have opted for the use of inertial sensors such as ac-
celerometers or gyroscopes, which can record body movements. 
Due to relation between PA and movement, accelerometers can be 
used to measure EE [2]. They present several advantages: low cost, 
low battery consumption, small size or integration into wearable 
devices, making them ideal to measure activities of daily living 
[3,4]. Nevertheless, they present several disadvantages: they un-
derestimate EE at higher intensities, they generally do not identify 
the type of physical activity and they cannot directly derive energy 
consumption or activity levels. For that purpose, it is necessary to 
use an extrapolation formula [5].

Dedicated devices based on accelerometers have been devel-
oped to measure PA. The accelerometers of Actigraph are one of 
the most used to measure PA, together with Philips (Actical) and 
PALtechnologies (ActivPal) [6,7]. Given the wide use of Actigraph 
devices and the previous experience of the authors with them, 
the Actigraph GT3X+ was selected for this study [8]. The ac-
celerometer signal is converted by the companion software into 
activity counts, which can be used to determine activity levels 
using validated cut-points, for instance following the values pro-
posed by Sasaki et al. [9] for adults (labeled as Freedson VM3 in 
ActiLife software). Determining activity levels is of great impor-
tance because several PA recommendations have been developed 
based on them. The Centers for Disease Control and Prevention, 
the American College of Sports Medicine, the American Heart As-
sociation and the World Health Organization have used the daily 
minutes spent in moderate to vigorous physical activity as mea-
surement criterion to establish the minimum levels of PA to obtain 
health benefits [10,11]. Therefore, most PA instruments, subjective 
as questionnaires and objective as accelerometers try to extract 
Moderate-Vigorous Physical activity (MVPA) minutes.

On the other hand, most commercial smartphones include ac-
celerometers. Thus, they can be used to monitor activity and sev-
eral applications have been developed in this field: pedometers 
[12], PA level and EE estimation [13–16] and human activity recog-
nition [17]. In particular, in [14] a high correlation was found 
between raw activity counts measured with Actigraph and several 
smartphones in laboratory test. In free-living the correlation was 
lower, but the minutes in MVPA per day still showed a high cor-
relation. In [15] an application to measure PA was developed, Cal 
Fit. After 5 days of wearing GT3X+ and the smartphone running 
the application, a high correlation was found between vertical axis 
counts and a high agreement too between duration and energy 
expenditure, using an equation to transform counts to metabolic 
equivalents (METS).

From a wider perspective, tracking physical activity with smart-
phones or dedicated devices connects with a new trend called the 
Quantified Self (QS). It refers to engagement in the self-tracking 
of several information sources (biological, physical, behavioral, or 
environmental), either as individuals or in groups, with the aim 
of improving self-sensing, self-awareness, and human performance 
within the digital health industry [18]. The last research shows 
that QS can positively influence the performance, improve aware-
ness about nutrition and facilitate learning insights about one’s 
body and mind [19]. In the case of smartphones, Bert et al. [20]
highlighted positive aspects like the possibility of accessing health 
information and allowing communications between the health care 
world and the population. Potential relevant applications include 
the management of chronic diseases, fight against obesity and bad 
habits or the promotion of healthy lifestyles. However, QS has also 
some drawbacks. Bert et al. [20] warned about problems like con-
trol of contents with respect to scientific validity, gap in digital 
literacy and privacy data protection, which is also pointed out in 
[19]. Shin and Biocca [18] indicate problems with poor user ex-
perience, motivation or accuracy. If the information shown is not 
adequate, a negative effect with the follow-up of the activity is ex-
pected. Therefore, it is sometimes difficult to provide engagement. 
These authors recommend presenting the information in compara-
tive and textual formats.

This work was motivated by the possibility of measuring PA 
continuously in an intervention to promote PA among university 
students lasting several months. This measure should complement 
a PA monitoring using GT3X+ at some specific weeks. However, 
when facing this problem, several questions were raised. The def-
inition of activity counts is not clear. The Actigraph web page 
includes general ideas about activity counts, but no detailed de-
scription. Activity counts seem to be obtained from a band pass 
filter and an integration [21–23]. In [24] a study was carried out to 
get filter characteristics from the action of Actilife software on raw 
acceleration signals. In [4] a mechanical oscillator was used to find 
the filter shape. In other studies, activity counts were extracted by 
a low pass filter and a calculation of the area under the curve [14]. 
In [25] the mean amplitude deviation (MAD) of raw acceleration 
was proposed as a method to better quantify PA regardless of the 
accelerometer brand. In [26] a new index was proposed, the activ-
ity index (AI), which is an additive and rotational invariant metric. 
It was shown to be a better classifier of physical activity intensity 
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than activity counts. However, the sample population in which it 
was tested was restricted to women over 60 years old.

Therefore, we decided to carry out the present study with the 
goal of checking several algorithms to process smartphone ac-
celerometer data and compare them in order to better reproduce 
results from Actigraph accelerometer. As a secondary goal, the ef-
fect of the smartphone placement on the body was be investigated 
from a practical point of view.

This paper extends our preliminary work [27] in the following 
aspects: i) One more activity is presented; ii) three more algo-
rithms to estimate PA have been implemented and tested; iii) the 
algorithms were actually implemented in android applications and 
iv) more volunteers were involved in the experiment.

2. Materials and methods

2.1. Subjects

The subjects for this experiment were thirty-two volunteers 
aged from 18 to 45 years old (19 males, 13 females, age 27.88 ±
12.90, height 1.68 ± 0.12 meters, weight 66.26 ± 21.55 kg). All sub-
jects were healthy following Chen and Sun sample selection [28], 
with no evidence of past or present different disorders or injuries. 
The study protocol was approved by the Ethical Committee for 
Clinical Research of Aragon (CEICA). All subjects received oral and 
written information about the study, and written informed consent 
was obtained from them.

2.2. Experiments

Volunteers were asked to wear a smartphone in the right 
pocket and another on the right hip while doing some activities 
under the guidance of the research team. Just one GT3X+ was 
placed on the right hip, next to the smartphone to validate and 
compare the results of the tests performed (see Fig. 1). Each activ-
ity lasted 10 min and was performed only once in a random order. 
Nine of the volunteers avoided running. Then, the corresponding 
file was labeled with the date, time and type of activity.

Specifically, the activities performed by the subjects were the 
following:

• Walking at low speed (self-selected speed)
• Walking at high speed (self-selected speed)
• Going up and down stairs (self-selected speed)
• Running (self-selected speed)
• Working at office (mainly being sitting in front of a computer 

but with small movements allowed, selected by each volun-
teer; thus is equivalent to a sedentary activity most of the 
time)

Walking and running activities were carried out in the athlet-
ics track facility of our university, while going up and down stairs 
was performed in the building of our university center. Working 
at office was simulated in our laboratory. Speed was not measured 
in the experiment. By allowing each volunteer to select a different 
speed we expected to obtain a larger variety of movements and 
counts.

To record the activities, we used the SAMSUNG GALAXY TREND 
PLUS GT-S7580 smartphone with range ±2 g. We developed a spe-
cific app to record accelerometer values. When configuring the 
accelerometer in the app, the option “SENSOR_DELAY_GAME” was 
selected, resulting in a sampling period of 20 ms (50 Hz) but with 
some variability since smartphones cannot deal with strict timing 
restrictions. The information obtained was dumped to a text file 
in the smartphone that was then transferred to a PC, in which 
algorithms were implemented for off-line analysis using Matlab. 
Fig. 1. Location of the devices.

Smartphone acceleration was interpolated at 30 Hz for comparison 
with Actigraph. At the same time, the GT3X+ device also recorded 
the information with a sampling frequency of 30 Hz and a range of 
±6 g, which served to validate the samples captured by the smart-
phone. Some of the Actigraph devices can only sample at 30 Hz 
in raw mode and this is the frequency used in [9] for stablishing 
cut-points. The devices were manually synchronized by adjusting 
smartphone date and time with that of the GT3X+, which in turn 
was synchronized with a PC through the ActiLife software. The al-
gorithms were also implemented in Android (see section 2.5).

2.3. Calculating counts

2.3.1. Algorithm 1 (A1): filtering on temporal domain
In the first step, the vector magnitude was calculated from 

each three-axial acceleration sample Eq. (1). It contains informa-
tion about the intensity of the activity carried out by the subject 
in a rotational invariant magnitude.

V mi =
√

x2
i + y2

i + z2
i (1)

Subsequently, the vector magnitude fed a band pass filter [21], 
which removes the gravitational component and the high fre-
quency noise. The cutoff frequencies were 0.25 and 2.5 Hz for the 
high pass and low pass respectively. These values correspond to 
the range in which most human activities are performed [24]. In 
this way, we have tried to follow as closely as possible the known 
information about the calculation of counts in devices like GT3X+
(ActiLife 6 User’s Manual Appendix A) [22].

A recursive filter with infinite impulse response (IIR) of order 
2 was used to implement the filter digitally. The filter coefficients 
that best fit the counts provided by the GT3X+ were obtained by 
scanning different attenuation values at high and low cutoff fre-
quencies ( fc1 and fc2) and band pass frequency ( f p).

Once the signal was filtered, it was divided into 1 second 
epochs (30 samples in total, as in the configuration used by the 
GTX3+) resulting in an array Epci j , where j represents the epoch, 
and i is the sample number in that epoch.

Taking the 1 second vector magnitude in epochs (Epc), the area 
under the curve (AUC) for each epoch was calculated as:
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AUC j = 1

L

L∑
i=1

|Epcij | (2)

where L = size of the window, i = sample between the epoch,
j = Epoch number of 1 sec, AUC j = area under the curve for the
j-th epoch.

In [21] it is indicated that, once the area under the curve for 
each epoch is calculated, the number of counts are obtained by 
dividing this value by the accelerometer resolution. However, as 
we have no information about the range and resolution of the 
accelerometer used in a generic smartphone, this part has been 
omitted. Instead, to compare with the output of Actigraph, the 
counts returned by GT3X+ were multiplied by 0.002929 (which 
is the resolution of this device, since its accelerometer has a range 
of ±6 g and 12 bits for analog conversion, 0.002929 ≈ 12/212) 
[21], thus making the measure independent of the accelerome-
ter resolution. In the remaining of this paper, GT3X+ counts will 
be always subjected to this processing. Finally, the counts per 
epoch (second) were added in groups of 60 to obtain counts per 
minute (cpm), since this is the official measure provided by Acti-
graph.

2.3.2. Algorithm 2 (A2) – fit to histogram values
We have also tried some algorithms that allow a standard fit-

ting procedure, without relying on a previous assumed filter shape. 
In this case, histograms of acceleration values were used as input 
variables, while cpm provided by GT3X+ devices were considered 
as the output variables. Histograms are one of the features used in 
activity recognition [29], so it seems reasonable that they can in-
clude a clue about the activity level. The process to obtain these 
histograms was the following. Acceleration magnitude values were 
split into 60 s windows. Then, the mean value of the acceleration 
in the window was subtracted, to avoid the influence of accelerom-
eter bias, which it was noticed to be high in some smartphone 
models. The acceleration axis was divided into several levels and 
the number of acceleration samples in each one was extracted.

The histogram bins were normalized by dividing them into the 
total number of samples. Then, some of the bins were used as in-
put parameters of the model (hi , i = 1 . . . 15, 15 intervals in the 
range from −0.9 g to 2.1 g). Only a subset of the bins were used to 
avoid perfect collinearity in the model input variables since their 
sum was 1 after normalization. The Actigraph counts per minute 
were fitted as:

cpm = b0 +
∑

bihi (3)

In this way, no other restriction is set on coefficients bi (i =
0 . . . 15) and we let a standard linear fit procedure to find them.

2.3.3. Algorithm 3 (A3) – fit to power spectrum bands
As in the previous case, a standard fitting algorithm was tested, 

in which the input variables were taken as the power contained in 
bands, while the output variable was the cpm value returned by 
the Actigraph. Thus, the smartphone acceleration magnitude sam-
ples contained in windows of 60 s were subjected to a Fourier 
transform in order to obtain the power spectrum. Then, seven 
bands contained in the interval [1 Hz, 3.3 Hz] were calculated 
(Pi, i = 1 . . . 7) by integrating power in each interval. Fig. 2 shows 
an example. The left figure is an inset of a 60 s acceleration win-
dow. The right is the corresponding power spectrum. Band limits 
are shown as red dashed lines. The value of one of the bands is 
obtained as the area highlighted in blue.

Finally, Actigraph counts were fitted as a function of band val-
ues:

cpm = c0 +
∑

ci P i (4)
Fig. 2. Example of extraction of power bands. Left: acceleration signal; right: power 
spectrum with bands. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Table 1
Different conditions regarding smartphone location used to fit model 
parameters and test the models.

C1 C2 C3 C4

Data used to fit Hip Pocket Hip + Pocket Hip
Data used to test Hip Pocket Hip + Pocket Hip + Pocket

2.3.4. Algorithm 4 (A4) – area of the accelerometer signal
In this case, the algorithm was based on a simple calculation 

of the area under the signal, similar to [14]. The signal magni-
tude acceleration was calculated and split into 60 s windows. Then, 
the mean value in each window was subtracted, and the resulting 
signal rectified. The area under the curve of the rectified signal 
(AUCR) was obtained as a measurement of activity. Finally, a linear 
relationship was found between area and Actigraph cpm:

cpm = d0 + d1AUCR (5)

2.4. Smartphone location

The comparison of the four algorithms was performed using 
data from both locations, the hip and the pocket. After selecting 
one algorithm, the influence of the phone location was investigated 
for it.

This influence can be studied in several ways. Thus, we created 
a set of conditions to perform the comparison. These conditions 
differ in the smartphone raw acceleration data used to fit and test 
the model. Table 1 indicates these conditions, which are referred 
to as C1 to C4.

The set C1 (only hip) corresponds to the conditions in which 
the GT3X+ is used. The conditions C2 (only pocket) are more 
common in everyday use of the phone. It is expected that the per-
formance would improve if the phone is located on the hip (C1) 
since our reference values are GT3X+ counts. Thus, we compared 
C1 and C2 to find the location with higher performance.

However, in our opinion the above comparison is more aca-
demic than practical. We feel that nobody would wear the smart-
phone only on the hip. For practical purposes, the smartphone is 
likely to be worn on several locations or used to perform tasks 
other than measuring physical activity. Thus, we also compared 
models with conditions C3 and C4. C3 are the conditions utilized 
to compare algorithms A1 to A4. On the other hand, in C4 only 
data from the hip were used to fit the parameters of the model. In 
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Table 2
Performance of different algorithms. The values are given as mean and standard deviation.

Performance parameter Algorithm

A1 A2 A3 A4

RMSE (cpm) 4.16 ± 3.55 2.54 ± 1.73 3.40 ± 2.52 2.64 ± 1.48
Error rate classification (four levels) 0.28 ± 0.36 0.18 ± 0.25 0.18 ± 0.25 0.17 ± 0.25
Error rate classification (two levels) 0.077 ± 0.225 0.030 ± 0.105 0.029 ± 0.084 0.029 ± 0.105
both cases, data from hip and pocket were used for testing, which 
is close to a real situation. The comparison between the perfor-
mance of C3 and C4 can give a clue about whether the model 
requires data from several locations in the fitting procedure or just 
one location is enough.

The performance of the model was always estimated with a 
cross-validation strategy, as explained in the next section (2.5).

2.5. Performance evaluation

The performance estimation was based on a cross-validation 
strategy by person-activity, as in [14]. In each run of the cross-
validation, data from an activity of a given person was left out 
(validation set). Then, the algorithms were optimized to predict 
Actigraph counts in the remaining data. For A2, A3 and A4 this 
optimization followed a standard fitting procedure, while for A1 it 
was the brute force search of filter parameters explained in sec-
tion 2.3.1. Then, the models were used to predict counts in the 
person-activity that was left out. From them, three performance 
variables were obtained: the root mean square error (RMSE) of raw 
counts and the ratio of misclassified minutes using four or two ac-
tivity levels, selected as follows. The four activity levels were taken 
using Actigraph cut-points as explained in Sasaki et al. [9] as light, 
moderate, vigorous and very vigorous. For many physical activity 
recommendations, the difference between the three highest levels 
is irrelevant [10,11]. Thus, we also considered the option of merg-
ing them into a single level.

The experimental data turned out not to be normal, so that 
non-parametric tests were selected. The influence of the algorithm 
was tested with a Quade test. Multiple comparisons were per-
formed with Wilcoxon test with Bonferroni’s correction. However, 
no algorithm stood out clearly as shown below. Thus, battery life 
was also measured as a secondary performance parameter. For 
that purpose, algorithms were also implemented in Android ap-
plications. Battery level was measured with a dedicated application 
which took samples of the battery charge every half hour while the 
selected algorithm was running continuously. This process lasted 
until the battery was fully discharged. It is well-known that keep-
ing sensors leads to higher battery depletion.

Once an algorithm was selected, the correlation (spearman, ρs , 
and pearson, ρp) and agreement (Intra-Class Coefficient, ICC and 
Bland–Altmann plots) between calculated and Actigraph counts 
or between classification of activity levels (weighted kappa) were 
also obtained allowing the comparison with previous studies. 
A Wilcoxon test was used to compare the performance of different 
locations (C1 versus C2 and C3 versus C4).

3. Results

Table 2 shows RMSE and the error rate of classification in dif-
ferent levels for the four algorithms. Table 3 provides a summary 
of p-values. The results gave a significant effect of the algorithm 
in terms of both RMSE and error classification with two levels but 
there were not significant differences in error classification with 
four levels (although the p-value is close to the 0.05 limit). The 
pairwise comparisons for RMSE is shown in Table 4. According to 
it, two groups can be discriminated: (A1, A3) and (A2, A4). Algo-
rithms A1 and A3 gave the highest RMSE in Table 2. The pairwise 
Table 3
Summary of p-values obtained from Quade tests.

RMSE Error classification 
(4 levels)

Error classification 
(2 levels)

Algorithm 0.000 0.065 0.002

Table 4
Paired comparison with Bonferroni’s correc-
tion for RMSE.

A1 A2 A3 A4
A1 — 0.000 0.150 0.000
A2 0.000 — 0.000 0.140
A3 0.150 0.000 — 0.000
A4 0.000 0.140 0.000 —

Table 5
Paired comparison with Bonferroni’s correc-
tion for error classification (two levels).

A1 A2 A3 A4
A1 — 0.070 0.031 0.078
A2 0.070 — 1.000 1.000
A3 0.031 1.000 — 1.000
A4 0.078 1.000 1.000 —

Fig. 3. Battery level as a function of time for the four algorithms considered. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

comparisons for error classification with two levels are presented 
in Table 5: A1 differs significantly from A3. A1 is again the worse 
one in error classification (Table 2).

As an overall view of performance parameters related to counts, 
we decided to rule out algorithm A1. The choice between the re-
maining ones is not clear, although A3 is significantly worse in 
terms of RMSE. Turning to battery lives, they were found to be 
73, 67.5, 61 and 40.5 hours for algorithms A4, A2, A3 and A1 re-
spectively (Fig. 3). Thus, A1 is clearly the worse. The differences 
between the other ones, although smaller, are significant. For in-
stance, the difference between battery levels while running A4 and 
A2 as a function of time showed a high correlation (ρp = 0.838, p-
value < 0.001). Thus, the algorithm based on a simple and almost 
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Fig. 4. Smartphone counts vs. GT3X+ Actigraph counts.

Fig. 5. Bland–Altmann plot of actigraph and smartphone counts.

direct calculation of area under the curve is noticeably the best. 
Therefore, there is no reason to select A2 or A3, and we performed 
a more detailed analysis of A4. It should be highlighted that in real 
life the battery life would be lower since the smartphone would 
run also many other applications.

Fig. 4 shows a fit of the overall data, in which the counts cal-
culated with the smartphone (algorithm A4) are plotted versus 
the counts obtained by the GT3X+. The raw count values showed 
an agreement of ICC = 0.937 (p-value < 0.001). The correlation 
was strong (ρp = 0.939, p-value < 0.001; ρs = 0.927, p-value <
0.001). With respect to classification with four PA levels, the agree-
ment according to weighted kappa values was 0.874 (p-value <
0.001). The corresponding kappa value with two levels was 0.923 
(p-value < 0.01).

Fig. 5 shows the Bland–Altmann plot comparing the Actigraph 
counts and the counts obtained by algorithm A4. The limits of the 
difference are ±5.84. Recovering original Actigraph counts by tak-
ing into account its accelerometer resolutions, this accounts for 
±5.84/0.002929 ≈ ±2000 counts. Although this value is large, the 
influence on the classification of PA level is not so strong as shown 
in Table 2.

Table 6 shows the confusion matrix for algorithm A4 and four 
levels of PA. Light, moderate and vigorous levels are accurately 
Table 6
Confusion Matrix of A4.

Smartphone\GT3X+ Light Moderate Vigorous Very vigorous

Light 92.1% 7.9% 0% 0%
Moderate 1.8% 89.4% 8.8% 0%
Vigorous 0% 15.3% 75.7% 8.9%
Very Vigorous 0% 2.3% 68.5% 29.1%

Fig. 6. Raw value of the acceleration magnitude for a snapshot of “running”. Yel-
low signal: GT3X+; red signal: smartphone. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Table 7
Performance under location conditions C1 and C2. The values are given as mean 
and standard deviation.

RMSE Error rate classification 
(four levels)

Error rate classification 
(two levels)

C1 2.29 ± 1.30 0.16 ± 0.26 0.033 ± 0.114
C2 2.64 ± 1.98 0.18 ± 0.28 0.030 ± 0.124
p-value 0.156 0.378 0.284

Table 8
Performance of location conditions C3 and C4. The values are given as mean and 
standard deviation.

RMSE Error rate classification 
(four levels)

Error rate classification 
(two levels)

C3 2.64 ± 1.48 0.17 ± 0.25 0.029 ± 0.105
C4 2.72 ± 1.42 0.19 ± 0.25 0.035 ± 0.127
p-value 0.055 0.003 0.172

classified (success higher than 70%), whereas the very vigorous 
level is not well discriminated. The same trend was observed in 
algorithms A3 and A2.

The differences between smartphone and GT3x+ for intense 
physical activity also stands out in raw values as Fig. 6 shows for 
an example of the “running” activity. The smaller range of smart-
phone accelerometer implies that it does not reach the values of 
GT3x+. This has also an influence in the area under the curve and, 
thus, in the activity counts.

With respect to the study of the phone location, the compar-
ison between conditions C1 and C2 (using only the hip and the 
pocket respectively) is shown in Table 7. With the phone on the 
hip, the performance is better for RMSE, better also for the error 
rate with four levels although less clearly, and almost the same for 
error rate with two levels. Nonetheless in any of the comparisons 
the difference is statistically significant.
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The comparison between conditions C3 and C4 is shown in Ta-
ble 8. This comparison is more realistic as explained above, since 
in both cases the system is tested with signals in both locations 
and the model parameters are obtained using both locations (C3) 
or only the hip (C4). The performance under conditions C3 is bet-
ter in all cases, but significant only for error rate with four levels 
and very close to the limit in RMSE.

4. Discussion and conclusions

In this paper, four different algorithms were proposed to calcu-
late activity counts. Despite being more refined and being based 
on discriminating frequencies, A1 and A3 are not the best. More 
simple algorithms such as those based on area under the curve 
(A4) or histograms (A2) of acceleration values give lower values 
of RMSE. Given that A4 is the simplest to implement and the one 
with lower battery consumption, the direct area-based algorithm 
(A4) would be the choice following our results. The importance of 
battery consumption could not be undermined since this is a rele-
vant parameter for end users.

Algorithm A4 agrees with the recommendation found in [25] in 
which the mean amplitude deviation (MAD) was proposed to get 
similar results irrespective of accelerometer brand. The MAD is in 
fact proportional to an area of the rectified curve after subtracting 
the mean, although in [25] a different epoch was used and the 
study targeted adolescents instead of adults.

When considering “running” or very vigorous activities algo-
rithm A4 has a bad classification rate into four PA levels. In the 
work of Van Hees et al. [4] a similar result was found, in which the 
best levels classified correctly were light and moderate in terms of 
counts too. One of the possible causes could be the range of the 
smartphone’s accelerometer, as it is limited to ±2 g in the smart-
phone we have used, while it is ±6 g in the GT3X+. Thus if some 
PA recommendation relied on achieving very vigorous activities, 
this point should be addressed, for instance using smartphones 
with a wider range. Another option would be to find another vari-
able that could inform about intense activities. On the other hand, 
in [14] light activities were not properly classified. Perhaps the dif-
ference in the results of the classification are the cut-points used 
in each work, while in [14] the cut points are from Freedson et al. 
[30], we used those of Sasaki et al. [9].

When considering the difference between light and MVPA, error 
rates are below 10%, suggesting that smartphones are suitable to 
monitor the fulfillment of typical PA recommendations in terms of 
MVPA. This has several implications. For instance, they allow mon-
itoring continuously the levels of PA with a very popular device. 
In addition, the development of smartphone applications can in-
clude feedback elements, attractive user interfaces and other moti-
vational elements. This is especially true in some groups of people, 
like young people, who are used to utilize smartphones massively.

The correlation between raw counts in A4 and Actigraph GT3x+
is strong (ρs = 0.939) and similar to that found in [14] (ρs from 
0.77 to 0.82 depending on smartphone model). When considering 
the values of agreement (ICC or weighted kappa), the values we 
have found are conventionally considered as acceptable or substan-
tial [31]. Some results suggest that differences between different 
brands can be lower than differences between Actigraph GT3x+
and smartphones. Vanderloo et al. [32] compared the rate of MVPA 
in free living conditions, considering minutes per hour of wear 
time to account for participant’s varied adherence. They found 
significant differences between Actigraph and Actical methods (p-
value < 0.00, Cohen’s d = 2.93). A somehow similar calculation 
has been performed with our data taking the number of minutes 
in MVPA in each of the person-activity bouts used for cross valida-
tion. In this case, Actigraph and smartphone minutes in MVPA are 
not significantly different and, in any case, with a lower size effect 
(p-value = 0.19, Cohen’s d = 0.11).

With respect to the phone location, our results indicate that 
this is not a critical parameter. As expected, using the phone on 
the hip would allow to better predict the counts of the Actigraph 
in terms of RMSE, since this device is also worn on the hip, but the 
difference is not even statistically significant. Moreover, the differ-
ence is almost zero when classifying PA with two levels. In real 
life, it is expected that the phone would be worn in different loca-
tions and subjected to different movements. In this sense, it would 
be convenient to use data from all the locations to find model pa-
rameters since this seems to improve error classification into four 
levels (Table 8). However, differences in error rate are only about 
2% in average, which appears to be low from a practical point of 
view. The results that we have obtained are coherent with those 
found in [14], in which it is briefly stated that the location of the 
smartphone has no influence on the counts; however, in [14] no 
specific analysis is devoted to this aspect.

One remarkable limitation of this study is that accelerometers 
generally do not identify the type of physical activity and cannot 
directly derive energy consumption or activity levels. They require 
a translation formula or thresholds to calculate the PA level or 
METS. In addition, accelerometers have been shown to underes-
timate EE at higher intensities due to a plateau around ten METS 
and to inaccurately assess EE during incline walking [5]. Besides, it 
should be acknowledged that there is not still a hardware standard 
both for Actigraphs and smartphones. Different brands present dif-
ferences in range and sensitivity, so that the results presented in 
this paper cannot be generalized and the parameters of the linear 
fit to Actigraph counts can depend on the accelerometer model.

To sum up, the present study indicates that physical activity 
levels as defined conventionally in the literature can be measured 
with smartphones. Future research will focus on determining the 
influence of the smartphone application on the adherence of par-
ticipants in interventions to promote physical activity. The recom-
mendations found in [18] will be taken into consideration.
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