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Abstract: In this paper, we propose a new differentiable neural network with an alignment
mechanism for text-dependent speaker verification. Unlike previous works, we do not extract the
embedding of an utterance from the global average pooling of the temporal dimension. Our system
replaces this reduction mechanism by a phonetic phrase alignment model to keep the temporal
structure of each phrase since the phonetic information is relevant in the verification task. Moreover,
we can apply a convolutional neural network as front-end, and, thanks to the alignment process
being differentiable, we can train the network to produce a supervector for each utterance that will
be discriminative to the speaker and the phrase simultaneously. This choice has the advantage
that the supervector encodes the phrase and speaker information providing good performance
in text-dependent speaker verification tasks. The verification process is performed using a basic
similarity metric. The new model using alignment to produce supervectors was evaluated on the
RSR2015-Part I database, providing competitive results compared to similar size networks that
make use of the global average pooling to extract embeddings. Furthermore, we also evaluated this
proposal on the RSR2015-Part II. To our knowledge, this system achieves the best published results
obtained on this second part.

Keywords: text-dependent speaker verification; HMM alignment; deep neural networks; supervectors

1. Introduction

Recently, techniques based on discriminative deep neural networks (DNN) have achieved
substantial success in many speaker verification tasks. These techniques follow the philosophy
of the state-of-the-art face verification systems [1,2] where embeddings are usually extracted by
reduction mechanisms and the decision process is based on a similarity metric [3]. Unfortunately,
in text-dependent tasks, this approach does not work efficiently since the pronounced phrase is part
of the identity information [4,5]. A possible cause of the inaccuracy in text-dependent tasks could
be derived from using the temporal average as a representation of the whole utterance as we show
in the experimental section. To solve this problem, this paper presents a new architecture which
combines a deep neural network with a phonetic phrase alignment method used as a new internal
layer to maintain the temporal structure of the utterance. As we will show, it is a more natural
solution for the text-dependent speaker verification since the speaker and phrase information can be
encoded in the supervector thanks to the neural network and the specific states of the supervector.
A supervector is a concatenation of smaller-dimensional vectors from each specific state into a
higher-dimensional vector.
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In the context of text-independent speaker verification tasks, the baseline system based on i-vector
extraction and Probabilistic Linear Discriminant Analysis (PLDA) [6,7] is still among the best results
of the state-of-the-art. An i-vector is a representation of an utterance in a low-dimensional subspace
called the total variability subspace, and the PLDA model produces the verification scores. However,
as we previously mentioned, many improvements on this baseline system have been achieved in
recent years by progressively substituting components of the systems by DNNs, thanks to their greater
expressiveness and the availability of large databases. Examples of this are the use of DNN bottleneck
representations as features replacing or combined with spectral parametrization [8], training DNN
acoustic models to use their outputs as posteriors for alignment instead of Gaussian Mixture Model
(GMM) in i-vector extractors [9], or replacing PLDA by a DNN [10]. Other proposals similar to
face verification architectures have been more ambitious and have trained a discriminative DNN for
multiclass classification. Once these systems are trained, the embeddings, which are fixed-length
utterance level representations, are extracted by reduction mechanisms from the DNN [11–13]. In this
context, they are called x-vectors—for example, taking the average of an intermediate layer usually
named the bottleneck layer. After that embedding extraction, the verification score is obtained by
a similarity metric such as cosine similarity [11] or PLDA.

The application of DNNs and the same techniques as in text-independent models for
text-dependent speaker verification tasks has produced mixed results. On the one hand,
specific modifications of the traditional techniques have been shown to be successful for text-dependent
tasks such as i-vector+PLDA/Support Vector Machines (SVM) [14–16], DNNs bottleneck as features
for i-vector extractors [17] or posterior probabilities for i-vector extractors [17,18]. On the other hand,
speaker embeddings obtained directly from a DNN have provided good results in tasks with large
amounts of data and a single phrase [19], but they have not been as effective in tasks with more than
one pass phrase and smaller database sizes [4,5]. The lack of data in this last scenario may lead to
problems with deep architectures due to overfitting of models.

Another reason that we explore in the paper for the lack of effectiveness of these techniques
in general text-dependent tasks is that the phonetic content of the uttered phrase is relevant for
the identification. State-of-art text-independent approaches to obtain speaker embeddings from an
utterance usually reduce temporal information by calculating the average across frames of the internal
representations of the network. This approach may neglect the order of the phonetic information
because, in the same phrase, the beginning of the sentence may be totally different from what is
said at the end. An example of this is the case when the system asks the speaker to utter digits in
some random order. In that case, a mean vector would fail to capture the combination of phrase and
speaker. Therefore, one of the objectives of the paper is to show that it is important to keep this phrase
information for the identification process, not just the information of who is speaking.

In previous works, we have developed systems that need to store a model per user which were
adapted from a universal background model. These systems were developed using two approaches:
a statistical model based on Factor Analysis (FA) [20], and a model based on Neural Networks [21].
In both systems, the evaluation of the trial was a likelihood ratio. One of the drawbacks of this
approach is the need to store a large amount of data per user and the speed of evaluation of trials since
likelihood expressions were dependent on the frame length. To simplify this evaluation process, here
we employ a cosine similarity as a metric. This metric is simple and allows us to evaluate the trials
using a matrix structure, which reduces the time needed to make the whole evaluation.

In this paper, we propose a new approach that includes alignment as a key component of
the mechanism to obtain the vector representation from a deep neural network. Unlike previous
works, we substitute the average of the internal representations across time that is used in other
neural network architectures [4,5] by an alignment mechanism to keep the temporal structure of
each utterance. We show how the alignment can be applied in combination with a DNN acting as a
front-end to create a supervector for each utterance. As we will show, the application of both sources
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of information in the process of defining the supervector provides better results in the experiments
performed on RSR2015 [22] compared to previous approaches.

This paper is organized as follows. In Section 2, we present our system and especially the
alignment strategy developed. Section 3 presents the experimental data. Section 4 explains the results
achieved. Conclusions are presented in Section 5.

2. Deep Neural Network Based on Alignment

Due to the poor performance of the results achieved in previous works for this task with only
DNNs and a basic similarity metric, we have combined the neural network with a differentiable
alignment mechanism due to the importance of the phrases and their temporal structure in these kinds
of tasks. Since the same person does not always pronounce one phrase at the same speed or in the
same way due to differences in the phonetic information, it is usual that there exists an articulation and
pronunciation mismatch between two compared speech utterances even from the same person. Thus,
we have developed this approach to give robustness to the systems against these sources of variability.

2.1. System Description

Figure 1 shows the overall architecture of our system which consists of a front-end part, where the
acoustic features are obtained from the input signal, and a neural network is applied over them.
After that, the global average pooling usually employed to obtain the vector embedding before
the back-end is substituted by the alignment process to finally create a supervector per audio file.
This supervector can be seen as a mapping between an utterance and the state components of the
alignment, which allows encoding the phrase information. These two parts are combined, and a
flatten layer is used to link with the last layer to train the system for multi-class classification. For the
verification process, once our system is trained, one supervector is extracted from the flatten layer
for each enroll and test utterance, and then a cosine metric is applied over them to produce the
verification scores.

Figure 1. Differentiable neural network alignment mechanism based on alignment models.
The supervector is composed of Q vectors sQ for each state.
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2.2. Front-End Network Architecture

For deep speaker verification, some simple architectures with only dense layers [4] have been
proposed. However, lately, employed deep neural networks such as Residual Convolutional Neural
Networks (CNN) [5], but, in text-dependent tasks, it has not achieved the same good results as previous
simple approaches.

In our network, we propose a straightforward architecture with only a few layers that include the
use of one-dimensional convolution (1D convolution) layers instead of dense layers or 2D convolution
layers as in other works. Our proposal is to operate in the temporal dimension to add context
information to the process and at the same time the channels are combined at each layer. The context
information that is added depends on the size of the kernel k used in the convolution layer.

To use this type of layer, it is convenient that the input signals have the same size. For this
reason, we apply a transformation to interpolate the input signals to have all of them with the same
dimensions (D0 × T) where D0 is the acoustic feature dimension of the Mel-Frequency Cepstral
Coefficients (MFCC) with their first and second derivatives, and T is the temporal dimension.

The operation of the 1D convolution layers is depicted in Figure 2, and the layer input and
its context, the previous frames and the subsequent frames are multiplied frame by frame with the
corresponding weights. The results of this operation for each frame are linearly combined to create the
output signal. Using this kind of layer in the network architecture, the acoustic feature dimension of
the input signal changes after each convolution layer. As we can see in Figure 2, each convolution layer
will have feature vectors of dimension D(l) as input and D(l+1) as output. The resulting dimension of
the processed signal through the network will be D = (D(0), D(1), ..., D(l), ..., D(L)), where L is the total
number of front-end layers. The temporal dimension T is kept constant in these layers since we define
a zero padding for the convolution.

(a) Operation with 1D Convolution

(b) Example of the convolution operation

Figure 2. Operation with 1D Convolution layers, (a) general pipeline of this operation; (b) example of
how k context frames from input are multiplied by the weight matrix W and the output is equivalent
to a linear combination of convolutions.
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2.3. Alignment Mechanism

In this work, we select a Hidden Markov Model (HMM) as the alignment technique in all the
experiments. In text-dependent tasks, we know the phrase transcription that allows us to construct a
specific left-to-right HMM with no skip states for each phrase of the data and obtain a Viterbi alignment
per utterance.

One reason to employ a phrase HMM alignment was due to its simplicity for training independent
HMMs for different phrases used to develop our experiments without the need of phonetic information
for training. Another reason was that, using the decoded sequence provided by the Viterbi algorithm
in a left-to-right architecture, it is ensured that each state of the HMM corresponds to at least one frame
of the utterance, so no state is empty.

The process followed to add this alignment to our system is detailed below. Once the models
for the alignment are trained, a sequence of decoded states q = (q1, ..., qt, ..., qT) where qt indicates the
decoded state at time t with qt ∈ {1, ..., Q} is obtained. As we can see in Figure 3, we encode this
information using an alignment matrix A ∈ RT×Q where atqt = 1 if frame t belongs to state qt and
0 otherwise. Since only one state is active at the same time, ∑q atq = 1. Thanks to this matrix encoding,
we can include the alignment information in the gradient estimation increasingly.

Figure 3. Process of alignment, the input signal x is multiplied by an alignment matrix A to produce a
matrix with vectors sQ which are then concatenated to obtain the supervector.

For example, if we train an HMM with four states, we obtain a vector q and apply the previous
transformation, the resultant matrix A would be:

q = [1, 1, 1, 2, 2, 3, 3, 4]→ A =



1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


. (1)

The input employed to this alignment layer is the output of the L convolutional layer.
The alignment as a matrix multiplication can be expressed as a function of the input signal, xL

dt,
with dimensions (D(L) × T) and the alignment matrix of each utterance A with dimensions (T × Q):

x(L+1)
dq =

∑t x(L)
dt · atq

∑t atq
, (2)

where x(L+1)
dq is the supervector of the layer (L + 1) with dimensions (D(L) ×Q), where there are Q

state vectors of dimension D(L) and we normalize by the number of times state q is active.
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3. Experimental Setup

3.1. Data

In all the experiments in this paper, we used the RSR2015 text-dependent speaker verification
dataset [22]. This dataset consists of recordings from 157 male and 143 female, and nine different
sessions for each speaker. This data are divided into three speaker subsets: background (bkg),
development (dev) and evaluation (eval). Furthermore, it is also divided into three parts based
on different lexical constraints. We develop our experiments in Part I and Part II of this data set. Part I
is based on 30 phonetically balanced pass-phrases. Part II contains 30 short commands to control.
The average length of the utterances in the second part is half the length of the utterances in Part I.
With both parts, we employ the bkg and dev data (194 speakers, 94 female/100 male) for training.
The evaluation part is used for enrollment and trial evaluation.

This dataset has three evaluation conditions, but, in this work, we have only evaluated the
Impostor-Correct case that is the most challenging condition where the non-target speakers pronounce
the same phrase as the target speakers.

3.2. Experimental Description

In our experiments, we do not need the phrase transcription to obtain the corresponding alignment
because one phrase dependent HMM has been trained with the background partition using a left-to-right
model with no skip states, which has been developed with models of 10, 20, 40 and 80 states for each
phrase. With these models, we can extract statistics from each utterance of the database and use this
alignment information inside our DNN architecture. As inputs to train the alignment models and
to the DNN, we employ 20-dimensional MFCC with their first and second derivatives as features to
obtain a final input dimension of 60. Then, an energy based voice activity detector is used over them.
On these input features, we apply a data augmentation method called Random Erasing [23], which
helps us to avoid overfitting in our models due to the scarceness of data in this database.

We have evaluated different configurations of the DNN architecture, which we refer to as the
front-end part of the system. In addition, we also have evaluated the interaction of these architectures
with the alignment and the utterance duration by means of several HMM sizes. Finally, we have
extracted supervectors as a combination of front-end and alignment with a flattened layer, and, with
them, we have obtained speaker verification scores by using a cosine similarity metric without any
normalization technique.

A set of experiments was performed using Pytorch [24] to evaluate our system. We compare a
front-end that uses an average pooling similar to [4,5], and the acoustic feature input directly aligned
with the HMM alignment; thus, we obtain the traditional supervector. Additionally, we have evaluated
several front-end architectures with four different configurations: one convolutional layer with a
kernel of dimension 1 equivalent to a dense layer but keeping the temporal structure and without
adding context information, one convolutional layer with a kernel of dimension 3, three convolutional
layers with a kernel of dimension 3, and four convolutional layers with a kernel of dimension 3.
These configurations for the kernel size and the number of layers have been selected as simple as
possible since, as we mentioned in Section 2.2, deep neural networks have not achieved good results
in this task.

In addition, in this work, we have used as a reference system the traditional supervector instead
of an i-vector based system due to the limitations of i-vectors for text-dependent tasks in the RSR2015
database, as pointed out in [25,26], where the authors concluded that these kinds of datasets do not
have enough data to train the traditional i-vectors extractors properly.

4. Results

In this work, two sets of experiments have been developed. First, we focus on the RSR-Part I that
is composed of fixed pass-phrases, e.g., “Only lawyers love millionaires". In these experiments, we study
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the behaviour of our system when we vary the number of front-end layers, the training data and the
states of the HMM. The second part of experiments evaluate the performance of the proposed system
on the RSR-Part II that is based on short commands with strong overlap lexical content of different
commands, e.g., “Volume up" and “Volume down".

4.1. Experiments with RSR-Part I

In Table 1, we show Equal Error Rate (EER), and National Institute of Standards and Technology
(NIST) 2010 minimum detection costs (DCF10 [27]) results with the different architectures trained on
the background subset for female, male and both partitions together. The DCF10 measures the cost of
detection errors in terms of a weighted sum of false alarm and miss probabilities for some decision
threshold, and a priori probability of observing target and non-target speakers. We have found that,
as we expected, the first approach with an average reduction mechanism for extracting embeddings
does not perform well for this text-dependent speaker verification task. It seems that these types of
embeddings do not represent correctly the information to achieve discrimination between the correct
speaker and phrase both simultaneously. Furthermore, we show that changing the typical average
reduction for a new alignment layer inside the DNN achieves a relative improvement of 92.14% in
terms of EER%. In addition, we have evaluated the performance of our system in terms of whether we
vary the number of states that are used to model each phrase. Given the length of the phrases in Part I,
we observe that it is better to employ a greater number of states to correctly model each phrase.

Table 1. Experimental results on RSR2015-Part I [22] eval set, where Equal Error Rate (EER%) and
National Institute of Standards and Technology (NIST) 2010 min cost (DCF10) are shown. These results
were obtained by training only with a bkg subset and by varying the number of states of the Hidden
Markov Model (HMM). The best results are marked in bold.

Architecture Results (EER%/DCF10)

Front-End Pooling
Layers Kernel Type States Fem Male Fem + Male

3C 3 avg − 11.20/0.9808 12.13/0.9908 11.70/0.9887

− − HMM 10 3.14/0.2733 7.18/0.3746 6.37/0.4330
1C 1 1.75/0.2759 2.58/0.3045 2.66/0.3465
1C 3 1.60/0.2504 2.31/0.2926 2.29/0.3087
3C 3 1.72/0.3150 2.78/0.4049 2.45/0.3775
4C 3 2.31/0.3840 3.28/0.5024 3.00/0.4596

− − HMM 20 1.81/0.2186 3.00/0.2197 3.20/0.3338
1C 1 1.42/0.1923 1.37/0.1904 1.88/0.2954
1C 3 1.17/0.1777 1.07/0.1722 1.51/0.2547
3C 3 1.14/0.1806 1.42/0.2715 1.34/0.2356
4C 3 1.03/0.1940 1.48/0.2712 1.34/0.2350

− − HMM 40 1.35/0.2099 1.57/0.1643 2.03/0.2886
1C 1 1.16/0.1749 0.98/0.1495 1.56/0.2774
1C 3 1.04/0.1696 0.77/0.1383 1.20/0.2335
3C 3 0.86/0.1566 1.01/0.2094 0.98/0.1940
4C 3 1.09/0.1975 1.27/0.2530 1.23/0.2402

− − HMM 80 1.70/0.2352 1.73/0.1814 2.25/0.3108
1C 1 1.46/0.1971 1.19/0.1566 1.67/0.2834
1C 3 1.27/0.1887 0.88/0.1479 1.43/0.2595
3C 3 0.84/0.1533 0.88/0.1868 0.92/0.1872
4C 3 1.04/0.2096 1.18/0.2708 1.17/0.2492

Nevertheless, the EER results were still quite high, so we decided that the results could be
improved by training with background and developing subsets together. In Table 2, we can see that,
if we use more data to train our systems, we achieve better performance especially in deep architectures
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with more than one layer. This improvement is observed for both architectures. This fact remarks on
the importance of having a large amount of data to be able to train deep architectures. In addition,
we carried out an experiment to illustrate this effect. In Figure 4, we show that, if we increase little by
little the amount of data used to train, the results progressively improve. In addition to that, we can
see in Figure 4b that the alignment mechanism makes the system more robust to training data size.
To make this representation, we have used the alignment mechanism with 40 states. In addition,
the shaded areas of Figure 4 depict the standard deviation of the EER values obtained from each
system trained three times.

Table 2. Experimental results on RSR2015-Part I [22] eval set, showing EER% and NIST 2010 min cost
(DCF10). These results were obtained by training with bkg+dev subsets and by varying the number
of states of the HMM. The best results are marked in bold.

Architecture Results (EER%/DCF10)

Front-End Pooling
Layers Kernel Type States Fem Male Fem+Male

3C 3 avg − 9.11/0.9585 8.66/0.9626 8.87/0.9629

− − HMM 10 3.14/0.2733 7.18/0.3746 6.37/0.4330
1C 1 1.66/0.2522 2.30/0.2654 2.49/0.3349
1C 3 1.43/0.2267 2.01/0.2561 2.13/0.2979
3C 3 1.29/0.2342 2.08/0.2870 1.82/0.2746
4C 3 1.56/0.2853 2.41/0.3828 2.12/0.3445

− − HMM 20 1.81/0.2186 3.00/0.2197 3.20/0.3338
1C 1 1.30/0.1806 1.29/0.1625 1.79/0.2787
1C 3 1.15/0.1675 1.05/0.1397 1.51/0.2392
3C 3 0.83/0.1329 1.11/0.1897 1.03/0.1795
4C 3 0.99/0.1894 1.32/0.2548 1.22/0.2375

− − HMM 40 1.35/0.2099 1.57/0.1643 2.03/0.2886
1C 1 1.17/0.1822 0.98/0.1441 1.55/0.2673
1C 3 1.07/0.1521 0.78/0.1175 1.24/0.2245
3C 3 0.59/0.1046 0.71/0.1570 0.73/0.1418
4C 3 0.74/0.1584 0.89/0.2153 0.86/0.1945

− − HMM 80 1.70/0.2352 1.73/0.1814 2.25/0.3108
1C 1 1.32/0.2163 1.00/0.1367 1.60/0.2969
1C 3 1.17/0.1776 0.78/0.1289 1.34/0.2521
3C 3 0.65/0.1112 0.61/0.1539 0.68/0.1444
4C 3 0.80/0.1648 0.83/0.1980 0.84/0.1871

(a) (b)

Figure 4. Results of EER% varying train percentage where standard deviation is shown only for both
gender independent results. (a) average embeddings; (b) supervectors.
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For illustrative purposes, we also represent our high-dimensional supervectors in a
two-dimensional space using T-Distributed Stochastic Neighbor Embedding (t-SNE) [28], which
preserves distances in a small dimension space. The axes in this representation just define the
two-dimensional space to project the high-dimensional space, so they do not have a meaning in
terms of units. In Figure 5a, we show this representation for the architecture that uses the time average
to extract the embeddings, while, in Figure 5b, we represent the supervectors of our best system.
We can see that the second system is able to cluster the examples from the same person, whereas the
first method is not able to cluster them together. On the other hand, in both representations, data are
auto-organized to show on one side examples from female identities and on the other side examples
from male identities.

(a) (b)

Figure 5. Visualizing Average embeddings vs. Supervectors for 1 phrase from male+female using
T-Distributed Stochastic Neighbor Embedding (t-SNE), where female is marked by a cold color scale
and male is marked by a hot color scale. (a) average embeddings; (b) supervectors.

Furthermore, we illustrate in Figure 6 the same representation as in Figure 5. However, in this
case, we represent the embeddings and the supervectors of the thirty phrases from female identities.
With this depiction, we verify something that we had already observed in the previous verification
experiments since the embeddings obtained by using a global average pooling layer are not able to
separate between the same identity with different phrases and the same identity with the same phrase,
which is the base of a text-dependent speaker verification task.

(a) (b)

Figure 6. Visualizing average embeddings vs. Supervectors for 30 phrases from females using t-SNE.
Each phrase is marked by one different color scale. (a) average embeddings; (b) supervectors.
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4.2. Experiments with RSR-Part II

The results obtained with Part II are shown in Table 3. In this set of experiments, the phrases are
shorter so we can see that we need fewer states to model them. However, the performance obtained
with models of 10 and 20 states is similar since some phrases might require more states than others.
For example, phrases like “Turn on coffee machine" is modelled better with 20 states, while others like
“Call sister" need only a 10 state model to be characterized.

Table 3. Experimental results on RSR2015-Part II [22] eval set, showing EER% and NIST 2010 min cost
(DCF10). These results were obtained by training with bkg+dev subsets and by varying the number
of states of the HMM. The best results are marked in bold.

Architecture Results (EER%/DCF10)

Front-End Pooling
Layers Kernel Type States Fem Male Fem+Male

3C 3 avg − 11.18/0.9824 11.81/0.9811 11.59/0.9813

− − HMM 10 7.99/0.7062 9.47/0.6741 9.79/0.7810
1C 1 4.76/0.5901 4.70/0.5559 5.47/0.6488
1C 3 4.16/0.5466 4.31/0.5387 4.94/0.6140
3C 3 3.91/0.5398 4.97/0.6536 4.68/0.6151
4C 3 4.82/0.6421 6.13/0.7092 5.73/0.6876

− − HMM 20 10.06/0.7449 10.01/0.7311 11.06/0.8032
1C 1 6.44/0.6709 5.56/0.6012 7.02/0.7403
1C 3 5.57/0.6178 5.01/0.5547 6.17/0.6865
3C 3 3.90/0.5420 4.86/0.6451 4.61/0.6067
4C 3 5.00/0.6539 6.23/0.7213 5.88/0.6960

− − HMM 40 18.13/0.8197 18.16/0.8146 18.43/0.8563
1C 1 11.60/0.7995 10.53/0.7493 11.74/0.8469
1C 3 9.52/0.7689 8.83/0.7039 9.95/0.8190
3C 3 5.55/0.6461 6.76/0.6830 6.59/0.6794
4C 3 7.56/0.7607 9.52/0.8147 8.93/0.7943

Furthermore, as we expected, the general performance is worse since the system suffers from the
lexical similarity of the short commands. Thus, this part is more challenging than Part I as we can also
see in other previous works [15,16].

In addition to the previous table, Figure 7 depicts the Detection Error Trade-off (DET) curves.
These representations show the performance for female+male experiments with the best systems for
each pooling configuration. We can observe that the results with the HMMs of 10 or 20 states are
practically the same.
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Figure 7. Detection Error Trade-off (DET) curve for female+male results on RSR2015-Part II of the best
systems for each pooling configuration.
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5. Conclusions

In this paper, we present a new method to add an alignment layer inside the DNN architectures
for encoding meaningful information from each utterance in a supervector, which allows us to conserve
the relevant information that we use to verify the speaker identity and the correspondence with the
correct phrase. We have evaluated the models in the text-dependent speaker verification database
RSR2015-Part I and Part II. Results confirm that the alignment as a layer within the architecture of
DNN is an interesting approach since we have obtained competitive results with a straightforward
and simple alignment technique that has low computational cost, so we strongly believe that can
achieve better results with more powerful techniques such as GMM or DNN posteriors. As a first
approximation to the proposed future work, we have an ongoing development using GMM as a new
alignment technique producing good preliminary results [29].

Author Contributions: Conceptualization, V.M. and A.M.; Investigation, V.M. and A.M.; Methodology, V.M. and
A.M.; Software, V.M. and A.M.; Supervision, A.M., A.O. and E.L.; Writing—original draft, V.M.; Writing—review
and editing, A.M., A.O. and E.L.

Funding: This work has been supported by the Spanish Ministry of Economy and Competitiveness and the
European Social Fund through the project TIN2017-85854-C4-1-R, by the Government of Aragon (Reference
Group T36_17R) and co-financed with Feder 2014-2020 “Building Europe from Aragon”, and by Nuance
Communications, Inc. (Burlington, MA, USA).

Acknowledgments: We gratefully acknowledge the support of NVIDIA Corporation (Santa Clara, CA, USA) with
the donation of the Titan Xp GPU used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in
Face Verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. [CrossRef]

2. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; pp. 815–823. [CrossRef]

3. Nguyen, H.V.; Bai, L. Cosine similarity metric learning for face verification. In Proceedings of the Asian
Conference on Computer Vision, Queenstown, New Zealand, 8–12 November 2010; pp. 709–720.

4. Liu, Y.; Qian, Y.; Chen, N.; Fu, T.; Zhang, Y.; Yu, K. Deep feature for text-dependent speaker verification.
Speech Commun. 2015, 73, 1–13. [CrossRef]

5. Malykh, E.; Novoselov, S.; Kudashev, O. On residual CNN in text-dependent speaker verification task.
In Proceedings of the International Conference on Speech and Computer, Hatfield, Hertfordshire, UK,
12–16 September 2017; pp. 593–601.

6. Kenny, P.; Ouellet, P.; Dehak, N.; Gupta, V.; Dumouchel, P. A study of interspeaker variability in speaker
verification. IEEE Trans. Audio Speech Lang. Process. 2008, 16, 980–988. [CrossRef]

7. Dehak, N.; Kenny, P.J.; Dehak, R.; Dumouchel, P.; Ouellet, P. Front-end factor analysis for speaker verification.
IEEE Trans. Audio Speech Lang. Process. 2011, 19, 788–798. [CrossRef]

8. Lozano-Diez, A.; Silnova, A.; Matejka, P.; Glembek, O.; Plchot, O.; Pešán, J.; Burget, L.; Gonzalez-Rodriguez, J.
Analysis and optimization of bottleneck features for speaker recognition. Proc. Odyssey 2016, 2016, 352–357.

9. Lei, Y.; Scheffer, N.; Ferrer, L.; McLaren, M. A novel scheme for speaker recognition using a
phonetically-aware deep neural network. In Proceedings of the 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1695–1699.

10. Ghahabi, O.; Hernando, J. Deep belief networks for i-vector based speaker recognition. In Proceedings of
the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy,
4–9 May 2014; pp. 1700–1704.

11. Bhattacharya, G.; Alam, J.; Kenny, P. Deep speaker embeddings for short-duration speaker verification.
In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017; pp. 1517–1521.

http://dx.doi.org/10.1109/CVPR.2014.220
http://dx.doi.org/10.1109/CVPR.2015.7298682
http://dx.doi.org/10.1016/j.specom.2015.07.003
http://dx.doi.org/10.1109/TASL.2008.925147
http://dx.doi.org/10.1109/TASL.2010.2064307


Appl. Sci. 2019, 9, 3295 12 of 12

12. Snyder, D.; Garcia-Romero, D.; Povey, D.; Khudanpur, S. Deep neural network embeddings
for text-independent speaker verification. In Proceedings of the Interspeech, Stockholm, Sweden,
20–24 August 2017; pp. 999–1003.

13. Snyder, D.; Garcia-Romero, D.; Sell, G.; Povey, D.; Khudanpur, S. X-vectors: Robust dnn embeddings for
speaker recognition. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 5329–5333.

14. Zeinali, H.; Sameti, H.; Burget, L. HMM-based phrase-independent i-vector extractor for text-dependent
speaker verification. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1421–1435. [CrossRef]

15. Valenti, G.; Daniel, A.; Evans, N.W. On the Influence of Text Content on Pass-Phrase Strength for
Short-Duration Text-Dependent Automatic Speaker Authentication. In Proceedings of the INTERSPEECH,
San Francisco, CA, USA, 8–12 September 2016; pp. 3623–3627.

16. You, H.; Li, W.; Li, L.; Zhu, J. Lexicon-based local representation for text-dependent speaker verification.
IEICE Trans. Inf. Syst. 2017, 100, 587–589. [CrossRef]

17. Zeinali, H.; Burget, L.; Sameti, H.; Glembek, O.; Plchot, O. Deep neural networks and hidden Markov
models in i-vector-based text-dependent speaker verification. In Proceedings of the Odyssey-The Speaker
and Language Recognition Workshop, Bilbao, Spain, 21–24 June 2016; pp. 24–30.

18. Dey, S.; Madikeri, S.; Ferras, M.; Motlicek, P. Deep neural network based posteriors for text-dependent
speaker verification. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 5050–5054.

19. Heigold, G.; Moreno, I.; Bengio, S.; Shazeer, N. End-to-end text-dependent speaker verification.
In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shanghai, China, 20–25 March 2016, pp. 5115–5119.

20. Miguel, A.; Villalba, J.; Ortega, A.; Lleida, E.; Vaquero, C. Factor Analysis with Sampling Methods for Text
Dependent Speaker Recognition. In Proceedings of the 15th Annual Conference of the International Speech
Communication Association, Interspeech, Singapore, 14–18 September 2014; pp. 1342–1346.

21. Miguel, A.; Llombart, J.; Ortega, A.; Lleida, E. Tied Hidden Factors in Neural Networks for End-to-End
Speaker Recognition. In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017;
pp. 2819–2823.

22. Larcher, A.; Lee, K.A.; Ma, B.; Li, H. Text-dependent speaker verification: Classifiers, databases and RSR2015.
Speech Commun. 2014, 60, 56–77. [CrossRef]

23. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. arXiv 2017,
arXiv:1708.04896.

24. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.;
Lerer, A. Automatic differentiation in PyTorch. In Proceedings of the NIPS 2017 Workshop Autodiff Decision
Program Chairs, Long Beach, CA, USA, 9 December 2017.

25. Stafylakis, T.; Kenny, P.; Ouellet, P.; Perez, J.; Kockmann, M.; Dumouchel, P. I-Vector/PLDA
Variants for Text-Dependent Speaker Recognition; Centre de Recherche Informatique de Montreal (CRIM):
Montreal, QC, Canada, 2013.

26. Kenny, P.; Stafylakis, T.; Ouellet, P.; Alam, M.J. JFA-based front ends for speaker recognition. In Proceedings
of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Florence, Italy, 4–9 May 2014; pp. 1705–1709.

27. The NIST Year 2010 Speaker Recognition Evaluation Plan. 2010. Available online: https://www.nist.gov/
sites/default/files/documents/itl/iad/mig/NIST$_$SRE10$_$evalplan-r6.pdf (accessed on 1 August 2019).

28. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
29. Mingote, V.; Miguel, A.; Ortega, A.; Lleida, E. Optimization of the Area Under the ROC Curve using Neural

Network Supervectors for Text-Dependent Speaker Verification. arXiv 2019, arXiv:1901.11332.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TASLP.2017.2694708
http://dx.doi.org/10.1587/transinf.2016EDL8182
http://dx.doi.org/10.1016/j.specom.2014.03.001
https://www.nist.gov/sites/ default/files/documents/itl/iad/mig/NIST$_$SRE10$_$evalplan-r6.pdf
https://www.nist.gov/sites/ default/files/documents/itl/iad/mig/NIST$_$SRE10$_$evalplan-r6.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Deep Neural Network Based on Alignment
	System Description
	Front-End Network Architecture
	Alignment Mechanism

	Experimental Setup
	Data
	Experimental Description

	Results
	Experiments with RSR-Part I
	Experiments with RSR-Part II

	Conclusions
	References

